Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Cytotoxicity Evaluation
2.2.2. Cell Cycle Analysis
2.2.3. Apoptosis Study
2.2.4. Docking Study
2.2.5. Western Blotting Analysis
3. Conclusions
4. Materials and Methods
4.1. Chemistry
4.1.1. General Procedure for the Synthesis of Compounds 3a–3e
- 1-(4-((4-Fluorobenzyl)oxy)phenyl)-3-phenylprop-2-en-1-one (3a)
- 1-(4-((4-Fluorobenzyl)oxy)phenyl)-3-(4-fluorophenyl)prop-2-en-1-one (3b)
- 3-(4-Chlorophenyl)-1-(4-((4-fluorobenzyl)oxy)phenyl)prop-2-en-1-one (3c)
- 3-(4-Bromophenyl)-1-(4-((4-fluorobenzyl)oxy)phenyl)prop-2-en-1-one (3d)
- 1-(4-((4-Fluorobenzyl)oxy)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (3e)
4.1.2. General Procedure for the Synthesis of Compounds 4a–4e
- 2-Amino-6-(4-((4-fluorobenzyl)oxy)phenyl)-4-phenylnicotinonitrile (4a)
- 2-Amino-6-(4-((4-fluorobenzyl)oxy)phenyl)-4-(4-fluorophenyl)nicotinonitrile (4b)
- 2-Amino-4-(4-chlorophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)nicotinonitrile (4c)
- 2-Amino-4-(4-bromophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)nicotinonitrile (4d)
- 2-Amino-6-(4-((4-fluorobenzyl)oxy)phenyl)-4-(4-methoxyphenyl)nicotinonitrile (4e)
4.1.3. General Procedure for the Synthesis of Compounds 5a–5e and 6a–6e
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-2-oxo-4-phenyl-1,2-dihydropyridine-3-carbonitrile (5a)
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-4-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (5b)
- 4-(4-Chlorophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (5c)
- 4-(4-Bromophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (5d)
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-4-(4-methoxyphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (5e)
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-4-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile (6a)
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-4-(4-fluorophenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (6b)
- 4-(4-Chlorophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (6c)
- 4-(4-Bromophenyl)-6-(4-((4-fluorobenzyl)oxy)phenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (6d)
- 6-(4-((4-Fluorobenzyl)oxy)phenyl)-4-(4-methoxyphenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (6e)
4.2. Biological Activity
4.2.1. Drugs and Drug Treatments
4.2.2. Cytotoxicity Evaluation
4.2.3. Cell Cycle Analysis
4.2.4. Apoptotic Analysis
4.2.5. Western Blotting Analysis
4.3. Molecular Docking Study
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Mph, K.D.M.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- El-Wakil, M.H.; Ashour, H.M.; Saudi, M.N.; Hassan, A.M.; Labouta, I.M. Target identification, lead optimization and antitumor evaluation of some new 1,2,4-triazines as c-Met kinase inhibitors. Bioorg. Chem. 2017, 73, 154–169. [Google Scholar] [CrossRef]
- Oltval, Z.N.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 1993, 74, 609–619. [Google Scholar] [CrossRef]
- Altieri, D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem. J. 2010, 430, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Findley, H.W.; Gu, L.; Yeager, A.M.; Zhou, M. Expression and Regulation of Bcl-2, Bcl-xl, and Bax Correlate With p53 Status and Sensitivity to Apoptosis in Childhood Acute Lymphoblastic Leukemia. Blood 1997, 89, 2986–2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, R.; Jaiswal, P.K.; Goel, A. Survivin: A molecular biomarker in cancer. Indian J. Med. Res. 2015, 141, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, A.D. Inhibitor of Apoptosis Proteins: Translating Basic Knowledge into Clinical Practice. Cancer Res. 2004, 64, 7183–7190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandele, A.; Prasad, V.; Jagtap, J.C.; Shukla, R.; Shastry, P.R. Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced Apoptosis. Neoplasia 2004, 6, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Abadi, A.H.; Abouel-Ella, D.A.; Lehmann, J.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A.; Abdel-Fattah, M.A. Discovery of colon tumor cell growth inhibitory agents through a combinatorial approach. Eur. J. Med. Chem. 2010, 45, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Arnst, K.E.; Xue, Y.; Lei, Z.-N.; Ma, D.; Chen, Z.-S.; Miller, D.D.; Li, W. Synthesis and biological evaluation of indole-based UC-112 analogs as potent and selective survivin inhibitors. Eur. J. Med. Chem. 2018, 149, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Cao, S.; Cheng, Q.; Keefe, J.T.; Rustum, Y.M.; Li, F. A Novel Small Molecule FL118 That Selectively Inhibits Survivin, Mcl-1, XIAP and cIAP2 in a p53-Independent Manner, Shows Superior Antitumor Activity. PLoS ONE 2012, 7, 45571. [Google Scholar] [CrossRef] [Green Version]
- Peery, R.C.; Kyei-Baffour, K.; Dong, Z.; Liu, J.; Horn, P.D.A.; Dai, M.; Liu, J.-Y.; Zhang, J.-T. Synthesis and Identification of a Novel Lead Targeting Survivin Dimerization for Proteasome-Dependent Degradation. J. Med. Chem. 2020, 63, 7243–7251. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Krepela, E.; Dankova, P.; Moravcikova, E.; Krepelova, A.; Prochazka, J.; Cermak, J.; Schützner, J.; Zatloukal, P.; Benkova, K. Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int. J. Oncol. 2009, 35, 1449–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasof, G.M.; Gomes, B.C. Livin, a Novel Inhibitor of Apoptosis Protein Family Member. J. Biol. Chem. 2000, 276, 3238–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Li, W. Recent Advances on Small-Molecule Survivin Inhibitors. Curr. Med. Chem. 2015, 22, 1136–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quispe, P.A.; Lavecchia, M.; León, I.E. On the discovery of a potential survivin inhibitor combining computational tools and cytotoxicity studies. Heliyon 2019, 5, 02238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malki, A.; Mohsen, M.O.; Aziz, H.; Rizk, O.H.; Shaban, O.; El-Sayed, M.; Sherif, Z.A.; Ashour, H.M.; Shaaban, O. New 3-Cyano-2-Substituted Pyridines Induce Apoptosis in MCF 7 Breast Cancer Cells. Molecules 2016, 21, 230. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.S.; Manna, K.; Banik, U.; Das, M.; Sarkar, P. Synthetic strategies and Pharmacology of 2-oxo-3-cyanopyridine derivatives. Int. J. Pharm. Pharm. Sci. 2014, 6, 39–42. [Google Scholar]
- Ibrahim, T.M.; Ernst, C.; Lange, A.; Hennig, S.; Boeckler, F.M. Small-Molecule Intervention At The Dimerization Interface Of Survivin By Novel Rigidized Scaffolds. Drug Des. Dev. Ther. 2019, 13, 4247–4263. [Google Scholar] [CrossRef] [Green Version]
- Chettiar, S.N.; Cooley, J.V.; Park, I.-H.; Bhasin, D.; Chakravarti, A.; Li, P.-K.; Li, C.; Jacob, N.K. Design, synthesis and biological studies of Survivin Dimerization Modulators that prolong mitotic cycle. Bioorg. Med. Chem. Lett. 2013, 23, 5429–5433. [Google Scholar] [CrossRef] [PubMed]
- Jerde, T.; Zhang, J.; Pili, R.; Safa, A.; Sullivan, W. Optimization of Survivin Dimerization Inhibitors for the Treatment of Docetaxel-Resistant Prostate Cancer. Ph.D. Thesis, Indiana University, New Delhi, India, 2020. [Google Scholar]
- ElHameid, M.K.A.; Ryad, N.; My, A.-S.; Mohammed, M.; Ismail, M.; El Meligie, S.; Al-Shorbagy, M.Y. Design, Synthesis and Screening of 4,6-Diaryl Pyridine and Pyrimidine Derivatives as Potential Cytotoxic Molecules. Chem. Pharm. Bull. 2018, 66, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Sabour, R.; Harras, M.F.; Mehany, A.B. Design, synthesis, cytotoxicity screening and molecular docking of new 3-cyanopyridines as survivin inhibitors and apoptosis inducers. Bioorg. Chem. 2020, 94, 103358. [Google Scholar] [CrossRef]
- Trivedi, A.R. Synthesis and biological evaluation of some new pyrimidines via a novel chalcone series. Arkivoc 2008, 2008, 131. [Google Scholar] [CrossRef] [Green Version]
- Harras, M.F.; Sabour, R. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem. 2018, 78, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.E.; El-Miligy, M.M.; Fahmy, S.M.; Mahran, M.A.; Hazzaa, A.A. Design, synthesis and docking study of pyridine and thieno[2,3-b] pyridine derivatives as anticancer PIM-1 kinase inhibitors. Bioorg. Chem. 2018, 80, 674–692. [Google Scholar] [CrossRef] [PubMed]
- Altalbawy, F.M.A. Synthesis and Antimicrobial Evaluation of Some Novel Bis-α,β-Unsaturated Ketones, Nicotinonitrile, 1,2-Dihydropyridine-3-carbonitrile, Fused Thieno[2,3-b]pyridine and Pyrazolo[3,4-b]pyridine Derivatives. Int. J. Mol. Sci. 2013, 14, 2967–2979. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 291, 77–85. [Google Scholar] [CrossRef]
- Qi, J.; Dong, Z.; Liu, J.; Peery, R.C.; Zhang, S.; Liu, J.-Y.; Zhang, J.-T. Effective Targeting of the Survivin Dimerization Interface with Small-Molecule Inhibitors. Cancer Res. 2016, 76, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Chantalat, L.; Skoufias, D.A.; Kleman, J.-P.; Jung, B.; Dideberg, O.; Margolis, R.L. Crystal Structure of Human Survivin Reveals a Bow Tie–Shaped Dimer with Two Unusual α-Helical Extensions. Mol. Cell 2000, 6, 183–189. [Google Scholar] [CrossRef]
- Verdecia, M.A.; Huang, H.; Dutil, E.; Kaiser, D.A.; Hunter, T.; Noel, J.P. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat. Genet. 2000, 7, 602–608. [Google Scholar] [CrossRef]
- Agashe, V.R.; Shastry, M.C.R.; Udgaonkar, J.B. Initial hydrophobic collapse in the folding of barstar. Nat. Cell Biol. 1995, 377, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Lins, L.; Brasseur, R. The hydrophobic effect in protein folding. FASEB J. 1995, 9, 535–540. [Google Scholar] [CrossRef]
- Kubota, H. Quality Control Against Misfolded Proteins in the Cytosol: A Network for Cell Survival. J. Biochem. 2009, 146, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Molecular Operating Environment (MOE). Chemical Computing Group Inc., 2014. Available online: http://www.chemcomp.com (accessed on 23 September 2020).
- Ma, Y.-T.; Fan, H.-F.; Gao, Y.-Q.; Zhang, A.-L.; Gao, J.; Li, H. Natural Products as Sources of New Fungicides (I): Synthesis and Antifungal Activity of Acetophenone Derivatives Against Phytopathogenic Fungi. Chem. Biol. Drug Des. 2013, 81, 545–552. [Google Scholar] [CrossRef]
- Chamcheu, J.C.; Afaq, F.; Syed, D.N.; Siddiqui, I.A.; Adhami, V.M.; Khan, N.; Singh, S.; Boylan, B.T.; Wood, G.S.; Mukhtar, H. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: Studies in submerged and three-dimensional epidermal equivalent models. Exp. Dermatol. 2013, 22, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Chamcheu, J.C.; Loriè, E.P.; Akgül, B.; Bannbers, E.; Virtanen, M.; Gammon, L.; Moustakas, A.; Navsaria, H.; Vahlquist, A.; Törmä, H. Characterization of immortalized human epidermolysis bullosa simplex (KRT5) cell lines: Trimethylamine N-oxide protects the keratin cytoskeleton against disruptive stress condition. J. Dermatol. Sci. 2009, 53, 198–206. [Google Scholar] [CrossRef]
- Chamcheu, J.C.; Adhami, V.M.; Esnault, S.; Sechi, M.; Siddiqui, I.A.; Satyshur, K.A.; Syed, D.N.; Dodwad, S.-J.M.; Chaves-Rodriquez, M.-I.; Longley, B.J.; et al. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice. Antioxid. Redox Signal. 2017, 26, 49–69. [Google Scholar] [CrossRef] [Green Version]
Compound | IC50 (µM) | ||
---|---|---|---|
PC-3 | MDA-MB-231 | HepG2 | |
4a | >100 | >100 | 109 ± 0.35 |
4b | >100 | >100 | >100 |
4c | >100 | >100 | 62 ± 0.61 |
4d | 53 ± 1.12 | 30 ± 0.18 | 66 ± 0.12 |
4e | >100 | >100 | >100 |
5a | 47.5 ± 0.611 | 52 ± 0.40 | 30 ± 0.59 |
5b | 34.2 ± 0.45 | 26.34 ± 0.73 | 21.81 ± 0.67 |
5c | 14.4 ± 0.38 | 20 ± 0.17 | 15 ± 0.64 |
5d | 30.24 ± 0.85 | 34.83 ± 0.90 | 27.29 ± 0.74 |
5e | 4.46 ± 0.51 | 3.59 ± 0.42 | 6.01 ± 0.53 |
6a | >100 | 72 ± 0.52 | 60 ± 0.10 |
6b | 60 ± 0.93 | 66.7 ± 0.12 | 41 ± 0.69 |
6c | 41.89 ± 0.61 | 42 ± 0.48 | 38 ± 0.94 |
6d | 99 ± 0.19 | 71.2 ± 0.56 | 86 ± 0.15 |
6e | 35.9 ± 0.92 | 23.45 ± 0.70 | 40.31 ± 0.99 |
5-FU | 8.83 ± 0.09 | 9.35 ± 0.74 | 7.51 ± 0.11 |
Compound | WI-38IC50 (µM) a | Selectivity Index b | ||
---|---|---|---|---|
PC-3 | MDA-MB-231 | HepG2 | ||
4a | 164.25 ± 4.5 | - | - | 1.50 |
4b | 127.18 ± 3.6 | - | - | - |
4c | 136.53 ± 4.15 | - | - | 2.20 |
4d | 103.94 ± 3.16 | 1.96 | 3.46 | 1.57 |
4e | 94.71 ± 2.5 | - | - | - |
5a | 174.11 ± 4.62 | 3.66 | 3.34 | 5.80 |
5b | 131.5 ± 4.12 | 3.84 | 4.99 | 6.02 |
5c | 91.29 ± 0.47 | 6.33 | 4.56 | 6.08 |
5d | 181.15 ± 4.55 | 5.99 | 5.20 | 6.63 |
5e | 102.57 ± 0.81 | 22.99 | 28.57 | 17.06 |
6a | 97.42 ± 2.88 | - | 1.35 | 1.62 |
6b | 205.64 ± 4.73 | 3.42 | 3.08 | 5.01 |
6c | 89.62 ± 2.75 | 2.13 | 2.13 | 2.35 |
6d | 145.80 ± 4.55 | 1.47 | 2.04 | 1.69 |
6e | 103.94 ± 3.16 | 2.89 | 4.43 | 2.57 |
5-FU | 7.91 ± 1.80 | 0.89 | 0.84 | 1.05 |
Compound | %G0-G1 | %S | %G2-M | %Pre-G1 |
---|---|---|---|---|
5c | 45.27 | 33.16 | 21.57 | 16.32 |
5e | 42.36 | 32.48 | 25.16 | 19.47 |
Control | 60.41 | 35.21 | 4.38 | 1.87 |
Compound | Apoptosis | Necrosis | Total | |
---|---|---|---|---|
Early | Late | |||
5c | 5.07 | 8.67 | 2.58 | 16.32 |
5e | 6.18 | 10.91 | 2.38 | 19.47 |
Control | 1.09 | 0.31 | 0.47 | 1.87 |
Compound | Docking Score (kcal/mol) | Interacting Residues | Distance (A°) |
---|---|---|---|
5c | −6.7164 | Thr97 Leu98 | 3.24 3.39 |
5e | −7.6630 | Thr97 Leu98 | 3.01 2.76 |
LLP9 | −8.0721 | Thr97 Leu98 | 3.26 2.71 |
4a | −4.9213 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabour, R.; Harras, M.F.; Mohamed Al Kamaly, O.; Altwaijry, N. Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers. Molecules 2020, 25, 4892. https://doi.org/10.3390/molecules25214892
Sabour R, Harras MF, Mohamed Al Kamaly O, Altwaijry N. Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers. Molecules. 2020; 25(21):4892. https://doi.org/10.3390/molecules25214892
Chicago/Turabian StyleSabour, Rehab, Marwa F. Harras, Omkulthom Mohamed Al Kamaly, and Najla Altwaijry. 2020. "Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers" Molecules 25, no. 21: 4892. https://doi.org/10.3390/molecules25214892
APA StyleSabour, R., Harras, M. F., Mohamed Al Kamaly, O., & Altwaijry, N. (2020). Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers. Molecules, 25(21), 4892. https://doi.org/10.3390/molecules25214892