Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples
Abstract
:1. Introduction
2. Analytical Methods for Carboxylic Acids in Biological Samples
2.1. Fatty Acids
2.1.1. Analysis of Fatty Acids
2.1.2. Fluorescence Detection
2.1.3. Mass Spectrometry
2.1.4. Electrochemical Detection
2.1.5. Electrogenerated Chemiluminescence
2.2. TCA Cycle and Glycolysis-Related Compounds
2.3. Amino Acid Metabolites
2.4. Perfluorinated Carboxylic Acids
2.5. α-Keto Acids and Their Metabolites
2.5.1. α-Keto Acids
2.5.2. 2-Hydroxyglutaric Acid
2.6. Carboxylic Acids Containing a Thiazole Ring
2.7. Miscellaneous
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Theodoridis, G.A.; Gika, H.G.; Want, E.J.; Wilson, I.D. Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Anal. Chim. Acta 2012, 711, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, W.; Lv, S.; Yin, P.; Zhao, X.; Lu, X.; Zhang, F.; Xu, G. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta 2009, 650, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Roman, J.M.; Issaq, H.J.; Keefer, L.K.; Veenstra, T.D.; Ziegler, R.G. Quantitative Measurement of Endogenous Estrogens and Estrogen Metabolites in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 7813–7821. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, M.; Sumida, Y. Liquid Chromatography|Amino Acids. Encycl. Anal. Sci. (3rd ed.) 2019, 6, 1–11. [Google Scholar]
- Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J. Chromatogr. B 2014, 964, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, M. Recent advances in methods for the analysis of catecholamines and their metabolites. Anal. Bioanal. Chem. 2006, 386, 506–514. [Google Scholar] [CrossRef]
- Du, X.-L.; Zhang, H.-S.; Guo, X.-F.; Deng, Y.-H.; Wang, H. 6-Oxy-(acetyl piperazine) fluorescein as a new fluorescent labeling reagent for free fatty acids in serum using high-performance liquid chromatography. J. Chromatogr. A 2017, 1169, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-Y.; Wu, H.-L.; Chen, S.-H.; Kou, H.-S. A Fluorimetric Liquid Chromatography for Highly Sensitive Analysis of Very Long Chain Fatty Acids as Naphthoxyethyl Derivatives. Chromatographia 2000, 51, 315–321. [Google Scholar] [CrossRef]
- You, J.; Zhang, W.; Jia, X.; Zhang, Y. An Improved Derivatization Method for Sensitive Determination of Fatty Acids by High-Performance Liquid Chromatography Using 9-(2-hydroxylethyl)-Carbazole as Derivatization Reagent with Fluorescence Detection. Chromatographia 2001, 54, 316–322. [Google Scholar] [CrossRef]
- You, J.; Zhang, W.; Zhang, Y. Simple derivatization method for sensitive determination of fatty acids with fluorescence detection by high-performance liquid chromatography using 9-(2-hydroxyethyl)-carbazole as derivatization reagent. Anal. Chim. Acta 2001, 436, 163–172. [Google Scholar] [CrossRef]
- Nishikiori, M.; Iizuka, H.; Ichiba, H.; Sadamoto, K.; Fukushima, T. Determination of Free Fatty Acids in Human Serum by HPLC with Fluorescence Detection. J. Chromatogr. Sci. 2015, 53, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Onozato, M.; Okanishi, Y.; Akutsu, M.; Okumura, I.; Nemoto, A.; Takano, K.; Sakamoto, T.; Ichiba, H.; Fukushima, T. Alteration in plasma docosahexanoic acid levels following oral administration of ethyl icosapentate to rats. Pract. Lab. Med. 2020, 18, e00143. [Google Scholar] [CrossRef] [PubMed]
- Nithipatikom, K.; Pratt, P.F.; Campbell, W.B. Determination of EETs using microbore liquid chromatography with fluorescence detection. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, J.G.; Rohan, G.; Sadilek, M.; Gelb, M.H. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res. 2013, 54, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, J.G.; Thompson, W.; Lai, Y.; Oslund, R.C.; Hallstrand, T.S.; Sedilek, M.; Turecek, F.; Gelb, M.H. Improved Sensitivity Mass Spectrometric Detection of Eicosanoids by Charge Reversal Derivatization. Anal. Chem. 2010, 82, 6790–6796. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Choi, A.A.; Wu, R. Systematic Analysis of Fatty Acids in Human Cells with a Multiplexed Isobaric Tag (TMT)-Based Method. J. Proteome Res. 2018, 17, 1606–1614. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Santa, T.; Yoshida, H.; Miyano, H.; Fukushima, T.; Hirayama, K.; Imai, K.; Funatsu, T. Synthesis of the isotope-labeled derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)], and its application to the quantification and the determination of relative amount of fatty acids in rat plasma samples by high-performance liquid chromatography/mass spectrometry. Biomed. Chromatogr. 2006, 20, 358–364. [Google Scholar]
- Tsukamoto, Y.; Santa, T.; Saimaru, H.; Imai, K.; Funatsu, T. Synthesis of benzofurazan derivatization reagents for carboxylic acids and its application to analysis of fatty acids in rat plasma by high-performance liquid chromatography–electrospray ionization mass spectrometry. Biomed. Chromatogr. 2005, 19, 802–808. [Google Scholar] [CrossRef]
- Abualhasan, M.N.; Watson, D.G. Tagging Fatty Acids Via Choline Coupling for the Detection of Carboxylic Acid Metabolites in Biological Samples. Curr. Anal. Chem. 2019, 15, 642–647. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Zhang, Q. Simultaneous quantification of free fatty acids and acylcarnitines in plasma samples using dansylhydrazine labeling and liquid chromatography–triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 2841–2849. [Google Scholar] [CrossRef]
- Leng, J.; Wang, H.; Zhang, L.; Zhang, J.; Wang, H.; Guo, Y. A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group. Anal. Chim. Acta 2013, 758, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-F.; Zhang, Z.; Liu, P.; Zheng, S.-J.; Peng, K.; Deng, Q.-Y.; Zheng, F.; Yuan, B.-F.; Feng, Y.-Q. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography–mass spectrometry. J. Chromatogr. A 2016, 1460, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Jakab, A.; Fekete, J.; Vékey, K. An HPLC-MS Approach for Analysis of Very Long Chain Fatty Acids and Other Apolar Compounds on Octadecyl-Silica Phase Using Partly Miscible Solvents. Anal. Chem. 2004, 76, 1935–1941. [Google Scholar] [CrossRef] [PubMed]
- Kotani, A.; Kusu, F.; Takamura, K. New electrochemical detection method in high-performance liquid chromatography for determining free fatty acids. Anal. Chim. Acta 2002, 465, 199–206. [Google Scholar] [CrossRef]
- Kotani, A.; Fuse, T.; Kusu, F. Determination of Plasma Free Fatty Acids by High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 2000, 284, 65–69. [Google Scholar] [CrossRef]
- Morita, H.; Konishi, M. Electrogenerated Chemiluminescence Derivatization Reagents for Carboxylic Acids and Amines in High-Performance Liquid Chromatography Using Tris(2,2′-bipyridine)ruthenium(II). Anal. Chem. 2002, 74, 1584–1589. [Google Scholar] [CrossRef]
- Baati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. J. Pharm. Biomed. Anal. 2011, 56, 758–772. [Google Scholar] [CrossRef]
- Chen, H.-C.; Wu, C.; Wu, K.-Y. Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction. Talanta 2015, 136, 9–14. [Google Scholar] [CrossRef]
- Lakso, H.; Appelblad, P.; Schneese, J. Quantification of Methylmalonic Acid in Human Plasma with Hydrophilic Interaction Liquid Chromatography Separation and Mass Spectrometric Detection. Clin. Chem. 2008, 54, 2028–2035. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, D.; Onor, M.; Degano, I.; Bramanti, E. Development and validation of a novel derivatization method for the determination of lactate in urine and saliva by liquid chromatography with UV and fluorescence detection. Talanta 2014, 130, 280–287. [Google Scholar] [CrossRef]
- Schriewer, A.; Brink, M.; Gianmoena, K.; Cadenas, C.; Hayen, H. Oxalic acid quantification in mouse urine and primary mouse hepatocyte cell culture samples by ion exclusion chromatography-mass spectrometry. J. Chromatogr. B 2017, 1068–1069, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Fukushima, T.; Yuji, R.; Miyano, H.; Hirayama, K.; Santa, T.; Imai, K. Development of an HPLC-fluorescence determination method for carboxylic acids related to the tricarboxylic acid cycle as a metabolome tool. Biomed. Chromatogr. 2005, 19, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Chen, Y.; Xie, J.; Chen, X.; Bai, J.; Wu, J.; Liu, D.; Ying, H. Ion-Exclusion Chromatography Determination of Organic Acid in Uridine 5′-Monophosphate Fermentation Broth. J. Chromatogr. Sci. 2012, 50, 709–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halko, R.; Hukelová, I. Single-Run Separation and Determination of Aliphatic and Aromatic Carboxylic Acids in Wine and Human Urine Samples by Ion-Exclusion Chromatography. Chromatographia 2014, 77, 1037–1046. [Google Scholar] [CrossRef]
- Todoroki, K.; Hashimoto, H.; Machida, K.; Itoyama, M.; Hayama, T.; Yoshida, H.; Nohta, H.; Nakashima, M.; Yamaguchi, M. Fully automated reagent peak-free liquid chromatography fluorescence analysis of highly polar carboxylic acids using a column-switching system and fluorous scavenging derivatization. J. Sep. Sci. 2013, 36, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Michopoulos, F.; Whalley, N.; Theodoridis, G.; Wilson, I.D.; Dunkley, T.P.J.; Critchlow, S.E. Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: Applications to serum, urine and tissue extracts. J. Chromatogr. A 2014, 1349, 60–68. [Google Scholar] [CrossRef]
- Guo, L.; Worth, A.J.; Mesaros, C.; Snyder, N.W.; Glickson, J.D.; Blair, I.A. Diisopropylethylamine/hexafluoroisopropanol-mediated ion-pairing UHPLC-MS for phosphate and carboxylate metabolite analysis: Utility for studying cellular metabolism. Rapid Commun. Mass Spectrom. 2016, 30, 1835–1845. [Google Scholar] [CrossRef]
- Buescher, J.M.; Moco, S.; Sauer, U.; Zamboni, N. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites. Anal. Chem. 2010, 82, 4403–4412. [Google Scholar] [CrossRef]
- Nemkov, T.; Sun, K.; Reisz, J.A.; Yoshida, T.; Dunham, A.; Wen, E.Y.; Wen, A.Q.; Roach, R.C.; Hansen, K.C.; Xia, Y.; et al. Metabolism of citrate and Other carboxylic acids in erythrocytes as a Function of Oxygen saturation and refrigerated storage. Front. Med. 2017, 4, 175. [Google Scholar] [CrossRef]
- Fukushima, T.; Sone, Y.; Mitsuhashi, S.; Tomita, M.; Toyo’oka, T. Alteration of Kynurenic Acid Concentration in Rat Plasma Following Optically Pure Kynurenine Administration: A Comparative Study Between Enantiomers. Chirality 2009, 21, 468–472. [Google Scholar] [CrossRef]
- Cseh, E.K.; Veres, G.; Szentirmai, M.; Nánási, N.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Zádori, D. HPLC method for the assessment of tryptophan metabolism utilizing separate internal standard for each detector. Anal. Biochem. 2019, 574, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunius, C.; Vidanarachchi, J.K.; Tomankova, J.; Lundström, K.; Andersson, K.; Zamaratskaia, G. Skatole metabolites in urine as a biological marker of pigs with enhanced hepatic metabolism. Animal 2016, 10, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Kita, K.; Kawashima, Y.; Makino, R.; Namauo, T.; Ogawa, S.; Muraoka, H.; Fujimura, S. Detection of Two Types of Glycated Tryptophan Compounds in the Plasma of Chickens Fed Tryptophan Excess Diets. J. Poult. Sci. 2013, 50, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Makino, R.; Kita, K. Half-life of Glycated Tryptophan in the Plasma of Chickens. J. Poult. Sci. 2018, 55, 117–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko-Rokytovská, M.; Hubková, B.; Birková, A.; Mašlanková, J.; Stupák, M.; Zábavníková, M.; Cižmárová, B.; Mareková, M. Specific Urinary Metabolites in Malignant Melanoma. Medicina 2019, 55, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, M.; Mitsuhashi, K.; Masuda, M.; Imai, K. Simultaneous determination of 3,4-dihydroxyphenylacetic acid and homovanillic acid using high performance liquid chromatography-fluorescence detection and application to rat kidney microdialysate. Anal. Biochem. 2002, 307, 153–158. [Google Scholar] [CrossRef]
- Huang, W.-H.; Hu, K.; Shao, L.; Chen, Y.; Zhang, W.; Zhou, H.-H.; Tan, Z.-R. Development and validation of a method for the determination of nicotinic acid in human plasma using liquid chromatography-negative electrospray ionization tandem mass spectrometry and its application to a bioequivalence study. Anal. Methods 2014, 6, 8258–8267. [Google Scholar] [CrossRef]
- Al-Dirbashi, O.Y.; Santa, T.; Al-Qahtani, K.; Al-Amoudi, M.; Rashed, M.S. Analysis of organic acid markers relevant to inherited metabolic diseases by ultra-performance liquid chromatography/tandem mass spectrometry as benzofurazan derivatives. Rapid Commun. Mass Spectrom. 2007, 21, 1984–1990. [Google Scholar] [CrossRef]
- Willacey, C.C.W.; Naaktgeboren, M.; Moreno, E.L.; Wegrzyn, A.B.; Es, D.; Karu, N.; Fleming, R.M.T.; Harms, A.C.; Hankemeier, T. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide. J. Chromatogr. A 2019, 1608, 460413. [Google Scholar] [CrossRef]
- Maestri, L.; Negri, S.; Ferrari, M.; Ghittori, S.; Fabris, F.; Danesino, P.; Imbriani, M. Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tisseues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2728–2734. [Google Scholar] [CrossRef]
- Wang, L.; Sun, H.; Yang, L.; He, C.; Wu, W.; Sun, S. Liquid chromatography/mass spectrometry analysis of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in bivalve shells: Extraction method optimization. J. Chromatogr. A 2010, 1217, 436–442. [Google Scholar] [CrossRef]
- Kato, K.; Kalathil, A.A.; Patel, A.M.; Ye, X.; Calafat, A.M. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatogtaphy-tandem mass spectrometry. Chemosphere 2018, 209, 338–345. [Google Scholar] [CrossRef]
- Gao, K.; Gao, Y.; Li, Y.; Fu, J.; Zhang, A. A rapid and fully automatic method for the accurate determination of a wide carbon-chain range of per- and polyfluoroalkyl substances (C4–C18) in human serum. J. Chromatogr. A 2016, 1471, 1–10. [Google Scholar] [CrossRef]
- Lashgari, M.; Lee, H.K. Micro-solid phase extraction of perfluorinated carboxylic acids from human plasma. J. Chromatogr. A 2016, 1432, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ji, Z.; Sun, Z.; Li, M.; Sheng, C.; Yue, M.; Yu, Y.; Chen, G.; You, J. Stable isotope labeling assisted liquid chromatography-tandem mass spectrometry for the analysis of perfluorinated carboxylic acids in serum samples. Talanta 2017, 166, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; She, J.; Zhang, X.; Zhang, J.; Tian, M.; Huang, Q.; Eqani, S.A.M.A.S.; Shen, H. Online background cleanup followed by high-performance liquid chromatography with tandem mass spectrometry for the analysis of perfluorinated compounds in human blood. J. Sep. Sci. 2015, 38, 247–253. [Google Scholar] [CrossRef]
- Harrington, L.M. Analysis of perfluoroalkyl and polyfluoroalkyl substances in serum and plasma by solvent precipitation-isotope dilution-direct injection-LC/MS/MS. Anal. Methods 2017, 9, 473–481. [Google Scholar] [CrossRef]
- Pailla, K.; Blonde-Cynober, F.; Aussel, C.; Bandt, J.; Cynober, L. Branched-Chain Keto-Acids and Pyruvate in Blood: Measurement by HPLC with Fluorimetric Detection and Changes in Older Subjects. Clin. Chem. 2000, 46, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Mühling, J.; Fuchs, M.; Campos, M.E.; Gonter, J.; Engel, J.M.; Sablotzki, A.; Menges, T.; Weiss, S.; Dehne, M.G.; Krüll, M.; et al. Quantitative determination of free intracellular α-keto acids in neutrophils. J. Chromatogr. B 2003, 789, 383–392. [Google Scholar] [CrossRef]
- Hattori, A.; Ito, T.; Tsunoda, M. Analysis of Branched-Chain Keto Acids in Cell Extracts by HPLC-Fluorescence Detection. Chromatography 2017, 38, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, T.; Hattori, A.; Ito, T.; Funatsu, T.; Tsunoda, M. Analysis of intracellular α-keto acids by HPLC with fluorescence detection. Anal. Methods 2020, 12, 2555–2559. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.C.; Chen, G.; Lynch, C.J. Quantification of branched-chain keto acids in tissue by ultra fast liquid chromatography-mass spectrometry. Anal. Biochem. 2013, 439, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, K.; Mizukoshi, T.; Miyano, H.; Yamada, N. Development of a New LC-MS/MS Method for the Quantification of Keto Acids. Chromatography 2014, 35, 117–123. [Google Scholar] [CrossRef]
- Li, R.; Liu, P.; Liu, P.; Tian, Y.; Hua, Y.; Gao, Y.; He, H.; Chen, J.; Zhang, Z.; Huang, Y. A novel liquid chromatography tandem mass spectrometry method for simultaneous determination of branched-chain amino acids and branched-chain α-keto acids in human plasma. Amino Acids 2016, 48, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Poinsignon, V.; Mercier, L.; Nakabayashi, K.; David, M.D.; Lalli, A.; Penard-Lacronique, V.; Quivoron, C.; Saada, V.; Botton, S.D.; Broutin, S.; et al. Quantitation of isocitrate dehydrogenase (IDH)-induces D and L enantiomers of 2-hydroxyglutaric acid in biological fluids by a fully validated liquid tandem mass spectrometry method, suitable for clinical applications. J. Chromatogr. B 2016, 1022, 290–297. [Google Scholar] [CrossRef]
- Cheng, Q.-Y.; Xiong, J.; Huang, W.; Ma, Q.; Ci, W.; Feng, Y.-Q.; Yuan, B.-F. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis. Sci. Rep. 2015, 5, 15217. [Google Scholar] [CrossRef] [Green Version]
- Petrikovics, I.; Thompson, D.E.; Rockwood, G.A.; Logue, B.A.; Martin, S.; Jayanna, P.; Yu, J.C.C. Organ-distribution of the metabolite 2-aminotiazoline-4-carboxylic acid in a rat model following cyanide exposure. Biomarkers 2011, 16, 686–690. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.; Petrikovics, I.; Lai, E.P.C.; Yu, J.C.C. Molecularly imprinted polymer stir bar sorption extraction and electrospray ionization tandem mass spectrometry for determination of 2-aminothiazoline-4-carboxylic acid as a marker for cyanide exposure in forensic urine analysis. Anal. Methods 2010, 2, 552–557. [Google Scholar] [CrossRef]
- Petrikovics, I.; Yu, J.C.C.; Thompson, D.E.; Jayanna, P.; Logue, B.A.; Nasr, J.; Bhandari, R.K.; Baskin, S.I.; Rockwood, G. Plasma persistence of 2-aminothiazoline-4-carboxylic acid in rat system determined by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2012, 891–892, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luliński, P.; Giebułtowicz, J.; Wroczyński, P.; Maciejewska, D. A highly selective molecularly imprinted sorbent for extraction of 2-aminothiazoline-4-carboxylic acid – Synthesis, characterization and application in post-mortem whole blood analysis. J. Chromatogr. A 2015, 1420, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Giebułtowicz, J.; Sobiech, M.; Rużycka, M.; Luliński, P. Theoretical and experimental approach to hydrophilic interaction dispersive solid-phase extraction of 2-aminothiazoline-4-carboxylic acid from human post-mortem blood. J. Chromatogr. A 2019, 1587, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Giebułtowicz, J.; Rużycka, M.; Fudalej, M.; Krajewski, P.; Wroczynński, P. LC-MS/MS method development and validation for quantitative analysis of 2-aminothiazoline-4-carboxylic acid—A new cyanide exposure marker in post mortem blood. Talanta 2016, 150, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Reischl, R.J.; Bicker, W.; Keller, T.; Lamprecht, G.; Lindner, W. Occurrence of 2-methyltiazoline-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption. Anal. Bioanal. Chem. 2012, 404, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Shih, T.-S.; Li, C.-C.; Chou, J.-S. High Performance Liquid Chromatographic Determination of 2-Thiotiazolidine-4-Carboxylic Acid as a Marker of Occupational Exposure to Carbon Disulfide. Chromatographia 2001, 53, 665–668. [Google Scholar] [CrossRef]
- Higashi, T.; Ichikawa, T.; Inagaki, S.; Min, J.Z.; Fukushima, T.; Toyo’oka, T. Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 809–818. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Inagaki, S.; Suzuki, M.; Min, J.Z.; Inoue, K.; Todoroki, K.; Toyo’oka, T. A novel derivatization reagent possessing a bromoquinolinium structure for biological carboxylic acids in HPLC-ESI-MS/MS. J. Sep. Sci. 2013, 36, 1883–1889. [Google Scholar] [CrossRef]
- Li, G.-L.; Chen, G.; Liu, Y.-Q.; Jing, N.-H.; You, J.-M. A sensitive and selective HPLC-FLD method with fluorescent labeling for simultaneous detection of bile acid and free fatty acid in human serum. J. Chromatogr. B 2012, 895–896, 191–195. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, J.; Sun, D.; Liu, W.; Wei, F.; Ma, S.; Lin, R. Simultaneous quantification of the major bile acids in Artificial Calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control. J. Sep. Sci. 2015, 38, 2753–2762. [Google Scholar] [CrossRef]
- Kakiyama, G.; Muto, A.; Takei, H.; Nittono, H.; Murai, T.; Kurosawa, T.; Hofmann, A.F.; Pandak, W.M.; Bajaj, J.S. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: Validation by GC-MS and LC-MS. J. Lipid. Res. 2014, 55, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalik, J.; Crick, P.J.; Yutuc, E.; DeBarber, A.E.; Duell, P.B.; Steiner, R.D.; Laina, I.; Wang, Y.; Griffiths, W.J. Identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma. Biochimie 2018, 153, 86–98. [Google Scholar] [CrossRef]
- Matsumoto, T.; Yamazaki, W.; Jo, A.; Ogawa, S.; Mitamura, K.; Ikegawa, S.; Higashi, T. A Method for Quantification of Tetrahydroglucocorticoid Glucuronides in Human Urine by LC/MS/MS with Isotope-coded Derivatization. Anal. Sci. 2018, 34, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- La Marca, G.; Casetta, B.; Zammarchi, E. Rapid determination of orotic acid in urine by a fast liquid chromatography/tandem mass spectrometric method. Rapid Commun. Mass Spectrom. 2003, 17, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Li, L. High-Performance Isotope Labeling for Profiling Carboxylic Acid-Containing Metabolites in Biofluids by Mass Spectrometry. Anal. Chem. 2010, 82, 8789–8793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, L. Dansylhydrazine Isotope Labeling LC-MS for Comprehensive Carboxylic Acid Submetabolome Profiling. Anal. Chem. 2018, 90, 13514–13522. [Google Scholar] [CrossRef]
- Mazza, M.; Pomponi, M.; Janiri, L.; Bria, P.; Mazza, S. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B.; Mozaffarian, D.; Sotoodehnia, N.; Rea, T.D.; Kuller, L.H.; Tracy, R.P.; Siscovick, D.S. Plasma Phospholipid Trans Fatty Acids, Fatal Ischemic Heart Disease, and Sudden Cardiac Death in Older Adults. Circulation 2006, 114, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurotani, K.; Karunapema, P.; Jayaratne, K.; Sato, M.; Hayashi, T.; Kajio, H.; Fukuda, S.; Hara, H.; Okazaki, O.; Jayatilleke, A.U.; et al. Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan. Nutr. Res. 2018, 50, 82–93. [Google Scholar] [CrossRef]
- Nikiforova, V.J.; Giesbertz, P.; Wiemer, J.; Bethan, B.; Looser, R.; Liebenberg, V.; Noppinger, P.R.; Daniel, H.; Rein, D. Glyoxylate, a New Marker Metabolite of Type 2 Diabetes. J. Diabetes Res. 2014, 2014, 685204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hees, P.A.W.; Vinogradoff, S.I.; Edwards, A.C.; Godbold, D.L.; Jones, D.L. Low molecular weight organic acid adsorption in forest soils: Effects on soil solution concentrations and biodegradation rates. Soil Biol. Biochem. 2003, 35, 1015–1026. [Google Scholar]
- Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. [Google Scholar] [CrossRef]
- Erhardt, S.; Schwieler, L.; Nilsson, L.; Linderholm, K.; Engberg, G. The kynurenic acid hypothesis of schizophrenia. Physiol. Behav. 2007, 92, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Dénes, Z.; Gábor, V.; Levente, S.; Péter, K.; László, V. Alzheimer’s Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J. Alzheimer’s Dis. 2018, 62, 523–547. [Google Scholar]
- Hekster, F.M.; Laane, R.W.P.M.; Voogt, P. Environmental and Toxicity Effects of Perfluoroalkylated Substances. Rev. Environ. Contam. Toxicol. 2003, 179, 99–121. [Google Scholar] [PubMed]
- Hattori, A.; Tsunoda, M.; Konuma, T.; Kobayashi, M.; Nagy, T.; Glushka, J.; Tayyari, F.; McSkimming, D.; Kannan, N.; Tojo, A.; et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 2017, 545, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Burlina, A.B.; Bonafé, L.; Zacchello, F. Clinical and Biochemical Approach to the Neonate with a Suspected Inborn Error of Amino Acid and Organic Acid Metabolism. Semin. Perinatol. 1999, 23, 162–173. [Google Scholar] [CrossRef]
- Puliyel, J.M.; Bhambhani, V. Ketoacid levels may alter osmotonicity in diabetic ketoacidosis and precipitate cerebral edema. Arch. Dis. Child. 2003, 88, 364–367. [Google Scholar] [CrossRef] [Green Version]
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
7 Fatty acids | Human serum | Acid extraction | APF | RPLC | FL: 467/512 nm | 0.1–6.4 nM | 93–105% | [7] |
3 Fatty acids | Human plasma | Acid extraction | NOEPES | RPLC | FL: 235/366 nm | 56 fmol | – | [8] |
6 Fatty acids | Human plasma | Acid extraction | HEC | RPLC | FL: 293/365 nm | 38–57 fmol | 102–106% | [9] |
6 Fatty acids | Human plasma | Acid extraction | HEC | RPLC | FL: 335/365 nm | 45–68 fmol | 102–105% | [10] |
5 Fatty acids | Human serum | Acid extraction | DBD-ED | RPLC | FL: 450/560 nm | 2.29–4.75 fmol | 108–113% | [11] |
8 Fatty acids | Rat plasma | Acid extraction | DBD-ED | RPLC | FL: 450/560 nm | – | – | [12] |
4 Epoxyeicosatrienoic acids | Bovine endothelial cells | Solid phase extraction | NT | RPLC | FL: 259/395 nm | <2 pg | 83–89% | [13] |
25 Fatty acids | Mouse serum | Acid extraction | AMPP | RPLC | MS/MS | 50–100 fg (LOQ) | – | [14] |
11 Fatty acids | Mouse serum, bronchial epithelial cells | Solid phase extraction | AMPP | RPLC | MS/MS | 200–900 fg (LOQ) | – | [15] |
20 Fatty acids | Breast cancer cells | Solvent extraction | Aminoxy TMT | RPLC | MS/MS | 40 fmol | – | [16] |
8 Fatty acids | Rat plasma | Acid extraction | DBD-PZ-NH2 | RPLC | MS | <0.1 µM | – | [17] |
9 Fatty acids | Rat plasma | Solvent extraction | DAABD-AE | RPLC | MS | 6.5–21 fmol | – | [18] |
MePZBD-AE | RPLC | MS | 8.8–32 fmol | – | [18] | |||
APZBD-NHMe | RPLC | MS | 35–150 fmol | – | [18] | |||
56 Fatty acids | Human plasma | Centrifugation | Choline | HILIC | MS | 50 ng/mL | – | [19] |
38 Fatty acids, acylcarnitines | Human plasma | Centrifugation | Dansyl-hydrazine | RPLC | MS/MS | 76–152 pM | – | [20] |
18 Fatty acids | Human urine | Solid phase extraction | d0-DMPP, d6-DMPP | RPLC | MS/MS | 5–15 pM | – | [21] |
60 Fatty acids | Human serum | Acid extraction | DMED, d4-DMED | RPLC | MS | – | – | [22] |
6 Fatty acids | Human blood | Acid extraction | None | RPLC | MS | low pg range | – | [23] |
4 Fatty acids | Human serum, plasma | Solvent extraction | None | RPLC | ECD | 50 pmol | 92–102% | [24] |
6 Fatty acids | Human plasma | Solvent extraction | None | RPLC | ECD | 50 pmol | 92–102% | [25] |
11 Fatty acids | Human plasma | Solvent extraction | AEMP, NAPP | RPLC | Electrogenerated chemiluminescence | 70 fmol | – | [26] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
Fumaric acid | Rat liver, spleen and urine | Centrifugation | None | RPLC | PDA: 215 nm | 0.01 µg | 89–92% | [27] |
Maleic acid | Rat serum and urine | Centrifugation | None | RPLC | MS/MS | 0.2 µg/L | 94–111% | [28] |
Methylmalonic acid | Human plasma | Centrifugation | None | HILIC | MS | 0.03 µM | 90–93% | [29] |
Lactic acid | Human urine and saliva | Centrifugation | 9-CMA | RPLC | UV: 365 nm, FL: 365/410 nm | 50 nM | 92–106% | [30] |
Oxalic acid | Mouse urine and hepatocyte | Centrifugation | None | Ion exclusion chromatography | MS/MS | 2 µM | – | [31] |
6 TCA metabolites | Rat urine | Centrifugation | DBD-PZ | RPLC | FL: 450/560 nm | 2–15 fmol | 80–96% | [32] |
9 Organic acids | Yeast | Centrifugation | None | Ion exclusion chromatography | UV: 210 nm | 0.6–29.3 g/L | 98–103% | [33] |
32 Organic acids | Human urine | Solvent extraction | None | Ion exclusion chromatography | UV: 220 nm | 0.002–2.2 g/L | – | [34] |
13 Organic acids | Mouse urine | Centrifugation | 1-Pyrene methylamine | RPLC | FL: 345/375, 345/475 nm | 4–22 fmol | – | [35] |
30 Organic acids | Mouse serum, urine, and tissue | Centrifugation | None | HILIC, Ion pair RPLC | MS/MS | <5 µM | – | [36] |
59 Organic acids | Human melanoma cells | Centrifugation | Phenylhdrazine | Ion pair RPLC | MS | – | – | [37] |
138 Organic acids | Yeast | Centrifugation | None | RPLC | MS/MS | 0.001–3.7 µM | – | [38] |
TCA metabolites | Human red blood cell | Centrifugation | None | RPLC | MS | – | – | [39] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
Kinurenic acid | Rat plasma | Centrifugation | None | RPLC | FL: 251/398 nm | 0.16 nM | 97–98% | [40] |
3 Trp metabolites | Mouse plasma and brain | Centrifugation | None | RPLC | UV, FL | 0.03–1.33 µM | 83–116% | [41] |
6 Trp metabolites | Pig urine, plasma | Centrifugation | None | RPLC | MS | 10–100 ng/mL (LOQ) | – | [42] |
Glycated Trp | Chicken plasma | Solvent extraction | None | RPLC | MS | – | – | [43] |
PHP-THβC | Chicken plasma | Cation-exchange resin | None | RPLC | MS | – | – | [44] |
5 Trp and Tyr metabolites | Human urine | Centrifugation | None | RPLC | UV: 220, 280 nm, FL: 280/350, 315/425 nm | – | – | [45] |
DOPAC, HVA | Rat kidney | Microdialysis | Ethylenediamine | Ion exchange chromatography | FL: 417/495 nm | 50, 100 fmol | – | [46] |
Nicotinic acid | Human plasma | Solvent extraction | None | RPLC | MS/MS | 6.57 ng/mL (LOQ) | 70–72% | [47] |
Glutaric acid, 3-HG | Human urine | Centrifugation | DAABD-AE | RPLC | MS/MS | 20–25 nM | 94–121% | [48] |
64 amino acid derivatives | Human urine, pancreatic cancer cells | Centrifugation | DmPABr | RPLC | MS/MS | 0.11–2192 nM | – | [49] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
3 PFASs | Human tissues and blood | Solid phase extraction | None | RPLC | MS | 3 µg/L | 80–101% | [50] |
10 PFASs | Two bivalves shells, soft tissues | Solid phase extraction | None | RPLC | MS/MS | 0.05–0.43 ng/g | 92–104% | [51] |
18 PFASs | Human urine and serum | Solid phase extraction | None | RPLC | MS/MS | 0.1 µg/L | 94–104% | [52] |
21 PFASs | Human serum | Solid phase extraction | None | RPLC | MS/MS | 0.008–0.19 µg/L | 85–114% | [53] |
6 PFASs | Human plasma | µ-SPE | None | RPLC | MS/MS | 21–65 ng/L | 88–102% | [54] |
6 PFASs | Human serum | Deproteinization | MASH | RPLC | MS/MS | 0.07–0.42 µg/L | 96–100% | [55] |
11 PFASs | Human blood | Solvent extraction | None | RPLC | MS/MS | 0.06–0.14 µg/L | 67–112% | [56] |
20 PFASs | Human plasma, BCS | Centrifugation | None | RPLC | MS/MS | 0.024–0.096 µg/L (LOQ) | 83–103% | [57] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
4 α-Keto acids | Human serum | Centrifugation | OPD | RPLC | FL: 350/410 nm | 1 µM | 86–109% | [58] |
7 α-Keto acids | Human neutrophil | Centrifugation | OPD | RPLC | FL: 360/415 nm | 0.035–0.125 µM | 79–108% | [59] |
3 α-Keto acids | Human CML cell | Gel extraction | OPD | RPLC | FL: 360/415 nm | 18–40 nM | 84–96% | [60] |
6 α-Keto acids | Human CML cell | Centrifugation | DMB | RPLC | FL: 367/446 nm | 1.3–5.4 nM | 86–118% | [61] |
3 α-Keto acids | Mouse tissue | Acid extraction | OPD | RPLC | MS | 5 nM | 76–95% | [62] |
10 α-Keto acids | Rat plasma | Centrifugation | O-PFBO | RPLC | MS/MS | 0.01–0.25 µM | 96–109% | [63] |
3 α-Keto acids | Human plasma | Centrifugation | None | RPLC | MS/MS | 0.04 µg/mL | 81–98% | [64] |
(R)-2-HG | Human serum | Solid phase extraction | DATAN | RPLC | MS/MS | 0.060 µM | 31–32% | [65] |
(R)-2-HG | Human urine, cancer tissues | Solvent extraction | TSPC | RPLC | MS/MS | 1.2 fmol | 88–109% | [66] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
ATCA | Rat plasma and organ | Solid phase extraction | None | RPLC | MS/MS | – | – | [67] |
ATCA | Human urine | MISBSE | None | RPLC | MS/MS | 5 µg/L | – | [68] |
ATCA | Rat plasma | Solid phase extraction | None | RPLC | MS/MS | 12 µg/L | – | [69] |
ATCA | Human postmortem blood | Solid phase extraction | None | HILIC | MS/MS | 2.5 µg/L | 81–89% | [70] |
ATCA | Human postmortem blood | Solid phase extraction | None | HILIC | MS/MS | 9 µg/L (LOQ) | 88–96% | [71] |
ATCA | Human postmortem blood | Liquid-liquid extraction | None | HILIC | MS/MS | 0.43 µg/L | 86–101% | [72] |
MTCA | Human blood and urine | Centrifugation | Acetic anhydride | RPLC | MS/MS | 0.1 mg/L | – | [73] |
TTCA | Urine | Acid extraction | None | RPLC | UV: 271 nm | 35 µg/L | 78–87% | [74] |
Target Compounds | Biological Sample | Sample Treatment | Derivatization Reagent | Separation Mode | Detection Method | LOD | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
7 Bile acids | Human saliva | SPE and solvent extraction | 2-Picolylamine | RPLC | MS/MS | 1.5–5.6 fmol | – | [75] |
3 Bile acids, 8 fatty acids | Human plasma and saliva | Solid phase extraction | APBQ | RPLC | MS/MS | 0.19–0.51 fmol | – | [76] |
7 Bile acids, 9 fatty acids | Human serum | Solvent extraction | DBCETS | RPLC | FL: 300/395 nm | 0.28–0.70 ng/mL | 92–102% | [77] |
4 Bile acids | C. bovis | Centrifugation | 2-bromo-4′-nitroacetophenone | RPLC | UV: 263 nm | 0.25–0.31 ng | 94–99% | [78] |
7 Bile acids | Human feces | Solid phase extraction | Phenacyl bromide | RPLC | UV: 254 nm | 1.22–1.46 pmol | 72–102% | [79] |
Human feces | Solid phase extraction | None | PRLC | MS/MS | – | – | [79] | |
Dihydroxyoxocholestenoic acids | Human CSF and plasma | Solid phase extraction | Isotope-labeled Girard’s P Reagent | RPLC | MS | 0.02–0.05 ng/mL | – | [80] |
7 THGC glucuronides | Human urine | Centrifugation | Isotope-labeled DAPPZ | RPLC | MS/MS | 0.008–0.16 µg/mL (LOQ) | – | [81] |
Orotic acid | Urine | Dilution | None | RPLC | MS/MS | 0.15 µM | – | [82] |
Metabolome | Human urine | Centrifugation | Isotope-labeled DmPABr | RPLC | MS | – | – | [83] |
Metabolome | Human urine | Centrifugation | Isotope-labeled dansylhydrazine | RPLC | MS | – | – | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiwara, T.; Inoue, R.; Ohtawa, T.; Tsunoda, M. Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020, 25, 4883. https://doi.org/10.3390/molecules25214883
Fujiwara T, Inoue R, Ohtawa T, Tsunoda M. Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules. 2020; 25(21):4883. https://doi.org/10.3390/molecules25214883
Chicago/Turabian StyleFujiwara, Takuya, Ryoto Inoue, Takuma Ohtawa, and Makoto Tsunoda. 2020. "Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples" Molecules 25, no. 21: 4883. https://doi.org/10.3390/molecules25214883
APA StyleFujiwara, T., Inoue, R., Ohtawa, T., & Tsunoda, M. (2020). Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules, 25(21), 4883. https://doi.org/10.3390/molecules25214883