Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review
Abstract
:1. Introduction
1.1. Hybrid Composites
- Ph = property to be investigated
- P1 = property of first component
- V1 = volume fraction of first component
- P2 = property of second component
- V2 = volume fraction of second component
1.2. Factors Affecting Hybridization of Natural Fibers in Polymers
1.2.1. Hydrophilicity
1.2.2. Poor Thermal Resistance
1.2.3. Naturally Existing Variations and Biodegradability
1.3. Literature Review
1.3.1. Hybrid Bast/Carbon Composites
Flax/Carbon
Hemp/Carbon
Kenaf/Carbon
Jute/Carbon
1.3.2. Hybrid Bast/Glass Composites
Flax/Glass
Hemp/Glass
Kenaf/Glass
Jute/Glass
1.3.3. Hybrid Composites of Bast/Basalt Fibers
Flax/Basalt
Hemp/Basalt
Kenaf/Basalt
Jute/Basalt
1.4. Applications of Hybrid Composites
2. Conclusions
- Hybridization improves the properties of hybrid composites compared to the conventional single bast fiber composites and is an effective method that can be employed to tailor properties of bast fiber-reinforced composites for structural applications.
- Hybrid composites of bast fibers with high strength fibers show a simultaneous increase in mechanical property profile and reduction of water absorption.
- Fiber–matrix interaction is very important in defining the mechanical properties. In most cases, mechanical properties increase by fiber or polymer modification.
- The fiber layers and their stacking sequence have a significant influence on the mechanical performance.
- Hybridization with basalt fibers instead of carbon or glass provides a more sustainable alternative for the improvement of mechanical properties because of the environmental friendliness and sustainable properties of basalt fibers.
- Most of the reviewed literature is about the physical and mechanical properties, use of coupling agents or fiber modification, and hand layup or vacuum-assisted resin transfer manufacturing methods of hybrid composites. Very few contributions have studied the thermal, electrical, and damping properties of these composites and manufacturing methods for rapid production in commercial applications like carding, needling, injection molding, extrusion, or resin impregnation by immersion.
Author Contributions
Funding
Conflicts of Interest
References
- Müssig, J.; Graupner, N. Technical applications of natural fibers: An Overview. In Industrial Application of Natural Fibres: STRUCTURE, Properties, and Technical Applications; Wiley Series in Renewable Resources; Wiley: Chichester, UK; Hoboken, NJ, USA, 2010; pp. 63–88. ISBN 978-0-470-69508-1. [Google Scholar]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymers, and Biocomposites: An Introduction. In Natural Fibers, Biopolymers, and Biocomposites; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 2–31. ISBN 978-0-8493-1741-5. [Google Scholar]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 2018, 18, 13. [Google Scholar] [CrossRef]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Friedrich, K.; Almajid, A.A. Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 2013, 20, 107–128. [Google Scholar] [CrossRef]
- Medina, L.A.; Dzalto, J. 1.11 Natural Fibers. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; pp. 269–294. ISBN 978-0-08-100534-7. [Google Scholar]
- Fiore, V.; Valenza, A.; Di Bella, G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J. Compos. Mater. 2012, 46, 2089–2096. [Google Scholar] [CrossRef] [Green Version]
- Pothan, L.A.; Thomas, S.; Neelakantan, N.R. Short Banana Fiber Reinforced Polyester Composites: Mechanical, Failure and Aging Characteristics. J. Reinf. Plast. Compos. 1997, 16, 744–765. [Google Scholar] [CrossRef]
- Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on End of life vehicles. Off. J. Eur. Com. L Ser. 2000, 269, 34–42.
- Carus, M.; de Beus, N.; Barth, M. Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material; Nova-Institute: Hürth, Germany, 2019. [Google Scholar]
- Alam, P.; Mamalis, D.; Robert, C.; Floreani, C.; Ó Brádaigh, C.M. The fatigue of carbon fibre reinforced plastics—A review. Compos. Part B Eng. 2019, 166, 555–579. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.-S.; Jin, F.-L.; Rhee, K.Y.; Hui, D.; Park, S.-J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Dér, A.; Kaluza, A.; Kurle, D.; Herrmann, C.; Kara, S.; Varley, R. Life Cycle Engineering of Carbon Fibres for Lightweight Structures. Procedia CIRP 2018, 69, 43–48. [Google Scholar] [CrossRef]
- Zhang, J.; Chaisombat, K.; He, S.; Wang, C.H. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater. Des. (1980–2015) 2012, 36, 75–80. [Google Scholar] [CrossRef]
- Santulli, C. Mechanical and impact damage analysis on carbon/natural Fibers hybrid composites: A Review. Materials 2019, 12, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathishkumar, T.; Naveen, J.; Satheeshkumar, S. Hybrid fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 454–471. [Google Scholar] [CrossRef]
- Singha, K. A short review on basalt fiber. Int. J. Text. Sci. 2012, 1, 19–28. [Google Scholar]
- Alibaba.com. Available online: https://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=short+flax+fibers+ (accessed on 25 August 2020).
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- John, M.J.; Francis, B.; Varughese, K.T.; Thomas, S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 352–363. [Google Scholar] [CrossRef]
- Marom, G.; Fischer, S.; Tuler, F.R.; Wagner, H.D. Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 1978, 13, 1419–1426. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ma, H.; Yu, T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013, 88, 172–177. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Soares, B.; Preto, R.; Sousa, L.; Reis, L. Mechanical behavior of basalt fibers in a basalt-UP composite. Procedia Struct. Integr. 2016, 1, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Ralph, C.; Lemoine, P.; Archer, E.; McIlhagger, A. Mechanical properties of short basalt fibre reinforced polypropylene and the effect of fibre sizing on adhesion. Compos. Part B Eng. 2019, 176, 107260. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Hui, D.; Chen, M.; Wu, Z. Study of melting properties of basalt based on their mineral components. Compos. Part B Eng. 2017, 116, 53–60. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T. Chemical composition and mechanical properties of basalt and glass Fibers: A comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Publon-Publications. Available online: https://publons.com/publon/ (accessed on 23 August 2020).
- Bashtannik, P.I.; Kabak, A.I.; Yakovchuk, Y.Y. The effect of adhesion interaction on the mechanical properties of thermoplastic basalt plastics. Mech. Compos. Mater. 2003, 39, 85–88. [Google Scholar] [CrossRef]
- Czigány, T. Basalt fiber reinforced hybrid polymer composites. MSF 2005, 473–474, 59–66. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Živković, I.; Fragassa, C.; Pavlović, A.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. Part B: Eng. 2017, 111, 148–164. [Google Scholar]
- Thakre, A.R.; Baxi, R.N.; Shelke, D.R.S.; Bhuyar, D.S.S. Composites of polypropylene and natural Fibers: A review. Inter. J. Resear. Eng. IT Soci. Sci. 2018, 8, 5. [Google Scholar]
- Notta-Cuvier, D.; Lauro, F.; Bennani, B.; Nciri, M. Impact of natural variability of flax fibres properties on mechanical behaviour of short-flax-fibre-reinforced polypropylene. J. Mater. Sci. 2016, 51, 2911–2925. [Google Scholar] [CrossRef]
- Mann, G.S.; Singh, L.P.; Kumar, P.; Singh, S. Green composites: A review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 2020, 33, 1145–1171. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; D’Altilia, S.; Valente, T.; Santulli, C.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D.; Lampani, L.; Gaudenzi, P. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos. Part B Eng. 2016, 91, 144–153. [Google Scholar] [CrossRef]
- Bagheri, Z.S.; El Sawi, I.; Schemitsch, E.H.; Zdero, R.; Bougherara, H. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications. J. Mech. Behav. Biomed. Mater. 2013, 20, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, H.N.; Zhang, Z.Y.; Guthrie, R.; MacMullen, J.; Bennett, N. Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 2013, 96, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assarar, M.; Zouari, W.; Sabhi, H.; Ayad, R.; Berthelot, J.-M. Evaluation of the damping of hybrid carbon–flax reinforced composites. Compos. Struct. 2015, 132, 148–154. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Newman, R.H.; Fernyhough, A.; Emms, G.W.; Staiger, M.P. The damping–modulus relationship in flax–carbon fibre hybrid composites. Compos. Part B Eng. 2016, 89, 27–33. [Google Scholar] [CrossRef]
- Nisini, E.; Santulli, C.; Liverani, A. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos. Part B Eng. 2017, 127, 92–99. [Google Scholar] [CrossRef]
- Pervaiz, M.; Sain, M.M. Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 2003, 39, 325–340. [Google Scholar] [CrossRef]
- Iucolano, F.; Boccarusso, L.; Langella, A. Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Compos. Part B Eng. 2019, 175, 107073. [Google Scholar] [CrossRef]
- Scutaru, M.L.; Baba, M. Investigation of the mechanical properties of hybrid carbon-hemp laminated composites used as thermal insulation for different industrial applications. Adv. Mech. Eng. 2014, 6, 829426. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Deepa, C.; Arpitha, G.R.; Gopinath, V. Effect of hybridization on properties of hemp-carbon fibre-reinforced hybrid polymer composites using experimental and finite element analysis. World Eng. 2019, 16, 248–259. [Google Scholar] [CrossRef]
- Pinto, F.; Boccarusso, L.; De Fazio, D.; Cuomo, S.; Durante, M.; Meo, M. Carbon/hemp bio-hybrid composites: Effects of the stacking sequence on flexural, damping and impact properties. Compos. Struct. 2020, 242, 112148. [Google Scholar] [CrossRef]
- Bakar, M.A.A.; Ahmad, S.; Kuntjoro, W.; Kasolang, S. Effect of Carbon Fibre Ratio to the Impact Properties of Hybrid Kenaf/Carbon Fibre Reinforced Epoxy Composites. AMM 2013, 393, 136–139. [Google Scholar] [CrossRef]
- Sapiai, N.; Jumahat, A.; Hakim, R.N. Tensile and compressive properties of hybrid carbon fiber/kenaf polymer composite. Adv. Environ. Biol. 2014, 8, 2655–2661. [Google Scholar]
- Aisyah, H.A.; Paridah, M.T.; Khalina, A.; Sapuan, S.M.; Wahab, M.S.; Berkalp, O.B.; Lee, C.H.; Lee, S.H. Effects of fabric counts and weave designs on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites. Polymers 2018, 10, 1320. [Google Scholar] [CrossRef] [Green Version]
- Lenda, T.A.; Mridha, S. Influence of moisture absorption on impact strength and failure behavior of hybrid jute-carbon/epoxy Composite. AMR 2011, 264–265, 457–462. [Google Scholar] [CrossRef]
- Ashworth, S.; Rongong, J.; Wilson, P.; Meredith, J. Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites. Compos. Part B Eng. 2016, 105, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, H.; Berkalp, O.B.; Mishra, R.; Militky, J. Investigation of dynamic mechanical properties of jute/carbon reinforced composites. Int. J. Mater. Metall. Eng. 2016, 10, 1492–1495. [Google Scholar]
- Ramana, M.V.; Ramprasad, S. Experimental investigation on jute/carbon fibre reinforced epoxy based hybrid composites. Mater. Today Proc. 2017, 4, 8654–8664. [Google Scholar] [CrossRef]
- Anuar, H.; Ahmad, S.H.; Rasid, R.; Ahmad, A.; Busu, W.N.W. Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J. Appl. Polym. Sci. 2008, 107, 4043–4052. [Google Scholar] [CrossRef]
- Faruk, O.; Tjong, J.; Sain, M. (Eds.) Lightweight and Sustainable Materials for Automotive Applications. CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-5687-7. [Google Scholar]
- Benevolenski, O.I.; Karger-Kocsis, J.; Mieck, K.-P.; Reubmann, T. Instrumented perforation impact response of polypropylene composites with hybrid reinforcement flax/glass and flax/cellulose fibers. J. Thermoplast. Compos. Mater. 2000, 13, 481–496. [Google Scholar] [CrossRef]
- Morye, S.S.; Wool, R.P. Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polym. Compos. 2005, 26, 407–416. [Google Scholar] [CrossRef]
- Ghasemzadeh-Barvarz, M.; Duchesne, C.; Rodrigue, D. Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J. Compos. Mater. 2015, 49, 3781–3798. [Google Scholar] [CrossRef]
- Saidane, E.H.; Scida, D.; Assarar, M.; Ayad, R. Damage mechanisms assessment of hybrid flax-glass fibre composites using acoustic emission. Compos. Struct. 2017, 174, 1–11. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Scalici, T.; Valenza, A. Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J. Appl. Polym. Sci. 2018, 47203. [Google Scholar] [CrossRef]
- Naga Kumar, C.; Prabhakar, M.N.; Song, J. Effect of interface in hybrid reinforcement of flax/glass on mechanical properties of vinyl ester composites. Polym. Test. 2019, 73, 404–411. [Google Scholar] [CrossRef]
- Paturel, A.; Dhakal, H.N. Influence of water absorption on the low velocity falling weight impact damage behaviour of flax/glass reinforced vinyl ester hybrid composites. Molecules 2020, 25, 278. [Google Scholar] [CrossRef] [Green Version]
- Panthapulakkal, S.; Sain, M. Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. J. Appl. Polym. Sci. 2007, 103, 2432–2441. [Google Scholar] [CrossRef]
- Shahzad, A. Impact and fatigue properties of hemp–glass fiber hybrid biocomposites. J. Reinf. Plast. Compos. 2011, 30, 1389–1398. [Google Scholar] [CrossRef]
- Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Ali, A.; Khalina, A.; Jonoobi, M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater. Des. 2010, 31, 4927–4932. [Google Scholar] [CrossRef]
- Maleque, M.A.; Afdzaluddin, A.; Iqbal, M. Flexural and impact properties of kenaf-glass hybrid composite. AMR 2012, 576, 471–474. [Google Scholar] [CrossRef]
- Afdzaluddin, A.; Maleque, M.A.; Iqbal, M. Synergistic effect on flexural properties of kenaf-glass hybrid composite. AMR 2012, 626, 989–992. [Google Scholar] [CrossRef]
- Ismail, M.F.; Sultan, M.T.H.; Hamdan, A.; Shah, A.U.M.; Jawaid, M. Low velocity impact behaviour and post-impact characteristics of kenaf/glass hybrid composites with various weight ratios. J. Mater. Res. Technol. 2019, 8, 2662–2673. [Google Scholar] [CrossRef]
- Mohan, R.; Kishore; Shridhar, M.K.; Rao, R.M.V.G.K. Compressive strength of jute-glass hybrid fibre composites. J. Mater. Sci. Lett. 1983, 2, 99–102. [Google Scholar] [CrossRef]
- Clark, R.A.; Ansell, M.P. Jute and glass fibre hybrid laminates. J. Mater. Sci. 1986, 21, 269–276. [Google Scholar] [CrossRef]
- Varma, I.K.; Anantha Krishnan, S.R.; Krishnamoorthy, S. Composites of glass/modified jute fabric and unsaturated polyester resin. Composites 1989, 20, 383–388. [Google Scholar] [CrossRef]
- Abdullah-Al-Kafi; Abedin, M.Z.; Beg, M.D.H.; Pickering, K.L.; Khan, M.A. Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation. J. Reinf. Plast. Compos. 2006, 25, 575–588. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Vijayarangan, S. Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol. 2008, 207, 330–335. [Google Scholar] [CrossRef]
- Braga, R.A.; Magalhaes, P.A.A. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater. Sci. Eng. C 2015, 56, 269–273. [Google Scholar] [CrossRef]
- Boria, S.; Pavlovic, A.; Fragassa, C.; Santulli, C. Modeling of falling weight impact behavior of hybrid basalt/flax vinylester composites. Procedia Eng. 2016, 167, 223–230. [Google Scholar] [CrossRef]
- Bakare, F.O.; Ramamoorthy, S.K.; Åkesson, D.; Skrifvars, M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos. Part A Appl. Sci. Manuf. 2016, 83, 176–184. [Google Scholar] [CrossRef]
- Almansour, F.A.; Dhakal, H.N.; Zhang, Z.Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017, 168, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, M.R.; Papa, I.; Lopresto, V.; Langella, A.; Antonucci, V. Effect of hybridization on the impact properties of flax/basalt epoxy composites: Influence of the stacking sequence. Compos. Struct. 2019, 214, 476–485. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Ferrante, L.; Sergi, C.; Russo, P.; Simeoli, G.; Cimino, F.; Ricciardi, M.; Antonucci, V. Quasi-static and low-velocity impact behavior of intraply hybrid flax/basalt composites. Fibers 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, S. The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites. J. Mater. Sci. 2005, 40, 4585–4592. [Google Scholar] [CrossRef]
- Czigány, T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos. Sci. Technol. 2006, 66, 3210–3220. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Sarasini, F.; Santulli, C.; Tirillò, J.; Zhang, Z.; Arumugam, V. Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2015, 75, 54–67. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Sergi, C.; Seghini, M.C.; Cozzarini, L.; Graupner, N. Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites. Compos. Struct. 2018, 188, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Sergi, C.; Tirillò, J.; Seghini, M.C.; Sarasini, F.; Fiore, V.; Scalici, T. Durability of basalt/hemp hybrid thermoplastic composites. Polymers 2019, 11, 603. [Google Scholar] [CrossRef] [Green Version]
- Suresh Kumar, C.; Fotouhi, M.; Saeedifar, M.; Arumugam, V. Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibres reinforced polymer composite laminates. Compos. Part B Eng. 2019, 173, 106962. [Google Scholar] [CrossRef]
- Petrucci, R.; Santulli, C.; Puglia, D.; Sarasini, F.; Torre, L.; Kenny, J.M. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Mater. Des. 2013, 49, 728–735. [Google Scholar] [CrossRef]
- Petrucci, R.; Santulli, C.; Puglia, D.; Nisini, E.; Sarasini, F.; Tirillò, J.; Torre, L.; Minak, G.; Kenny, J.M. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos. Part B Eng. 2015, 69, 507–515. [Google Scholar] [CrossRef]
- Mokhtar, I.; Yahya, M.Y.; Kadir, M.R.A.; Kambali, M.F. Effect on mechanical performance of UHMWPE/HDPE-blend reinforced with kenaf, basalt and hybrid kenaf/basalt fiber. Polym. Plast. Technol. Eng. 2013, 52, 1140–1146. [Google Scholar] [CrossRef]
- Umashankaran, M.; Gopalakrishnan, S.; Sathish, S. Preparation and characterization of tensile and bending properties of basalt-kenaf reinforced hybrid polymer composites. Int. J. Polym. Anal. Charact. 2020, 25, 227–237. [Google Scholar] [CrossRef]
- Atiqah, A.; Ansari, M.N.M.; Chandran, K.; Surenthiran, K.; Jawaid, M. Viscoelastic Properties of Kenaf/Basalt Reinforced Epoxy Hybrid Composites through Vacuum Infusion Methods. Test Eng. Manag. 2020, 83, 1226–1231. [Google Scholar]
- Saleem, A.; Medina, L.; Skrifvars, M. Mechanical performance of hybrid bast and basalt fibers reinforced polymer composites. J. Polym. Res. 2020, 27, 61. [Google Scholar] [CrossRef]
- Saleem, A.; Medina, L.; Skrifvars, M. Influence of fiber coating and polymer modification on mechanical and thermal properties of bast/basalt reinforced polypropylene hybrid composites. J. Compos. Sci. 2020, 4, 119. [Google Scholar] [CrossRef]
- Amuthakkannan, P.; Manikandan, V.; Jappes, J.T.W.; Uthayakumar, M. Influence of stacking sequence on mechanical properties of basalt-jute fiber-reinforced polymer hybrid composites. J. Polym. Eng. 2012, 32, 547–554. [Google Scholar] [CrossRef]
- Prasath, K.A.; Krishnan, B.R. Mechanical properties of woven fabric basalt/jute fibre reinforced polymer hybrid composites. Int. J. Mech. Eng. 2013, 2, 279–290. [Google Scholar]
- Fiore, V.; Scalici, T.; Sarasini, F.; Tirilló, J.; Calabrese, L. Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Compos. Part B Eng. 2017, 116, 99–112. [Google Scholar] [CrossRef]
- Ma, G.; Yan, L.; Shen, W.; Zhu, D.; Huang, L.; Kasal, B. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt. Compos. Part B Eng. 2018, 153, 398–412. [Google Scholar] [CrossRef]
- Santosh Gangappa, G.; Sripad Kulkarni, S. Experimentation and validation of basalt & jute fiber reinforced in polymer matrix hybrid composites. Mater. Today Proc. 2020, in press. [Google Scholar] [CrossRef]
- Mansor, M.R.; Sapuan, S.M.; Zainudin, E.S.; Nuraini, A.A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Jeyanthi, S.; Jeevamalar, J.; Jancirani, D.J. Influence of natural fibers in recycling of thermoplastics for automotive components. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM -2012), Nagapattinam, Tamil Nadu, India, 30–31 March 2012. [Google Scholar]
- Hassan, F.; Zulkifli, R.; Ghazali, M.J.; Azhari, C.H. Kenaf fiber composite in automotive Industry: An overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 315. [Google Scholar] [CrossRef]
- ExpanCore, NC. Available online: http://www.expancore.com/index.html (accessed on 9 February 2020).
- Alexander, J.; Elphej Churchill, S.J. Mechanical characterization of basalt based natural hybrid composites for aerospace applications. IOP Conf. Ser. Mater. Sci. Eng. 2017, 197, 012008. [Google Scholar] [CrossRef]
- Caliendo, H. Natural Fiber Composites Gaining Traction in Automotive. Available online: https://www.compositesworld.com/articles/natural-fiber-composites-gaining-traction-in-automotive (accessed on 24 August 2020).
- Biagiotti, J.; Puglia, D.; Kenny, J.M. A review on natural fibre-based composites-Part I: Structure, processing and properties of vegetable fibres. J. Nat. Fibers 2004, 1, 37–68. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O.; Sperber, V.E. Cars from bio-fibres. Macromol. Mater. Eng. 2006, 291, 449–457. [Google Scholar] [CrossRef]
- Mueller, D.H.; Krobjilowski, A. New discovery in the properties of composites reinforced with natural fibers. J. Ind. Text. 2003, 33, 111–130. [Google Scholar] [CrossRef]
- Carus, M. Bioplastics Magazine; Polymedia Publisher GmbH: Mönchengladbach, Germany, 2019; pp. 26–27. [Google Scholar]
Fiber | Density | Diameter | Tensile Strength | Tensile Modulus | Cost [18] | Elongation at Break | Renewability | Health Risks |
---|---|---|---|---|---|---|---|---|
(g/cm3) | (µm) | (MPa) | (MPa) | (€/kg) | (%) | |||
Carbon | 1.80 | 5–10 | 2000–5000 | 200–600 | 26–34 | 1.5–2 | No | Yes |
Glass | 2.50 | 5–25 | 1700–3500 | 65–72 | 0.42–2.56 | 2.5 | No | Yes |
Basalt | 1.40 | 10–20 | 2800–3100 | 80–90 | 0.34–3.42 | 3.1 | Yes | No |
Flax | 1.2–1.5 | 12–20 | 400–600 | 12–25 | 1.3–1.4 | 1.2–1.6 | Yes | No |
Hemp | 1.3–1.5 | 25–500 | 300–700 | 20–70 | 5–10 | 1.6 | Yes | No |
Kenaf | 1.1–1.2 | 30–40 | 150–250 | 10–20 | 1–3 | 2.7–6.9 | Yes | No |
Jute | 1.3–1.5 | 17–20 | 350–780 | 20–30 | 1.2–1.6 | 1.8 | Yes | No |
Element | Oxide | Basalt Fibers | Glass Fibers | ||
---|---|---|---|---|---|
Element | Oxide | Element | Oxide | ||
(m%) | (m%) | (m%) | (m%) | ||
Al | Al2O3 | 9.17 | 17.35 | 6,3 | 11.86 |
Si | SiO2 | 19.76 | 42.43 | 27.24 | 58.25 |
Ca | CaO | 6.35 | 8.88 | 15.05 | 21.09 |
Fe | Fe2O3 | 8.17 | 11.68 | 0.21 | 0.30 |
K | K2O | 1.94 | 2.33 | 0.36 | 0.43 |
Mg | MgO | 5.70 | 9.45 | 0.32 | 0.54 |
Na | Na2O | 2.81 | 3.67 | 0.22 | 0.30 |
Ti | TiO2 | 1.53 | 2.55 | 0.25 | 0.41 |
Bast Fiber | Matrix | Fiber or Matrix Modification | Composite Manufacturing Technique | Evaluation | |
---|---|---|---|---|---|
[7] | Flax | Epoxy | - | Vacuum bagging | Three-point bending, tensile |
[40] | Flax | Epoxy | - | Resin impregnation, compression molding | Three-point bending, tensile, Rockwell hardness |
[41] | Flax | Epoxy | - | Resin impregnation, compression molding | Water absorption technique, flexural, tensile, and thermogravimetry |
[42] | Flax | Epoxy | - | Thermopressing | Damping |
[43] | Flax | Epoxy | - | Compression molding and vacuum bagging | Damping, flexural, tensile |
[44] | Flax + Basalt | Epoxy | - | Hand layup and vacuum bagging | Tensile, flexural, damping, interlaminar shear strength, impact |
[39] | Flax | Epoxy | - | Vacuum bagging process | Low speed impact testing, flexural properties |
[47] | Hemp | unsaturated Polyester | - | Resin impregnation | Impact testing (low speed) |
[48] | Hemp | Polyester | Alkali treated hemp fibers | Hand layup | Water absorption, flexural, tensile and impact |
[49] | Hemp | Epoxy | - | Hand layup and vacuum compression molding | Tensile, flexural, falling weight impact testing, interlaminar shear stress |
[57] | Kenaf | Thermoplastic natural rubber | Sulfuric acid treated carbon fibers, Maleic anhydride grafted polypropylene (MAPP) | Compounding in an internal mixer | Flexural, tensile, impact analysis, dynamic mechanical analysis |
[50] | Kenaf | Epoxy | Sodium hydroxide treated Kenaf fibers, Gamma radiations treated carbon fibers | Resin transfer and compression molding | Impact analysis |
[51] | Kenaf | Epoxy | - | Vacuum bagging | Tensile and compression analysis |
[52] | Kenaf | Epoxy | - | Vacuum infusion | Tensile, flexural and impact analysis |
[53] | Jute | Epoxy | - | Hand layup | Moisture content, impact analysis |
[54] | Jute | Epoxy | - | Resin transfer molding | Tensile, dynamic mechanical, optical and surface analysis |
[55] | Jute | Polyester | - | Vacuum bagging process | Dynamic mechanical analysis |
[56] | Jute | Epoxy | - | Hand layup | Tensile, flexural, and impact analysis |
Reference | Bast Fiber | Matrix | Fiber or Matrix Modification | Composite Manufacturing Technique | Evaluation |
---|---|---|---|---|---|
[59] | Flax | PP | - | Co-needling of discontinuous fibers followed by hot pressing | Dynamic mechanical analysis, thermal analysis, Charpy impact and falling weight impact, SEM |
[60] | Flax | Acrylated epoxidized soybean oil | Untreated Flax Fibers Treated flax fibers with sodium hydroxide flax fibers | Resin transfer | Compression, flexural, drop weight impact, water absorption, |
[23] | Flax | Phenolic resin | - | Compression molding | Tensile analysis, interlaminar shear stress |
[61] | Flax | PP | Maleic anhydride grafted PP (MAPP) | Compounding in twin screw extruder | Water absorption, thermal aging, UV ageing, tensile, impact, hardness analysis, SEM |
[62] | Flax | Epoxy | - | Compression molding | Water absorption, tensile testing, acoustic emission, damage mechanism assessment |
[63] | Flax | Epoxy | - | Vacuum assisted resin infusion | Salt-fog aging test, water absorption, wettability, flexural, dynamic mechanical analysis, SEM |
[64] | Flax | Vinyl ester | Flax fibers treated with sodium hydroxide | Vacuum assisted resin transfer | Tensile, flexural, impact, water absorption, thermogravimetric analysis |
[65] | Flax | Vinyl ester | - | Hand layup, Vacuum assisted resin infusion | Moisture absorption, low velocity falling weight impact test, impact damage characterization by SEM and X-ray micro CT |
[66] | Hemp | PP | - | Melt compounding | Fiber length measurement, tensile, flexural analysis, water absorption, heat deflection temperature, thermogravimetric analysis, SEM |
[67] | Hemp | Unsaturated polyester | - | Hand layup, compression molding | Tensile, low velocity impact, fatigue |
[68] | Kenaf | Epoxy | - | Modified sheet molding compound | Tensile, flexural, impact, and SEM analysis |
[69] | Kenaf | Unsaturated polyester | Sodium hydroxide treated kenaf fibers | Modified sheet molding compound process | Flexural and impact analysis |
[70] | Kenaf | Unsaturated polyester | Sodium hydroxide treated kenaf fibers | Sheet molding process | Flexural and fracture analysis |
[71] | Kenaf | Epoxy | - | Hand layup | Low velocity impact, dye penetrant, compression after impact analysis |
[72] | Jute | Epoxy | - | Filament winding | Compressive properties, micrograph analysis of the failure |
[73] | Jute | polyester | - | Hand layup | Tensile, fracture toughness, Impact analysis |
[74] | Jute | Unsaturated polyester | Titanate, silane treated jute fibers | Hand layup, Ccompression molding | Tensile, flexural, effect of humidity |
[75] | Jute | Unsaturated polyester | - | Hand layup | Tensile, Chapy impact, SEM analysis |
[76] | Jute | Polyester | - | Hand layup | Tension, tensile, flexural, and interlaminar shear analysis |
[77] | Jute | Epoxy | - | Hand layup | Flexural, tensile, impact, density and water absorption analysis, thermogravimetric analysis |
L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
PP | 100 | 83 | 75 | 74 | 70 | 79 | 79 | 77 | 76 | 76 | 73 |
BF | - | 17 | - | - | - | 12 | 12 | 12 | 6 | 6 | 6 |
HF | - | - | 25 | - | - | 9 | - | - | 18 | - | - |
GF | - | - | - | 26 | - | - | 9 | - | - | 18 | - |
CF | - | - | - | - | 30 | - | - | 11 | - | - | 21 |
Reference | Bast Fiber | Matrix | Fiber or Matrix Modification | Composite Manufacturing Technique | Evaluation |
---|---|---|---|---|---|
[78] | Flax | Vinylester | - | Hand layup, resin infusion | Tensile, flexural, impact falling weight, and SEM analysis |
[79] | Flax | Low viscosity biobased resin from lactic acid = PMLA Resin | - | Hand layup | Tensile, flexural, Charpy impact, and water analysis |
[35] | Flax | Vinylester | - | Hand layup | SEM, low velocity impact analysis |
[80] | Flax | Vinylester | - | Vacuum infusion | Water absorption, interlaminar fracture toughness, SEM, X-ray computed micro-tomography, fracture energy, |
[81] | Flax | Epoxy | - | Vacuum infusion | Interlaminar shear stress, flexural, tensile, impact, fractography |
[82] | Flax | Epoxy, polypropylene | Maleic anhydride grafted polypropylene (MAPP) | Vacuum infusion, compression molding | Tensile, flexural, drop weight impact, morphology, and damage investigations |
[83] | Hemp | Phenol formaldehyde | - | Compression molding | Tensile, flexural, and Charpy impact analysis and SEM |
[84] | Hemp | Polypropylene | Sunflower oil and maleic anhydride treated fibers | Carding, needling and compression molding | Tensile, flexural, acoustic emission analysis |
[85] | Hemp | Unsaturated polyester | - | Hand lay-up and compression molding | Low velocity impact testing, flexural analysis, acoustic emission, SEM |
[86] | Hemp | High density polyethylene | - | Melt compounding and injection molding | X-ray photoelectron spectroscopy, SEM, tensile testing, differential scanning calorimetry, fiber aspect ratio, Vicat softening temperature, influence of basalt fiber sizing at mechanical properties |
[87] | Hemp | High density polyethylene | HDPE modified by maleic anhydride high density polyethylene copolymer | Melt compounding and injection molding | Water absorption, tensile, SEM, accelerated ageing |
[88] | Hemp | Epoxy | - | Hand layup and compression molding | Impact and flexural analysis with acoustic emission monitoring |
[89] | Flax/hemp | Epoxy | - | Vacuum infusion | Tensile, flexural, interlaminar shear stress and SEM |
[90] | Flax/hemp | Epoxy | - | Vacuum infusion | Impact, acoustic emission analysis |
[91] | Kenaf | blend of thermoplastic polyethylene (UHMWPE/HDPE) | - | Melt compounding, compression molding | Flexural analysis, Charpy impact, and tensile |
[92] | Kenaf | Epoxy | - | Hand layup, compression molding | Tensile, flexural, fracture analysis by SEM |
[93] | Kenaf | Epoxy | - | Vacuum infusion | Dynamic mechanical analysis |
[96] | Jute | Polyester | - | Compression molding | Tensile, flexural, impact |
[97] | Jute | Polyester | - | Compression molding | Tensile, flexural, impact |
[98] | Jute | Epoxy | - | Compression molding | Aging resistance by flexural and low velocity impact response |
[99] | Jute | Epoxy | Silane and alkali treated jute fibers | Vacuum assisted resin infusion | Water absorption, tensile |
[100] | Jute | Polyester | - | Hand layup and compression molding | Tensile, compressive and dynamic properties |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, A.; Medina, L.; Skrifvars, M.; Berglin, L. Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules 2020, 25, 4933. https://doi.org/10.3390/molecules25214933
Saleem A, Medina L, Skrifvars M, Berglin L. Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules. 2020; 25(21):4933. https://doi.org/10.3390/molecules25214933
Chicago/Turabian StyleSaleem, Anjum, Luisa Medina, Mikael Skrifvars, and Lena Berglin. 2020. "Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review" Molecules 25, no. 21: 4933. https://doi.org/10.3390/molecules25214933
APA StyleSaleem, A., Medina, L., Skrifvars, M., & Berglin, L. (2020). Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules, 25(21), 4933. https://doi.org/10.3390/molecules25214933