Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Substance Retention and Selectivity in ACN and THF Systems with Different Adsorbents
2.2. Comparison of Substance Retention and Selectivity in MeOH and THF Systems with Different Adsorbents
2.3. Comparison of Substance Retention and Selectivity in MeOH and ACN Systems with Different Adsorbents
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Youdim, K.A.; Saunders, K.C. A review of LC-MS techniques and high-throughput approaches used to investigate drug metabolism by cytochrome P450s. J. Chromatogr. B 2010, 878, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K.; Wilson, I.D. Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J. Chromatogr. B 2000, 748, 233–258. [Google Scholar] [CrossRef]
- Zhou, L.Z. Handbook of Pharmaceutical Analysis by HPLC; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780120885473. [Google Scholar]
- Gao, W.; Legido-Quigley, C. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives. J. Chromatogr. A 2011, 1218, 4307–4311. [Google Scholar] [CrossRef] [PubMed]
- Zgoła-Grześkowiak, A.; Werner, J.; Jeszka-Skowron, M.; Czarczyńska-Goślińska, B. Determination of parabens in cosmetic products using high performance liquid chromatography with fluorescence detection. Anal. Methods 2016, 8, 3903–3909. [Google Scholar] [CrossRef]
- Zhang, Q.; Lian, M.; Liu, L.; Cui, H. High-performance liquid chromatographic assay of parabens in wash-off cosmetic products and foods using chemiluminescence detection. Anal. Chim. Acta 2005, 537, 31–39. [Google Scholar] [CrossRef]
- Stachniuk, A.; Szmagara, A.; Czeczko, R.; Fornal, E. LC-MS/MS determination of pesticide residues in fruits and vegetables. J. Environ. Sci. Health. Part B 2017, 52, 446–457. [Google Scholar] [CrossRef]
- Hefni, M.; McEntyre, C.; Lever, M.; Slow, S. Validation of HPLC-UV methods for the quantification of betaine in foods by comparison with LC-MS. Food Anal. Methods 2016, 9, 292–299. [Google Scholar] [CrossRef]
- Núñez, O.; Gallart-Ayala, H.; Martins, C.P.B.; Lucci, P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A 2012, 1228, 298–323. [Google Scholar] [CrossRef] [Green Version]
- Joutovsky, A.; Hadzi-Nesic, J.; Nardi, M.A. HPLC retention time as a diagnostic tool for hemoglobin variants and hemoglobinopathies: A study of 60 000 samples in a clinical diagnostic laboratory. Clin. Chem. 2004, 50, 1436–1447. [Google Scholar] [CrossRef]
- Wright, M.; Hepburn, S. Positive Impacts of HPLC Innovations on Clinical Diagnostic Analysis. LC GC Europe 2016, 29, 34–38. [Google Scholar]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, F.; Wang, G.; Cao, T.; Guo, Z.; Zhang, Y. High performance liquid chromatography determination of formaldehyde in engine exhaust with unsymmetrical dimethylhydrazine as a new derivatization agent. Anal. Methods 2015, 7, 309–312. [Google Scholar] [CrossRef]
- Siouffi, A.M. High performance liquid chromatography. In Handbook of Food Science, Technology, and Engineering-4 Volume Set; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9781466507876. [Google Scholar]
- Snyder, L.R. Changing reversed-phase high performance liquid chromatography selectivity Which variables should be tried first? J. Chromatogr. B Biomed. Sci. Appl. 1997, 689, 105–115. [Google Scholar] [CrossRef]
- Tan, L.C.; Carr, P.W. Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships II. The mobile phase. J. Chromatogr. A 1998, 752, 1–18. [Google Scholar] [CrossRef]
- Rosés, M.; Subirats, X.; Bosch, E. Retention models for ionizable compounds in reversed-phase liquid chromatography. Effect of variation of mobile phase composition and temperature. J. Chromatogr. A 2009, 1216, 1756–1775. [Google Scholar] [CrossRef]
- Ramis-Ramos, G.; García-Álvarez-Coque, M.C. Solvent Selection in Liquid Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780124158078. [Google Scholar]
- Tanaka, N.; Goodell, H.; Karger, B.L. The role of organic modifiers on polar group selectivity in reversed-phase liquid chromatography. J. Chromatogr. A 1978, 158, 233–248. [Google Scholar] [CrossRef]
- Colin, H.; Guiochon, G. Introduction to reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1977, 141, 289–312. [Google Scholar] [CrossRef]
- Snyder, L.R.; Dolan, J.W.; Carr, P.W. The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A 2004, 1060, 77–116. [Google Scholar] [CrossRef]
- Vailaya, A.; Horváth, C. Retention in reversed-phase chromatography: Partition or adsorption? J. Chromatogr. A 1998, 829, 1–27. [Google Scholar] [CrossRef]
- Žuvela, P.; Skoczylas, M.; Liu, J.J.; Bączek, T.; Kaliszan, R.; Wong, M.W.; Buszewski, B. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019, 119, 3674–3729. [Google Scholar] [CrossRef]
- Jaroniec, M. Partition and displacement models in reversed-phase liquid chromatography with mixed eluents. J. Chromatogr. A 1993, 656, 37–50. [Google Scholar] [CrossRef]
- Sander, L.C.; Wise, S.A. Shape selectivity in reversed-phase liquid chromatography for the separation of planar and non-planar solutes. J. Chromatogr. A 1993, 656, 335–351. [Google Scholar] [CrossRef]
- Tanaka, N.; Kimata, K.; Hosoya, K.; Miyanishi, H.; Araki, T. Stationary phase effects in reversed-phase liquid chromatography. J. Chromatogr. A 1993, 656, 265–287. [Google Scholar] [CrossRef]
- Wheeler, J.F.; Beck, T.L.; Klatte, S.J.; Cole, L.A.; Dorsey, J.G. Phase transitions of reversed-phase stationary phases. J. Chromatogr. A 1993, 656, 317–333. [Google Scholar] [CrossRef]
- Horváth, C.; Melander, W.; Molnár, I. Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J. Chromatogr. A 1976, 125, 129–156. [Google Scholar] [CrossRef]
- Dill, K.A. The mechanism of solute retention in reversed-phase liquid chromatography. J. Phys. Chem. 1987, 91, 1980–1988. [Google Scholar] [CrossRef]
- Dorsey, J.G.; Dill, K.A. The Molecular Mechanism of Retention in Reversed-Phase Liquid Chromatography. Chem. Rev. 1989, 89, 331–346. [Google Scholar] [CrossRef]
- Nasuto, R.; Kwietniewski, L.; Róźyło, J.K. Relationship between stationary and mobile phase composition and its influence on retention factors of aromatic hydrocarbons in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1997, 762, 27–33. [Google Scholar] [CrossRef]
- Bocian, S. Solvation processes in liquid chromatography: The importance and measurements. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 731–738. [Google Scholar] [CrossRef]
- Gritti, F.; Kazakevich, Y.V.; Guiochon, G. Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography. J. Chromatogr. A 2007, 1169, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Bocian, S.; Vajda, P.; Felinger, A.; Buszewski, B. Excess adsorption of commonly used organic solvents from water on nonend-capped C18-bonded phases in reversed-phase liquid chromatography. Anal. Chem. 2009, 81, 6334–6346. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Thermodynamics of adsorption of binary aqueous organic liquid mixtures on a RPLC adsorbent. J. Chromatogr. A 2007, 1155, 85–99. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Column selectivity from the perspective of the solvation parameter model. J. Chromatogr. A 2002, 965, 263–299. [Google Scholar] [CrossRef]
- Rafferty, J.L.; Siepmann, J.I.; Schure, M.R. Mobile phase effects in reversed-phase liquid chromatography: A comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A 2011, 1218, 2203–2213. [Google Scholar] [CrossRef]
- Zapala, W. Influence of mobile phase composition on retention factors in different HPLC systems with chemically bonded stationary phases. J. Chromatogr. Sci. 2003, 41, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzido, T.H.; Kossowski, T.E.; Matosiuk, D. Comparison of retention of aromatic hydrocarbons with polar groups in binary reversed-phase high-performance liquid chromatography systems. J. Chromatogr. A 2002, 947, 167–183. [Google Scholar] [CrossRef]
- Bocian, S.; Felinger, A.; Buszewski, B. Comparison of solvent adsorption on chemically bonded stationary phases in RP-LC. Chromatographia 2008, 68, 19–26. [Google Scholar] [CrossRef]
- Dzido, T.H. Modifier influence on selectivity of reversed-phase hplc systems. J. Liq. Chrom. Relat. Technol. 2000, 23, 2773–2788. [Google Scholar] [CrossRef]
- Klimek-Turek, A.; Misiołek, B.; Dzido, T.H. Comparison of the retention of aliphatic hydrocarbons with polar groups in RP-HPLC systems with different modifiers of the binary eluent. Chromatographia 2013, 76, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Klimek-Turek, A.; Jaglínska, K.; Imbierowicz, M.; Dzido, T.H. Solvent front position extraction with semi-automatic device as a powerful sample preparation procedure prior to quantitative instrumental analysis. Molecules 2019, 24, 1358. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, S.; David, V. Estimation of the phase ratio in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2015, 1381, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, N.; Guzzinati, R.; Catani, M.; Massi, A.; Pasti, L.; Cavazzini, A. New insights into perfluorinated adsorbents for analytical and bioanalytical applications. Anal. Bioanal. Chem. 2015, 407, 17–21. [Google Scholar] [CrossRef] [PubMed]
- De Juan, A.; Fonrodona, G.; Casassas, E. Solvent classification based on solvatochromic parameters: A comparison with the Snyder approach. Trac Trends Anal. Chem. 1997, 16, 52–62. [Google Scholar] [CrossRef]
- Karapetian, Y.A. Physical Chemistry Properties of Electrolytes in Non-Aqueous Solutions; Khimia: Moscow, Russia, 1989. [Google Scholar]
- Hałka-Grysińska, A.; Skop, K.; Klimek-Turek, A.; Gorzkowska, M.; Dzido, T.H. Thin-layer chromatogram development with a moving pipette delivering the mobile phase onto the surface of the adsorbent layer. J. Chromatogr. A 2018, 9, 91–99. [Google Scholar] [CrossRef]
- Cole, S.R.; Dorsey, J.G. Effect of stationary phase solvation on shape selectivity in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1993, 635, 177–186. [Google Scholar] [CrossRef]
- Zhang, L.; Rafferty, J.L.; Siepmann, J.I.; Chen, B.; Schure, M.R. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. J. Chromatogr. A 2006, 1126, 219–231. [Google Scholar] [CrossRef]
- Heron, S.; Tchapla, A. Description of retention mechanism by solvophobic theory. Influence of organic modifiers on the retention behaviour of homologous series in reversed-phase liquid chromatography. J. Chromatogr. A 1991, 556, 219–234. [Google Scholar] [CrossRef]
- Bocian, S.; Soukup, J.; Jandera, P.; Buszewski, B. Thermodynamics Study of Solvent Adsorption on Octadecyl-Modified Silica. Chromatographia 2014, 78, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef]
- Abraham, M.H.; Rosés, M. Hydrogen bonding. 38. Effect of solute structure and mobile phase composition on reversed-phase high-performance liquid chromatographic capacity factors. J. Phys. Org. Chem. 1994, 7, 672–684. [Google Scholar] [CrossRef]
SB C18 | Rx C18 | XDB C18 | Extend C18 | ||||||||
BH > 0 | AH > 0, BH > 0 | BH > 0 | AH > 0, BH > 0 | BH > 0 | AH > 0, BH > 0 | BH > 0 | AH > 0, BH > 0 | ||||
35% ACN (k1) 44% MeOH (k2) | a = 0.6811 | a = 0.6626 | 34% ACN (k1) | a = 0.7504 | a = 0.7114 | 34% ACN (k1) | a = 0.7749 | a = 0.6837 | 35% ACN (k1) | a = 0.7819 | a = 0.6867 |
b = 0.3047 | b = 0.0626 | - | b = 0.1614 | b = 0.0307 | - | b = 0.1871 | b = 0.0397 | - | b = 0.1734 | b = 0.0534 | |
R = 0.7946 | R = 0.9541 | 45% MeOH (k2) | R = 0.9 | R = 0.9630 | 43% MeOH (k2) | R = 0.9048 | R = 0.9575 | 32% MeOH (k2) | R = 0.9239 | R = 0.9633 | |
32% THF (k1) 35% ACN (k2) | a = 0.5507 | a = 0.7765 | 32% THF (k1) | a = 0.5938 | a = 0.7513 | 31%THF (k1) | a = 0.6729 | a = 0.7607 | 31% THF (k1) | a = 0.6447 | a = 0.7578 |
b = 0.3885 | b = 0.4242 | - | b = 0.2975 | b = 0.4005 | - | b = 0.2640 | b = 0.4519 | - | b = 0.3460 | b = 0.4494 | |
R = 0.5846 | R = 0.8414 | 34% ACN (k2) | R = 0.7220 | R = 0.8296 | 34% ACN (k2) | R=0.7876 | R = 0.8413 | 35% ACN (k2) | R = 0.6876 | R = 0.8321 | |
32% THF (k1) 44% MeOH (k2) | a = 0.491 | a = 0.4765 | 32% THF (k1) | a= 0.4060 | a = 0.5040 | 31% THF (k1) | a = 0.5007 | a = 0.4783 | 31% THF (k1) | a = 0.5239 | a = 0.4904 |
b = 0.4602 | b = 0.4964 | - | b = 0.4252 | b = 0.4375 | - | b = 0.4063 | b = 0.5099 | - | b = 0.44 | b = 0.5077 | |
R = 0.6080 | R = 0.7434 | 45% MeOH (k2) | R = 0.5921 | R = 0.7534 | 45%MeOH (k2) | R = 0.6879 | R = 0.7407 | 45% MeOH (k2) | R = 0.6603 | R = 0.7554 | |
SB C8 | XDB C8 | SB C3 | |||||||||
BH > 0 | AH > 0, BH > 0 | BH > 0 | AH > 0, BH > 0 | BH > 0 | AH > 0, BH > 0 | ||||||
35% ACN (k1) 42% MeOH (k2) | a = 0.5695 | a = 0.59 | 36% ACN (k1) | a = 0.6426 | a = 0.6109 | 33% ACN (k1) | a = 0.6249 | a = 0.2294 | |||
b = 0.225 | b = 0.0002 | - | b = 0.2653 | b = 0.0606 | - | b = 0.0761 | b = 0.1295 | ||||
R = 0.7892 | R = 0.8612 | 45% MeOH (k2) | R = 0.834 | R = 0.9557 | 25% MeOH (k2) | R = 0.6987 | R = 0.4205 | ||||
33% THF (k1) 35% ACN (k2) | a = 0.6870 | a = 0.8771 | 32% THF (k1) | a = 0.6699 | a = 0.9109 | 33% THF (k1) | a = 0.1515 | a = 0.613 | |||
b = 0.289 | b = 0.3277 | - | b = 0.3413 | b = 0.3867 | - | b = 0.531 | b = 0.439 | ||||
R = 0.6504 | R = 0.8371 | 36% ACN | R = 0.658 | R = 0.7837 | 33% ACN (k2) | R = 0.2593 | R = 0.387 | ||||
33% THF (k1) 42% MeOH (k2) | a = 0.3191 | a = 0.4338 | 32% THF (k1) | a = 0.4129 | a = 0.5325 | 33% THF (k1) | a = 0.1293 | a = 0.2026 | |||
b = 0.5135 | b = 0.3964 | - | b = 0.5321 | b = 0.4558 | - | b = 0.4538 | b = 0.4203 | ||||
R = 0.4187 | R = 0.6044 | 45% MeOH (k2) | R = 0.5264 | R = 0.7164 | 25% MeOH (k2) | R = 0.2571 | R = 0.3876 |
Substance | AH, Hydrogen Bond Acidity * | BH, Hydrogen Bond Basicity * | Substance | AH, Hydrogen Bond Acidity * | BH, Hydrogen Bond Basicity * |
---|---|---|---|---|---|
1. Benzene | 0 | 0.14 | 18. 3-Nitrophenol | 0.79 | 0.23 |
2. Toluene | 0 | 0.14 | 19. 4-Nitrophenol | 0.82 | 0.26 |
3. Phenol | 0.6 | 0.3 | 20. 2-Methyl-4-nitrophenol | 0.78 | 0.25 |
4. 2-Cresol | 0 | 0.14 | 21. Methyl 4-hydroxybenzoate | 0.69 | 0.45 |
5. 4-Cresol | 0.52 | 0.3 | 22. Ethyl 4-hydroxybenzoate | 0.69 | 0.45 |
6. 2-Naphthol | 0.57 | 0.31 | 23. Propyl 4-hydroxybenzoate | 0.69 | 0.45 |
7. Methyl phenylacetate | 0.61 | 0.4 | 24. 4-Nitrobenzyl alcohol | 0.44 | 0.62 |
8. Ethyl phenylacetate | 0 | 0.58 | 25. 1,2-Dinitrobenzene | 0 | 0.38 |
9. Methyl benzoate | 0 | 0.57 | 26. 1,4-Dinitrobenzene | 0 | 0.46 |
10. Acetophenone | 0 | 0.46 | 27. 1-Chloro-2,4-dinitrobenzene | 0 | 0.42 |
11. Nitrobenzene | 0 | 0.28 | 28. 4-Nitrobenzaldehyde | 0 | 0.44 |
12. Benzonitrile | 0 | 0.33 | 29. 4-Cyanobenzaldehyde | 0 | 0.33 |
13. 1,5-Dihydroxynaphthalene | 0.93 | 0.58 | 30. Dimethyl isophthalate | 0 | 0.67 |
14. 1,6-Dihydroxynaphthalene | 0.98 | 0.57 | 31. Diethyl terephthalate | ||
15. 1,7-Dihydroxynaphthalene | 1.02 | 0.54 | 32. Dimethyl 4,4-diphenylcarboxylate | 0 | 0.91 |
16. 2-Cyanophenol | 0.78 | 0.34 | 33. 2-Nitro-4-chlorophenol | 0.1 | 0.3 |
17. 2-Nitrophenol | 0.05 | 0.37 | 34. 1,3,5-Trinitrobenzene | 0 | 0.6 |
No. | Column | Dimensions (mm) | Particle Diameter (µm) | Pore Diameter (Å) | Surface Area (m2/g) | Endcapped | Carbon Load (%) | Coverage Density (µmol/m2) |
---|---|---|---|---|---|---|---|---|
1 | Zorbax SB C18 | 3 × 150 | 5 | 80 | 180 | no | 10 | 2.98 |
2 | Zorbax Rx C18 | 3 × 150 | 5 | 80 | 180 | no | 12 | 2.98 |
3 | Zorbax Eclipse XDB C18 | 3 × 150 | 5 | 80 | 180 | yes | 10 | 4 |
4 | Zorbax Extend C18 | 3 × 150 | 5 | 80 | 180 | yes | 12.5 | 3.8 |
5 | Zorbax SB C8 | 3 × 150 | 5 | 80 | 180 | no | 5.5 | 2.4 |
6 | Zorbax Eclipse XDB C8 | 3 × 150 | 5 | 80 | 180 | yes | 7.6 | 3.8 |
7 | ProntoSIL C4 | 3 × 125 | 5 | 120 | 300 | yes | 5 | - |
8 | Zorbax SB C3 | 3 × 150 | 5 | 80 | 180 | no | 4 | - |
9 | Zorbax 300SB C18 | 3 × 150 | 5 | 300 | 45 | no | 2.8 | - |
10 | Zorbax 300SB C8 | 3 × 150 | 5 | 300 | 45 | no | 1.5 | - |
11 | Zorbax 300SB C3 | 3 × 150 | 5 | 300 | 45 | no | 1.1 | - |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek-Turek, A.; Misiołek, B.; Dzido, T.H. Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents. Molecules 2020, 25, 5070. https://doi.org/10.3390/molecules25215070
Klimek-Turek A, Misiołek B, Dzido TH. Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents. Molecules. 2020; 25(21):5070. https://doi.org/10.3390/molecules25215070
Chicago/Turabian StyleKlimek-Turek, Anna, Beata Misiołek, and Tadeusz H. Dzido. 2020. "Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents" Molecules 25, no. 21: 5070. https://doi.org/10.3390/molecules25215070
APA StyleKlimek-Turek, A., Misiołek, B., & Dzido, T. H. (2020). Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents. Molecules, 25(21), 5070. https://doi.org/10.3390/molecules25215070