Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts
Abstract
:1. Introduction
2. Results
2.1. Macerations
2.2. Radical Scavenging Activity
2.3. Effects of UAE Variables on Phenolic Acid Extraction Yield
2.4. Metal Content in E. Purpurea Aerial Parts
3. Discussion
3.1. Phenolic Acid Contents in the Extracts Obtained by Maceration
3.2. Radical Scavenging Activity
3.3. Effect of UAE Variables on Phenolic Acid Extraction Yield
3.4. Metal Contents in E. Purpurea Aerial Parts
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Maceration
4.4. Radical Scavenging Activity
4.5. Preparation of the Extracts According to Two-Level Factorial Design
4.6. RP-HPLC-DAD Determinations of Phenolic Acids
4.7. TXRF Determination of Metals in the Plant Material
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chinou, I. Monographs, list entries, public statements. J. Ethnopharmacol. 2014, 158 Pt. B, 458–462. [Google Scholar] [CrossRef]
- Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Costa, R.; Santos, L. Delivery systems for cosmetics-From manufacturing to the skin of natural antioxidants. Powder Technol. 2017, 322, 402–416. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R.; Mallefet, P. Soothing Properties of Glycerol in Cough Syrups for Acute Cough Due to Common Cold. Pharmacy 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic Licorice Extracts as Active Cosmeceutical Ingredients: Extraction Optimization, Chemical Characterization, and Biological Activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Dulić, M.; Ciganović, P.; Vujić, L.; Zovko Končić, M. Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of “Green” Ultrasound-Assisted Extraction. Molecules 2019, 24, 3613. [Google Scholar] [CrossRef] [Green Version]
- Aalim, H.; Belwal, T.; Jiang, L.; Huang, H.; Meng, X.; Luo, Z. Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. LWT 2019, 103, 147–154. [Google Scholar] [CrossRef]
- Vieira, V.; Calhelha, R.C.; Barros, L.; Coutinho, J.A.; Ferreira, I.C.; Ferreira, O. Insights on the Extraction Performance of Alkanediols and Glycerol: Using Juglans regia L. Leaves as a Source of Bioactive Compounds. Molecules 2020, 25, 2497. [Google Scholar] [CrossRef] [PubMed]
- Committee on Herbal Medicinal Products Echinaceae Purpureae Herba. Available online: https://www.ema.europa.eu/en/medicines/herbal/echinaceae-purpureae-herba (accessed on 13 September 2019).
- Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.D.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of Echinacea purpurea and Echinacea angustifolia extracts. Pharm. Biol. 2017, 55, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Maver, T.; Maver, U.; Kleinschek, K.S.; Smrke, D.M.; Kreft, S. A review of herbal medicines in wound healing. Int. J. Dermatol. 2015, 54, 740–751. [Google Scholar] [CrossRef]
- Senica, M.; Mlinsek, G.; Veberic, R.; Mikulic-Petkovsek, M. Which Plant Part of Purple Coneflower (Echinacea purpurea (L.) Moench) Should be Used for Tea and Which for Tincture? J. Med. Food 2019, 22, 102–108. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013.
- Peng, Y.; Sun, Q.; Park, Y. The Bioactive Effects of Chicoric Acid as a Functional Food Ingredient. J. Med. Food 2019, 22, 645–652. [Google Scholar] [CrossRef]
- Kour, K.; Bani, S. Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology 2011, 60, 852–860. [Google Scholar] [CrossRef]
- Koriem, K.M.M. Caftaric acid: An overview on its structure, daily consumption, bioavailability and pharmacological effects. Biointerface Res. Appl. Chem. 2020, 10, 5616–5623. [Google Scholar] [CrossRef]
- Honisch, C.; Osto, A.; Dupas de Matos, A.; Vincenzi, S.; Ruzza, P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem. 2020, 305. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. Biomedecine Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F. Microwave-assisted extraction of saponin, phenolic and flavonoid compounds from Trigonella foenum-graecum seed based on two level factorial design. J. Appl. Res. Med. Aromat. Plants 2019, 14, 100212. [Google Scholar] [CrossRef]
- Mosca, F.; Hidalgo, G.I.; Villasante, J.; Almajano, M.P. Continuous or Batch Solid-Liquid Extraction of Antioxidant Compounds from Seeds of Sterculia apetala Plant and Kinetic Release Study. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 1759. [Google Scholar] [CrossRef] [Green Version]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefin. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Bergeron, C.; Gafner, S.; Batcha, L.L.; Angerhofer, C.K. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J. Agric. Food Chem. 2002, 50, 3967–3970. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. Off. Publ. Eur. Soc. Laser Dermatol. 2019, 21, 84–90. [Google Scholar] [CrossRef]
- Coelho, L.; Almeida, I.F.; Sousa Lobo, J.M.; Sousa, E.; Silva, J.P. Photostabilization strategies of photosensitive drugs. Int. J. Pharm. 2018, 541, 19–25. [Google Scholar] [CrossRef]
- Mlakar, A.; Batna, A.; Dudda, A.; Spiteller, G. Iron (II) ions induced oxidation of ascorbic acid and glucose. Free Radic. Res. 1996, 25, 525–539. [Google Scholar] [CrossRef]
- Moldovan, M.L.; Bogdan, C.; Iurian, S.; Roman, C.; Oniga, I.; Benedec, D. Phenolic content and antioxidant capacity of pomace and canes extracts of some Vitis vinifera varieties cultivated in Romania. Farmacia 2020, 68, 15–21. [Google Scholar] [CrossRef]
- Karg, C.A.; Wang, P.; Vollmar, A.M.; Moser, S. Re-opening the stage for Echinacea research-Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea. Phytomed. Int. J. Phytother. Phytopharm. 2019, 60, 152969. [Google Scholar] [CrossRef]
- Russo, D.; Faraone, I.; Labanca, F.; Sinisgalli, C.; Bartolo, M.; Andrade, P.B.; Valentao, P.; Milella, L. Comparison of different green-extraction techniques and determination of the phytochemical profile and antioxidant activity of Echinacea angustifolia L. extracts. Phytochem. Anal. PCA 2019, 30, 547–555. [Google Scholar] [CrossRef]
- Izadiyan, P.; Hemmateenejad, B. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem. 2016, 190, 864–870. [Google Scholar] [CrossRef]
- Hou, M.; Hu, W.; Wang, A.; Xiu, Z.; Shi, Y.; Hao, K.; Sun, X.; Cao, D.; Lu, R.; Sun, J. Ultrasound-Assisted Extraction of Total Flavonoids from Pteris cretica L.: Process Optimization, HPLC Analysis, and Evaluation of Antioxidant Activity. Antioxidants 2019, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Povedano, M.M.; Luque de Castro, M.D. A review on enzyme and ultrasound: A controversial but fruitful relationship. Anal. Chim. Acta 2015, 889, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Michail, A.; Sigala, P.; Grigorakis, S.; Makris, D.P. Kinetics of Ultrasound-Assisted Polyphenol Extraction from Spent Filter Coffee Using Aqueous Glycerol. Chem. Eng. Commun. 2016, 203, 407–413. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. J. Food Meas. Charact. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Philippi, K.; Tsamandouras, N.; Grigorakis, S.; Makris, D.P. Ultrasound-Assisted Green Extraction of Eggplant Peel (Solanum melongena) Polyphenols Using Aqueous Mixtures of Glycerol and Ethanol: Optimisation and Kinetics. Environ. Process. 2016, 3, 369–386. [Google Scholar] [CrossRef]
- Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326. [Google Scholar] [CrossRef] [Green Version]
- Leopoldini, M.; Chiodo, S.G.; Russo, N.; Toscano, M. Detailed Investigation of the OH Radical Quenching by Natural Antioxidant Caffeic Acid Studied by Quantum Mechanical Models. J. Chem. Theory Comput. 2011, 7, 4218–4233. [Google Scholar] [CrossRef]
- Wildermuth, S.R.; Young, E.E.; Were, L.M. Chlorogenic Acid Oxidation and Its Reaction with Sunflower Proteins to Form Green-Colored Complexes. Compr. Rev. Food Sci. Food Saf. 2016, 15, 829–843. [Google Scholar] [CrossRef]
- Singleton, V.L.; Salgues, M.; Zaya, J.; Trousdale, E. Caftaric Acid Disappearance and Conversion to Products of Enzymic Oxidation in Grape Must and Wine. Am. J. Enol. Vitic. 1985, 36, 50–56. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Juraimi, A.S.; Tayebi-Meigooni, A. Comparative Evaluation of Different Extraction Techniques and Solvents for the Assay of Phytochemicals and Antioxidant Activity of Hashemi Rice Bran. Molecules 2015, 20, 10822–10838. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.B. Reactions of L-ascorbic acid with transition metal complexes. Polyhedron 1992, 11, 285–321. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. [Google Scholar] [CrossRef]
- Kogan, S.; Sood, A.; Garnick, M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds Compend. Clin. Res. Pract. 2017, 29, 102–106. [Google Scholar]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- Coger, V.; Million, N.; Rehbock, C.; Sures, B.; Nachev, M.; Barcikowski, S.; Wistuba, N.; Strauß, S.; Vogt, P.M. Tissue Concentrations of Zinc, Iron, Copper, and Magnesium During the Phases of Full Thickness Wound Healing in a Rodent Model. Biol. Trace Elem. Res. 2019, 191, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmidt, G. Case Study: Validation of an HPLC-Method for Identity, Assay, and Related Impurities. In Method Validation in Pharmaceutical Analysis: A Guide to Best Practice; Ermer, J., Miller, J.H.M., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2005; pp. 195–212. [Google Scholar]
- Dalipi, R.; Marguí, E.; Borgese, L.; Depero, L.E. Multi-element analysis of vegetal foodstuff by means of low power total reflection X-ray fluorescence (TXRF) spectrometry. Food Chem. 2017, 218, 348–355. [Google Scholar] [CrossRef]
Sample Availability:
Samples of the compounds are not available from the authors. |
Extract | Solvent | Duration (Days) |
---|---|---|
W-1D | Water | 1 |
E50-1D | Ethanol 50% (m/m) | 1 |
E-1D | Ethanol | 1 |
G50-1D | Glycerol 50% (m/m) | 1 |
G90-1D | Glycerol 90% (m/m) | 1 |
W-3D | Water | 3 |
E50-3D | Ethanol 50% (m/m) | 3 |
E-3D | Ethanol | 3 |
G50-3D | Glycerol 50% (m/m) | 3 |
G90-3D | Glycerol 90% (m/m) | 3 |
Factor Code | Factor | Units | Minimum (−1) | Maximum (+1) |
---|---|---|---|---|
A | Glycerol concentration | % (w/w) | 10 | 90 |
B | Temperature | °C | 20 | 70 |
C | Ultrasound power | W | 72 | 720 |
D | Time | min | 10 | 40 |
E | Ascorbic acid concentration | mg/g | 0 | 2 |
F | Amount of solvent | g | 10 | 30 |
Std | Run | A (%, w/w) | B (°C) | C (W) | D (min) | E (mg/g) | F (g) | CFTA (CAE μg/mL) | CLA (μg/mL) | CCA (CAE μg/mL) | TPA (CAE μg/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|
26 | 1 | 90 | 20 | 72 | 40 | 2 | 30 | 23.01 | <LD | 55.32 | 78.33 |
17 | 2 | 10 | 20 | 72 | 10 | 2 | 30 | 29.54 | 0.63 | 55.62 | 85.79 |
14 | 3 | 90 | 20 | 720 | 40 | 0 | 30 | 41.47 | 0.56 | 136.71 | 178.74 |
24 | 4 | 90 | 70 | 720 | 10 | 2 | 10 | 31.71 | 0.35 | 86.96 | 119.02 |
31 | 5 | 10 | 70 | 720 | 40 | 2 | 10 | 32.83 | 0.52 | 77.46 | 110.81 |
19 | 6 | 10 | 70 | 72 | 10 | 2 | 10 | 27.82 | 0.29 | 53.77 | 81.88 |
25 | 7 | 10 | 20 | 72 | 40 | 2 | 10 | 15.90 | <LD | 26.59 | 42.49 |
5 | 8 | 10 | 20 | 720 | 10 | 0 | 30 | 11.55 | <LD | 19.98 | 31.53 |
3 | 9 | 10 | 70 | 72 | 10 | 0 | 30 | 30.83 | <LD | 84.48 | 115.31 |
8 | 10 | 90 | 70 | 720 | 10 | 0 | 30 | 34.29 | 0.33 | 99.25 | 133.87 |
22 | 11 | 90 | 20 | 720 | 10 | 2 | 30 | 11.71 | <LD | 32.86 | 44.57 |
21 | 12 | 10 | 20 | 720 | 10 | 2 | 10 | 6.64 | <LD | 7.49 | 14.13 |
32 | 13 | 90 | 70 | 720 | 40 | 2 | 30 | 42.38 | 0.49 | 114.59 | 157.46 |
6 | 14 | 90 | 20 | 720 | 10 | 0 | 10 | 20.90 | <LD | 63.53 | 84.43 |
18 | 15 | 90 | 20 | 72 | 10 | 2 | 10 | 15.08 | <LD | 41.48 | 56.56 |
30 | 16 | 90 | 20 | 720 | 40 | 2 | 10 | 25.45 | 0.43 | 71.45 | 97.33 |
1 | 17 | 10 | 20 | 72 | 10 | 0 | 10 | 15.57 | <LD | 31.40 | 46.97 |
9 | 18 | 10 | 20 | 72 | 40 | 0 | 30 | 26.73 | 0.37 | 50.66 | 77.76 |
23 | 19 | 10 | 70 | 720 | 10 | 2 | 30 | 35.97 | 0.6 | 90.77 | 127.34 |
29 | 20 | 10 | 20 | 720 | 40 | 2 | 30 | 13.01 | <LD | 20.4 | 33.41 |
16 | 21 | 90 | 70 | 720 | 40 | 0 | 10 | 45.38 | 0.94 | 145.02 | 191.34 |
7 | 22 | 10 | 70 | 720 | 10 | 0 | 10 | 32.96 | 0.48 | 98.06 | 131.5 |
27 | 23 | 10 | 70 | 72 | 40 | 2 | 30 | 40.41 | 0.56 | 88.48 | 129.45 |
20 | 24 | 90 | 70 | 72 | 10 | 2 | 30 | 34.01 | 0.57 | 89.1 | 123.68 |
2 | 25 | 90 | 20 | 72 | 10 | 0 | 30 | 14.14 | <LD | 44.3 | 58.44 |
15 | 26 | 10 | 70 | 720 | 40 | 0 | 30 | 45.31 | 0.61 | 132.99 | 178.91 |
11 | 27 | 10 | 70 | 72 | 40 | 0 | 10 | 37.39 | 0.58 | 103.09 | 141.06 |
28 | 28 | 90 | 70 | 72 | 40 | 2 | 10 | 39.05 | 0.74 | 109.48 | 149.27 |
4 | 29 | 90 | 70 | 72 | 10 | 0 | 10 | 35.04 | 0.56 | 107.71 | 143.31 |
12 | 30 | 90 | 70 | 72 | 40 | 0 | 30 | 50.26 | 0.63 | 155.31 | 206.2 |
10 | 31 | 90 | 20 | 72 | 40 | 0 | 10 | 32.99 | 0.59 | 101.58 | 135.16 |
13 | 32 | 10 | 20 | 720 | 40 | 0 | 10 | 14.34 | <LD | 30.98 | 45.32 |
Element | C (mg/kg) |
---|---|
Mn | 71.32 ± 6.65 |
Fe | 255.48 ± 11.75 |
Cu | 8.07 ± 4.70 |
Zn | 37.74 ± 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momchev, P.; Ciganović, P.; Jug, M.; Marguí, E.; Jablan, J.; Zovko Končić, M. Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts. Molecules 2020, 25, 5142. https://doi.org/10.3390/molecules25215142
Momchev P, Ciganović P, Jug M, Marguí E, Jablan J, Zovko Končić M. Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts. Molecules. 2020; 25(21):5142. https://doi.org/10.3390/molecules25215142
Chicago/Turabian StyleMomchev, Plamen, Petar Ciganović, Mario Jug, Eva Marguí, Jasna Jablan, and Marijana Zovko Končić. 2020. "Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts" Molecules 25, no. 21: 5142. https://doi.org/10.3390/molecules25215142
APA StyleMomchev, P., Ciganović, P., Jug, M., Marguí, E., Jablan, J., & Zovko Končić, M. (2020). Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts. Molecules, 25(21), 5142. https://doi.org/10.3390/molecules25215142