Comparison of the Retention and separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents

Anna Klimek-Turek 1,*, Beata Misiołek 1,2 and Tadeusz H. Dzido 1

- ¹ Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; beata.misiolek@umlub.pl (B.M.); tadeusz.dzido@umlub.pl (T.H.D.)
- ² Department for Variations and Renewals of Medicinal Products, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, 02-222 Warsaw, Poland
- * Correspondence: anna.klimek@umlub.pl, Tel.:+48 81448 7206

Academic Editors: Magdalena Wojciak-Kosior and Bogusław Buszewski

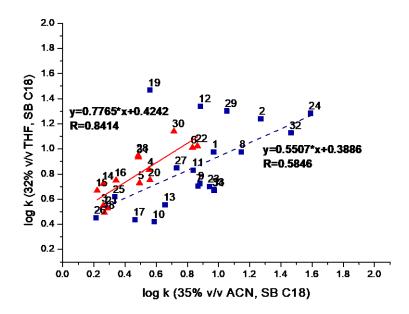


Figure S1. Log k in 32% v/v THF plotted against log k in 35% v/v ACN. SB C18 stationary phase. Solute numbers as in Table 2.

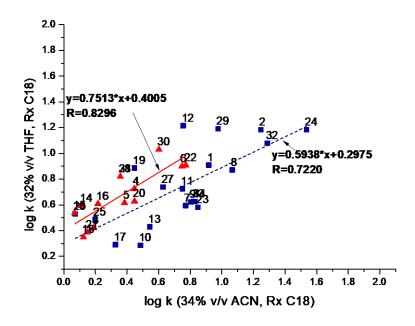


Figure S2. Log k in 32% v/v THF plotted against log k in 34% v/v ACN. Rx C18 stationary phase. Solute numbers as in Table 2.

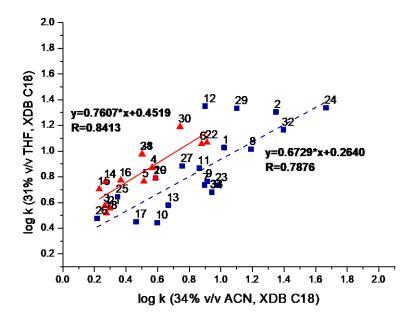


Figure S3. Log k in 31% v/v THF plotted against log k in 34% v/v ACN. Eclipse XDB C18 stationary phase. Solute numbers as in Table 2.

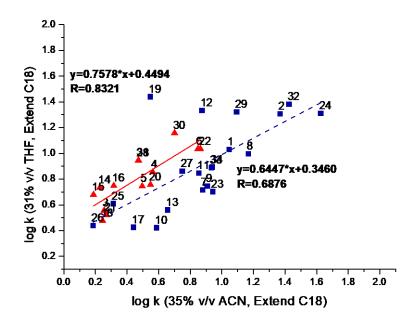


Figure S4. Log k in 31% v/v THF plotted against log k in 35% v/v ACN. Extend C18 stationary phase. Solute numbers as in Table 2.

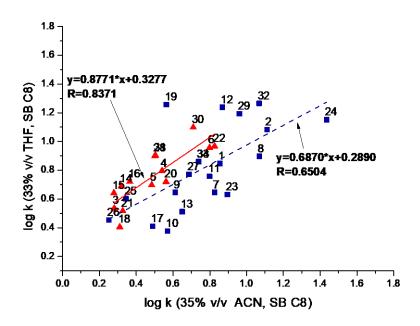


Figure S5. Log k in 33% v/v THF plotted against log k in 35% v/v ACN. SB C8 stationary phase. Solute numbers as in Table 2.

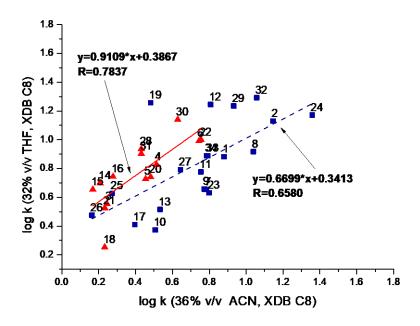


Figure S6. Log k in 32% v/v THF plotted against log k in 36% v/v ACN. Eclipse XDB C8 stationary phase. Solute numbers as in Table 2.

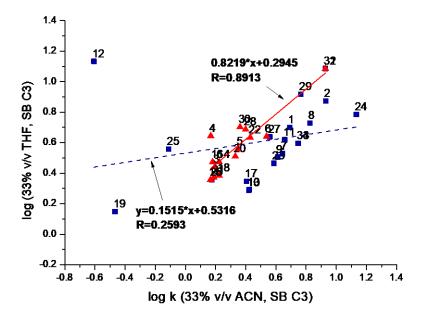


Figure S7. Log k in 33% v/v THF plotted against log k in 33% v/v ACN. SB C3 stationary phase. Solute numbers as in Table 2.

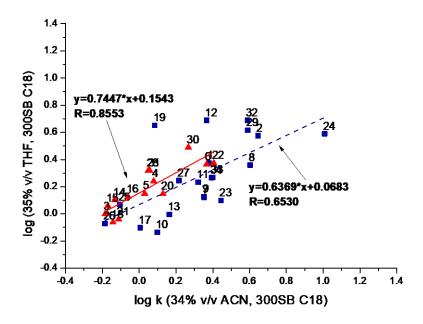


Figure S8. Log k in 35% v/v THF plotted against log k in 34% v/v ACN. 300 SB C18 stationary phase. Solute numbers as in Table 2.

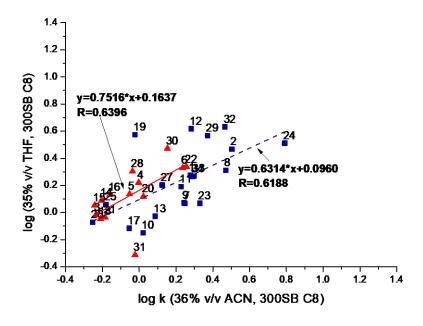


Figure S9. Log k in 35% v/v THF plotted against log k in 36% v/v ACN. 300 SB C8 stationary phase. Solute numbers as in Table 2.

Figure S10. Log k in 34% v/v THF plotted against log k in 32% v/v ACN. 300 SB C3 stationary phase. Solute numbers as in Table 2.

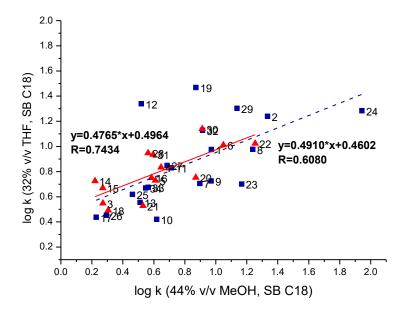


Figure S11. Log k in 32% v/v THF plotted against log k in 44% v/v MeOH. SB C18 stationary phase. Solute numbers as in Table 2.

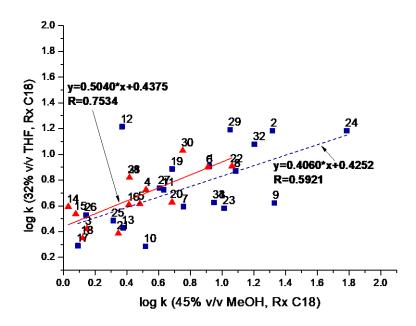


Figure S12. Log k in 32% v/v THF plotted against log k in 45% v/v MeOH. Rx C18 stationary phase. Solute numbers as in Table 2.

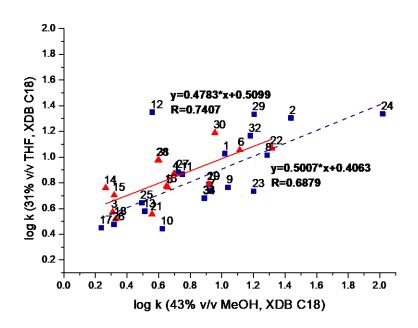


Figure S13. Log k in 31% v/v THF plotted against log k in 43% v/v MeOH. Eclipse XDB C18 stationary phase. Solute numbers as in Table 2.

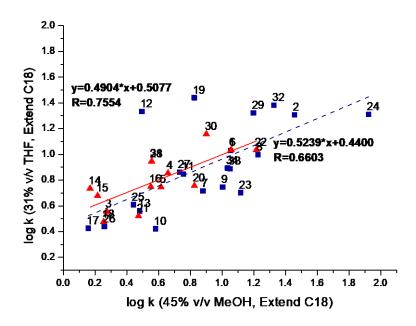


Figure S14. Log k in 31% v/v THF plotted against log k in 45% v/v MeOH. Extend C18 stationary phase. Solute numbers as in Table 2.

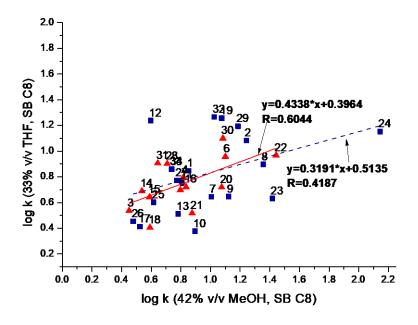


Figure S15. Log k in 33% v/v THF plotted against log k in 42% v/v MeOH. SB C8 stationary phase. Solute numbers as in Table 2.

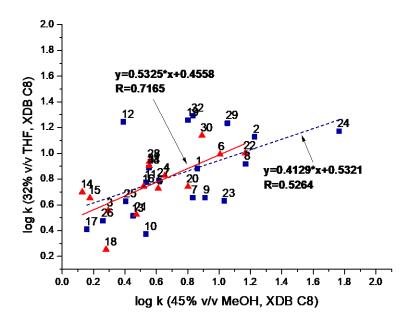


Figure S16. Log k in 32% v/v THF plotted against log k in 45% v/v MeOH. XDB C8 stationary phase. Solute numbers as in Table 2.

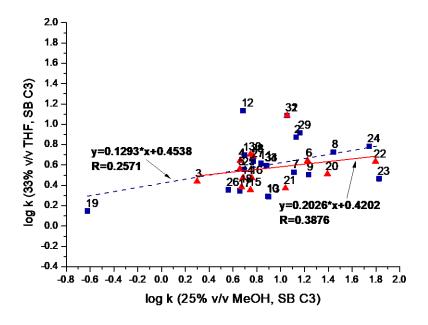


Figure S17. Log k in 33% v/v THF plotted against log k in 25% v/v MeOH. SB C3 stationary phase. Solute numbers as in Table 2.

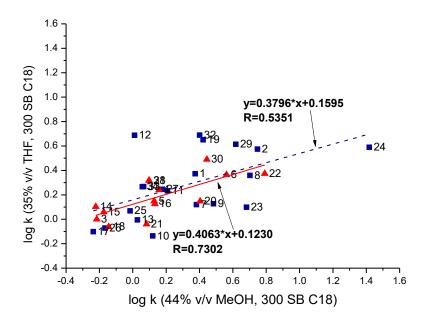


Figure S18. Log k in 35% v/v THF plotted against log k in 44% v/v MeOH. 300 SB C18 stationary phase. Solute numbers as in Table 2.

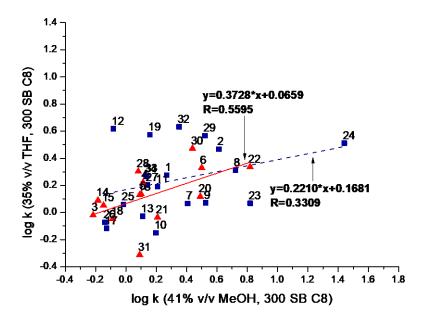


Figure S19. Log k in 35% v/v THF plotted against log k in 41% v/v MeOH. 300 SB C8 stationary phase. Solute numbers as in Table 2.

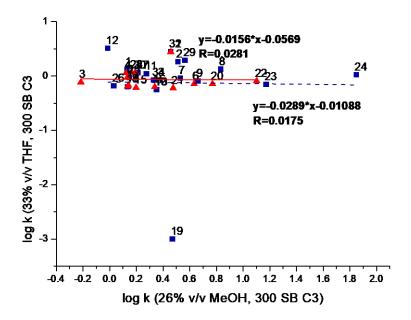


Figure S20. Log k in 33% v/v ACN plotted against log k in 26% v/v MeOH. 300 SB C3 stationary phase. Solute numbers as in Table 2.

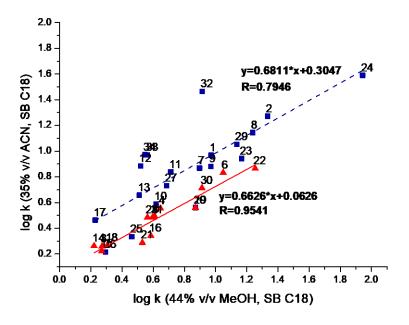


Figure S21. Log k in 35% v/v ACN plotted against log k in 44% v/v MeOH. SB C18 stationary phase. Solute numbers as in Table 2.

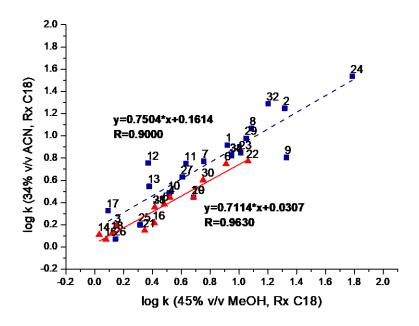


Figure S22. Log k in 34% v/v ACN plotted against log k in 45% v/v MeOH. Rx C18 stationary phase. Solute numbers as in Table 2.

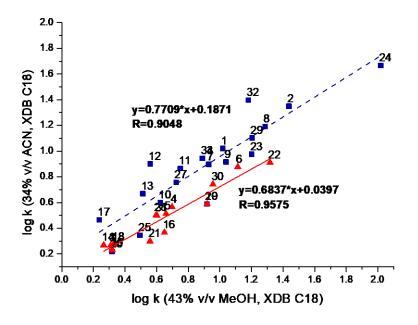


Figure S23. Log k in 34% v/v ACN plotted against log k in 43% v/v MeOH. Eclipse XDB C18 stationary phase. Solute numbers as in Table 2.

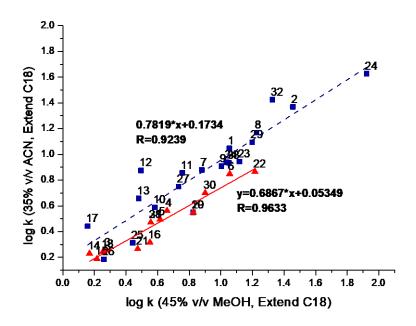


Figure S24. Log k in 35% v/v ACN plotted against log k in 45% v/v MeOH. Extend C18 stationary phase. Solute numbers as in Table 2.

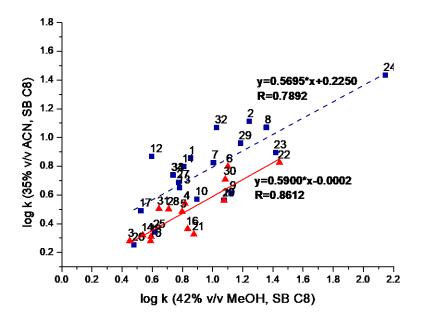


Figure S25. Log k in 35% v/v ACN plotted against log k in 42% v/v MeOH. SB C8 stationary phase. Solute numbers as in Table 2.

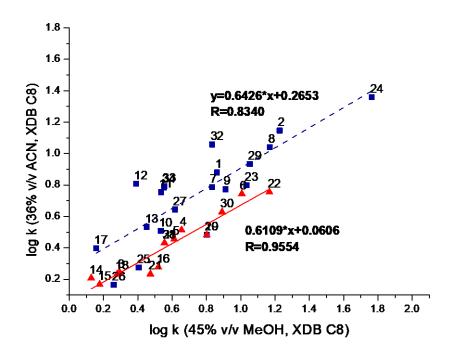


Figure S26. Log k in 36% v/v ACN plotted against log k in 45% v/v MeOH. Eclipse XDB C8 stationary phase. Solute numbers as in Table 2.

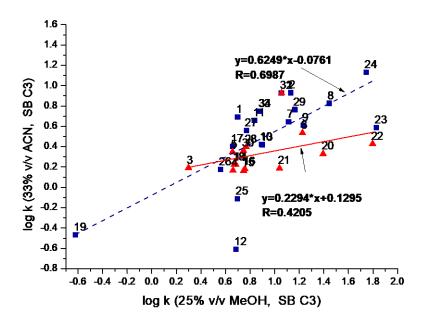


Figure S27. Log k in 33% v/v ACN plotted against log k in 25% v/v MeOH. SB C3 stationary phase. Solute numbers as in Table 2.

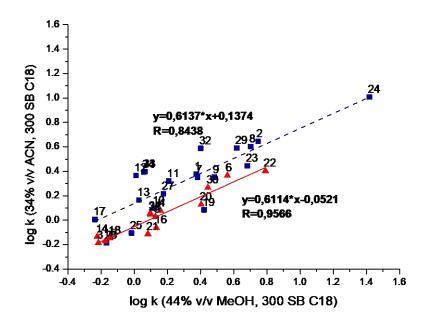


Figure S28. Log k in 34% v/v ACN plotted against log k in 44% v/v MeOH. 300 SB C18 stationary phase. Solute numbers as in Table 2.

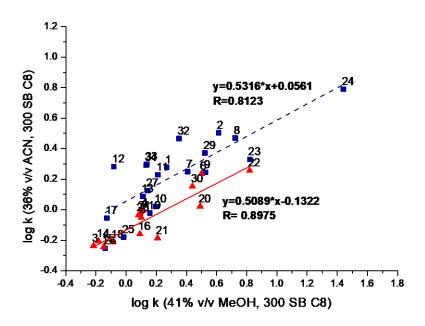


Figure S29. Log k in 36% v/v ACN plotted against log k in 41% v/v MeOH. 300 SB C8 stationary phase. Solute numbers as in Table 2.

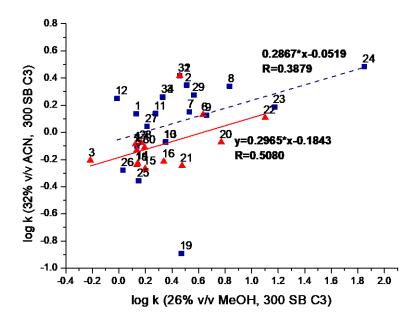


Figure S30. Log k in 32% v/v ACN plotted against log k in 26% v/v MeOH. 300 SB C3 stationary phase. Solute numbers as in Table 2.

Table 1. Structural formulas of substances used in experiments.

Lp.	Substance	Structural formula
1	Benzene	
2	Toluene	CH ₃
3	Phenol	OH OH
4	o-Cresol	HO CH3
5	p-Cresol	CH ₃
6	2-Naphtol	но
7	Methyl phenylacetate	CH,
8	Ethyl phenylacetate	H ₀ C

		CH₃	
9	Methyl benzoate	Š	
10	Acetophenone	H. C.	
11	Nitrobenzene		
12	1,3,5- Trinitrobenzene		
13	Benzonitrile		
14	1,5- Dihydroksynaphtal ene	OH OH	
15	1,6- Dihydroksynaphtal ene	НО	
16	1,7- Dihydroksynaphtal ene	НО	
17	4- Cyanobenzaldehyd e		
18	2-Cyanophenol	NNC OH	
19	Dimethyl-4,4'- diphenyl dicarboxylate	F + + + + + + + + + + + + + + + + + + +	
20	Ethyl 4- hydroxybenzoate	HQ H, C	

21	Methyl 4- hydroxybenzoate	OH CH ₃	
22	Propyl 4- hydroxybenzoate	OH OH	
23	Dimethyl isophthalate	H,C	
24	Diethyl terephthalate	EF,	
25	4- Nitrobenzaldehyde		
26	4-Nitrobenzyl alcohol	Q H	
27	2-Nitrophenol	ĕ	
28	3-Nitrophenol	HO	
29	2-Nitro-4- chlorophenol	ĕ 'o-\$	
30	2-Metylo-4- nitrophenol	HO CH ₃	
31	4-Nitrophenol	OH OH	

32	1-Chloro-2,4- dinitrobenzene	o= CI
33	1,2-Dinitrobenzene	
34	1,4-Dinitrobenzene	