Identification of a Novel Pyrrole Alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake)
Abstract
:1. Introduction
2. Results
Identification of Pyrrole Alkaloid Derivatives
3. Discussion
4. Materials and Methods
4.1. Purification of Pyrrole Alkaloids
4.2. Analytical HPLC System
4.3. MS Analysis
4.4. Spectroscopic Analysis
4.5. Measurement of the Pyrrole Alkaloid Contents by HPLC
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Watanabe, K.; Arummugam, S.; Sakurai, M.; Sato, S.; Matsugo, S.; Watanabe, T.; Wakame, K. Nutraceutical and therapeutic significance of Echigoshirayukidake (Basidiomycetes-X), a novel mushroom found in Niigata, Japan. Glycative Stress Res. 2019, 6, 248–257. [Google Scholar] [CrossRef]
- Watanabe, T.; Nakajima, Y.; Konishi, T. In vitro and in vivo anti-oxidant activity of hot water extract of Basidiomycetes-X, newly identified edible fungus. Biol. Pharm. Bull. 2008, 31, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Sakurai, M.; Konishi, T.; Nishikawa, K.; Tsuno, Y. Anti-obesity effect of Echigoshirayukidake (Basidiomycetes-X) in rats. Glycative Stress Res. 2019, 6, 198–211. [Google Scholar] [CrossRef]
- Khatun, M.A.; Sato, S.; Konishi, T. Obesity preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism. J. Tradit. Complemetary Med. 2020, 10, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Karuppagounder, V.; Sreedhar, R.; Kandasamy, G.; Harima, M.; Velayutham, R.; Arumugam, S. Basidiomycetes-X, an edible mushroom, alleviates the development of atopic dermatitis in NC/Nga mouse model. Exp. Molec. Pathol. 2018, 105, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Afrin, R.; Sreedhar, R.; Karuppagounder, V.; Harima, M.; Alexander, X.; Velayutham, R.; Arumugam, S. Pharmacological investigation of Ceraceomyces tessulatus (Agaricomycetes) in mice with nonalcoholic steatohepatitis. Int. J. Med. Mushrooms 2020, 22, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.-W.; Lim, S.W.; Kim, S.-H.; Shin, D.-Y.; Suh, Y.-G.; Kim, Y.-B.; Kim, Y.C.; Kim, J. Hepatoprotective pyrrole derivatives of Lycium chinense fruits. Bioorganic Med. Chem. Lett. 2003, 13, 79–81. [Google Scholar] [CrossRef]
- Sudhakar, G.; Kadam, V.D.; Bayya, S.; Pranitha, G.; Jagadeesh, B. Total synthesis and stereochemical revision of acortatarins A and B. Org. Lett. 2011, 13, 5452–5455. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. 2-Formylpyrrole natural products: Origin, structural diversity, bioactiveity and synthesis. Nat. Prod. Rep. 2019, 36, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.B.; Chang, B.Y.; Jo, Y.H.; Lee, S.H.; Han, S.-B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J. Ethnopharmacol. 2013, 145, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.-N.; Huang, S.-Z.; Ma, Q.-Y.; Dai, H.-F.; Guo, Z.-K.; Yu, Z.-F.; Zhao, Y.-X. A new pyrrole alkaloid from Leccinum extremiorientale. Chem. Nat. Compd. 2015, 51, 730–732. [Google Scholar] [CrossRef]
- Shan, W.-G.; Wang, Y.; Ma, L.-F.; Zhan, Z.-J. A new pyrrole alkaloid from the mycelium of Inonotus obliquus. J. Chem. Res. 2017, 41, 392–393. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, M.; Sun, Z.; Zhu, N.; Yang, J.; Ma, G.; Xu, X. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules 2018, 23, 1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninomiya, M.; Matsuzaki, T.; Shigematsu, H. Formation of reducing substances in the Maillard reaction between D-glucose and γ-aminobutyric acid. Biosci. Biotech. Biochem. 1992, 56, 06-807. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid (compound I), 4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanamide (compound II), and 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde (compound III) are available from the authors. |
Derivative | Observed m/z | Predicted Formula | Monoisotopic Mass | Error | |
---|---|---|---|---|---|
ppm | mmu | ||||
Compound I a | 212.0913 | C10H14NO4 | 212.0922 | −4.6 | −1.0 |
Compound II b | 211.1081 | C10H15N2O3 | 211.1082 | −0.8 | −0.2 |
Compound III c | 126.0562 | C6H8NO2 | 126.0555 | +5.5 | +0.7 |
Position | 13C [ppm] | 1H [ppm] (J in Hz) | HMBC (H to C) | 13C [ppm] [8] | 1H [ppm] (J in Hz) [8] |
---|---|---|---|---|---|
2 | 133.5 | - | - | 132.4 | |
3 | 126.4 | 6.99, d (4.12) | 2, 4, 5, -CHO | 124.7 | 6.98, d (4.1) |
4 | 111.5 | 6.27, d (4.12) | 2, 3, 5 | 110.8 | 6.26, d (4.1) |
5 | 144.7 | - | - | 141.7 | |
6 | 56.4 | 4.64, s | 4, 5 | 56.2 | 4.63, s |
1′ | 45.8 | 4.40, t * (7.56) | 2′, 3′, 2, 5 | 44.6 | 4.39, t (7.3) |
2′ | 27.7 | 2.01, m | 1′, 3′, -COOH | 25.9 | 2.00, q (7.3) |
3′ | 31.8 | 2.33, t (7.39) | 1′, 2′, -COOH | 30.2 | 2.31, t (7.3) |
-CHO | 180.9 | 9.42, s | 2 | 179.6 | 9.41, s |
-COOH | 176.8 | - | - | 177.0 |
Position | 13C [ppm] | 1H [ppm] (J in Hz) | HMBC (H to C) |
---|---|---|---|
2 | 133.2 | - | - |
3 | 125.0 | 6.91, d (4.12) | 2, 4, 5 |
4 | 111.0 | 6.21, d (4.12) | 2, 3, 5 |
5 | 143.9 | - | - |
6 | 56.1 | 4.57, s | 4, 5 |
1′ | 45.6 | 4.31, t * (7.33) | 2′, 3′, 2, 5 |
2′ | 27.5 | 1.94, m ** | 1′, 3′, -CONH2 |
3′ | 32.4 | 2.22, t (7.20) | 1′, 2′, -CONH2 |
-CHO | 180.3 | 9.47, s | 2 |
-CONH2 | 175.6 | - | - |
-NH2 | - | 6.23, brd s | - |
- | 5.67, brd s | - |
Position | 1H [ppm] (J in Hz) | 1H [ppm] (J in Hz) [9] |
---|---|---|
2 | - | |
3 | 6.91, d (3.66) | 6.96, dd (3.7, 3.0) |
4 | 6.20, d (3.66) | 6.20, dd (3.7, 2.2) |
5 | - | |
6 | 4.56, s | 4.81, s |
-CHO | 9.43, s | 9.36, s |
-OH | 3.33, brd s | 3.66, brd s |
-NH | 10.10, brd s | 10.75, brd s |
Derivative | Content |
---|---|
μg [g DW]−1 | |
Compound I a | 825 ± 39 |
Compound II b | 484 ± 23 |
Compound III c | 12 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, T.; Nishida, A.; Wada, N.; Nakamura, Y.; Sato, S.; Konishi, T.; Matsugo, S. Identification of a Novel Pyrrole Alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake). Molecules 2020, 25, 4879. https://doi.org/10.3390/molecules25214879
Sakamoto T, Nishida A, Wada N, Nakamura Y, Sato S, Konishi T, Matsugo S. Identification of a Novel Pyrrole Alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake). Molecules. 2020; 25(21):4879. https://doi.org/10.3390/molecules25214879
Chicago/Turabian StyleSakamoto, Toshio, Ayaka Nishida, Naoki Wada, Yutaka Nakamura, Shinji Sato, Tetsuya Konishi, and Seiichi Matsugo. 2020. "Identification of a Novel Pyrrole Alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake)" Molecules 25, no. 21: 4879. https://doi.org/10.3390/molecules25214879
APA StyleSakamoto, T., Nishida, A., Wada, N., Nakamura, Y., Sato, S., Konishi, T., & Matsugo, S. (2020). Identification of a Novel Pyrrole Alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake). Molecules, 25(21), 4879. https://doi.org/10.3390/molecules25214879