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Abstract: A new modified ion-selective electrode with membranes of LaF3 single crystals with
different internal contacts (solid steel or electrolyte) and with FexOy nanoparticles as loading was
developed. The best response characteristic with linear potential change was found in the fluoride
concentration range from 10−1 to 3.98 × 10−7 M. The detection limit for the electrolyte contact was
determined at 7.41 × 10−8 M with a regression coefficient of 0.9932, while the regression coefficient
for the solid contact was 0.9969. The potential change per concentration decade ranged from 50.3 to
62.4 mV, depending on whether the contact was solid or electrolytic. The prepared modified electrode
has a long lifetime, as well as the possibility of application in different positions (solid contact), and it
can also be used for the determination of iron ions. The electrode characterization was performed
with scanning electron microscopy and elemental analysis with the technique of electron-dispersive
X-ray spectroscopy.

Keywords: ion-selective electrode; fluoride; metal nanoparticles; internal contact; elemental analysis

1. Introduction

Detection of fluoride and its complexes plays an important role in understanding the benefits,
as well as the potential toxicity, of fluoride natural sources [1]. The fluoride ion-selective electrode
(FISE) with LaF3 membrane is probably the most widely used ion-selective electrode (ISE) for practical
measurements [2–4]. The electrode was described first by Frant and Ross [5]. Commercially available
models, including the Orion Model 94-09, are constructed in the conventional ISE way, with the
membrane arranged symmetrically between two solutions. Often, the life of the electrode is shortened
because a reference electrode has lost contact with the membrane.

In many applications, such as online process analysis and clinical analysis, it is advantageous
to replace the internal reference solution with a fixed contact. Solid contacts allow the construction
of electrodes that can withstand high temperatures and pressures (e.g., autoclaving). To achieve the
desired electrode quality in terms of sensitivity, response time, and stability, it is essential that the
contact materials are in thermodynamic equilibrium at zero current. If equilibrium is not reached,
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potential instability and long-term potential drift can generally be expected. These effects depend on
the speed of the relaxation processes, for example, at the blocked interface between an electronic and
an ionic conductor [6].

Previously, internal contacts, based on the use of Ag2S, between the LaF3 membrane and a
stainless-steel disc of the multipurpose solid-state electrode body [7], the redox reference system [8],
and the Cu(II) ISE [9] were described. Bralic et al [6] described FISE with a simple solid contact using a
laboratory version of the ISE body and a stainless-steel disc. In this instrument, the LaF3 membrane
was built into a multipurpose electrode body, and contact with the instrument was made with a
stainless-steel disc and coaxial cable. An ion-selective solid-state fluoride electrode was developed
consisting of 70% Ag2S, 10% Cu2S, and 20% CaF2 [10].

The production of a novel FISE is necessary for several reasons; fluoride is important for trade
and technology, its small quantities are vital for the human body although larger quantities are toxic,
and its determination using previous techniques is difficult.

In recent years, much attention has been paid to the study of different types of cheap and efficient
materials, such as different clays, for the removal of fluoride from the environment, especially from
drinking and wastewater. Recently, fluoride ions have been investigated by adsorption on synthesized
Fe2O3 nanoparticles [11–13].

Nanomaterials play an important role in the production of chemo- and biosensors, especially due
to their unique physical and chemical properties, such as high surface/volume ratio, good conductivity,
excellent electrocatalytic activity, and high mechanical strength. In recent years, nanomaterials have been
gradually introduced into potentiometric sensors precisely because of their properties. For example,
due to their exceptional electrical properties and good hydrophobicity, nanomaterials are suitable for
ISE use in the solid state, since they can be dispersed directly in ion-selective membranes [14].

The manufacture of a gold-based ion sensor coated with Fe2O3 nanoparticles for the determination
of fluoride is also described [15].

In reviewing the literature, we have not found recent work describing an FISE with metal
nanoparticles. This paper describes an FISE with LaF3 membranes of different thickness and with
different Eu ratios, to which iron oxide nanoparticles (FexOy NPs) were loaded. The purpose of FexOy

NP loading was to improve the response characteristics of the prepared electrode in relation to the
commercial FISE. The LaF3 membrane was mounted in a multipurpose electrode body, and contact
with the instrument was made with a stainless-steel disc and coaxial cable or an internal electrolyte
contact and an Ag/AgCl internal electrode. The electrode surfaces were recorded using scanning
electron microscopy (SEM) and an elemental analysis was performed using electron-dispersive X-ray
spectroscopy (EDS).

2. Results and Discussion

2.1. Potentiometric Measurements

The potential response of the FISE was measured using a two-electrode system. The solution
was stirred and monitored throughout successive additions of known amounts of sodium fluoride.
The FISE response to fluoride ion concentration is given by the Nernst equation.

E = E′ + S× pF (1)

where E, E′, and S denote the cell potential after addition of sodium fluoride, a conditional standard
cell potential, and experimental slope, respectively.

Electrodes with membranes that were not treated with FexOy NPs showed linearity in the range
within two concentration decades with a slope in the range from 10.4 to 33.9 mV for internal solid
contact or in the range from 21.2 to 47.5 mV when the internal contact was electrolyte (Figures S1 and S2,
Supplementary Materials; Table 1).
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Table 1. The response characteristics of electrodes without FexOy nanoparticles (NPs).

Electrode Internal Contact Linear Response (mol/L) Limit of Detection (mol/L)
(LOD) Slope (mV/dec) ± SD **** R2

1S * solid 3.16 × 10−5 5.89 × 10−5 33.9 ± 2.4 0.9390
1E * electrolyte 3.16 × 10−5 3.09 × 10−5 35.9 ± 2.0 0.9615
2S ** solid 3.16 × 10−5 2.69 × 10−5 24.3 ± 1.8 0.9661
2E ** electrolyte 3.16 × 10−5 2.51 × 10−5 21.2 ± 1.7 0.9683
3S *** solid 3.16 × 10−5 2.63 × 10−5 10.4 ± 0.9 0.9668
3E *** electrolyte 6.31 × 10−6 1.02 × 10−6 47.5 ± 0.8 0.9979

* With an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.0 mm, doped with 1.0% Eu);
** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.5 mm, doped with 0.3% Eu);
*** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 5.0 mm, doped with 1.0% Eu);
**** standard deviation (five replicates).

After preliminary measurements (without FexOy NPs), each of the electrodes mentioned above
was tested after the FexOy NP loading on membranes. All three tested electrodes showed a linear
potential change that was lower than the fluoride concentration of 1.00 × 10−5 M, while the potential
changes per concentration decade at the internal solid contact were between 50.3 and 62.4 mV (Figure 1).
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Figure 1. Potentiometric response of internal solid contact LaF3 electrodes with FexOy NPs.

If the internal contact was an electrolyte (Figure 2), the linear response was also in the concentration
range below 1.00 × 10−5 M, while the slope was between 50.8 and 52.7 mV, depending on whether the
electrode was conditioned (24 h in 0.001 M KNO3 solution) or not. The response characteristics of the
electrodes are shown in Table 2.
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Figure 2. Potentiometric response of internal electrolyte contact LaF3 electrodes with FexOy NPs.

Table 2. The response characteristics of electrodes with FexOy NPs.

Electrode Internal Contact Linear Response (mol/L) Limit of Detection (mol/L)
(LOD) Slope (mV/dec) ± SD **** R2

4S * solid 6.31 × 10−6 1.38 × 10−6 50.3 ± 0.8 0.9954
4E * electrolyte 6.31 × 10−6 2.09 × 10−6 52.3 ± 1.1 0.9895
5S ** solid 1.58 × 10−6 5.01 × 10−7 62.4 ± 1.2 0.9887
5E ** electrolyte 1.58 × 10−6 2.88 × 10−7 52.8 ± 0.9 0.9969
6S *** solid 6.31 × 10−6 2.40 × 10−6 59.5 ± 1.3 0.9839
6E *** electrolyte 6.31 × 10−6 1.12 × 10−6 50.8 ± 0.6 0.9970

* With an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.0 mm, doped with 1.0% Eu);
** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.5 mm, doped with 0.3% Eu);
*** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 5.0 mm, doped with 1.0% Eu);
**** standard deviation (nine replicates).

After the measurements described above, the FexOy NPs were washed off the membrane surface
so that the membranes were left in 1 M nitric acid solution for 24 h. The response of the electrodes was
tested, and it was observed that, after washing the FexOy NPs out from the surface, the electrodes
showed an even wider linear range. The potential change per concentration decade was in the range
of 52.9 to 57.3 mV for solid-state contact, while it was in the range of 44.1 to 54.3 mV for electrolyte
contact (Figures S3 and S4, Supplementary Materials; Table 3).

Table 3. The response characteristics of electrodes after washing the FexOy NPs out from surface.

Electrode Internal Contact Linear Response (mol/L) Limit of Detection (mol/L)
(LOD) Slope (mV/dec) ± SD **** R2

7S * Solid 1.58 × 10−6 3.55 × 10−7 57.3 ± 0.4 ***** 0.9932
7E * Electrolyte 3.98 × 10−7 7.41 × 10−8 54.3 ± 0.5 ***** 0.9969
8S ** Solid 1.58 × 10−6 3.31 × 10−7 52.9 ± 0.7 0.9954
8E ** Electrolyte 6.31 × 10−6 2.14 × 10−6 44.1 ± 1.2 0.9867
9S *** Solid 6.31 × 10−6 1.38 × 10−6 54.8 ± 0.6 0.9945
9E *** Electrolyte 1.58 × 10−6 5.24 × 10−7 50.8 ± 1.3 0.9875

* With an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.0 mm, doped with 1.0% Eu);
** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 1.5 mm, doped with 0.3% Eu);
*** with an LaF3 single-crystal membrane (diameter of 8.0 mm and thickness of 5.0 mm, doped with 1.0% Eu);
**** standard deviation (nine replicates); ***** standard deviation (23 replicates).
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Furthemore, the response of the electrode 7E to fluoride ions was compared with the response of
the commercial electrode (Figure S5, Supplementary Materials).

2.1.1. pH Effect on the Electrode Response

Hydroxide ions are known to have great influence on fluoride determination by electrode with an
LaF3 membrane. The penetration of OH− ions into the LaF3 crystal lattice plays an important role.
The consequence is the release of F− ions from the lattice, their diffusion into solution, and a change
in potential.

F−
(lattice) + OH−

(solution) � F−
(solution) + OH−

(lattice) (2)

From the above, it was concluded that electrodes 7S and 7E showed the best properties overall;
thus, it was further tested. The effect of the pH was determined by studying the fabricated electrode in
solutions with an F− concentration of 1.00 × 10−3 M. The pH value was varied from 3 to 9 with the
addition of NaOH. The potential change was a function of the pH value. The pH influence of electrode
7S is shown in Figure 3. As shown, the reaction of the sensors in the range 4–7 was independent of
the pH influence. No visible interference from H3O+ or OH− ions was observed in this pH range.
The pronounced influence of pH on the FISE is usually in the pH range below 4 and above 9 [16].
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Figure 3. pH effect on the electrode 7S response in F− solution (concentration: 1.00 × 10−3 M),
after washing FexOy NPs from surface.

2.1.2. Response Time and Electrode Characteristics

The response time of an ISE is also an important factor for any analytical application.
Experimental conditions such as stirring, ionic strength, and composition of the test solution, as well as
the concentration and composition of the solution to which the electrode was exposed, can have
an influence on the experimental response time of a sensor. Before the experimental measurements
are carried out, any previous use or preconditioning of the electrode and the test temperature can
also have an influence on the response time [17]. The potential–time response curve of the electrode
obtained from the internal electrolyte contact for different concentration ranges of F− ions is shown in
Figure 4. The stationary potential was reached within 1 min. A similar response time, but in a smaller
concentration range, was observed with fluoride ion sensors based on a crystal cadmium (II) Schiff
base complex [18].
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Figure 4. Dynamic response and reproducibility of electrode 7E for different concentrations of F− at
pH = 5 after washing FexOy NPs out from surface: (a) 1 × 10−1 M; (b) 1 × 10−2 M; (c) 1 × 10−3 M;
(d) 1 × 10−4 M; (e) 1 × 10−5 M.

After the removal of FexOy NPs from the membrane surface, the response properties were
improved for all electrodes tested. It is possible that iron from the oxide reacted with the F− ions
(reaction 2) from the solution to form an FeF2

+ or FeF2+ complex [19], which influenced the electrode
reaction or contributed to the improved conductivity, since Fe was embedded in the membrane itself,
as shown by the elemental analysis of the membrane (Table 4) and the changes observed on the
membrane of the electrode surface.

Fe3+ + nF− � FeF(3−n)+
n (3)

Furthermore, it is obvious that the thickness of the membrane and the ratio of Eu influence
the reaction properties. Specifically, the 1 mm thick membrane with 1% Eu showed the best
response characteristics.

Table 4. Elemental analysis before FexOy NP loading.

Element Weight (%) Atomic (%)

C 0.63 6.09
F 11.20 68.68

La 31.10 25.23
Totals 41.93 100.00

Compared to some of the FISEs described above [10], the electrode in this study showed a lower
detection limit and easier replacement of the internal contacts. Moreover, the electrode described in
this paper was much easier to prepare than the electrodes in the article mentioned.
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The described electrode showed a better response than the electrode based on the crystal cadmium
(II) Schiff base complex [18] and a similar response to a gold-based electrode coated with β-Fe2O3 [15],
but the regression coefficient was better in this work.

2.1.3. Lifetime of Electrode

Figure 5 shows the fluoride sensitivity expressed as mV per decade change in concentration
(mV/dec) over a 120 week period. Electrodes 7S and 7E exhibited fluoride sensitivity with an average
value of 54.3 ± 0.5 mV/dec and 57.3 ± 0.4 mV/dec, respectively. There were no noted losses in sensitivity.
Generally, after preparing the electrodes and their use, they were stored in air. It was found that a
prolonged dry storage of electrodes had no measurable effect on their responses.
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In contrast to the graphene-based FISE [20], where the lifetime of the electrode was limited, the lifetime
of the electrode described in this paper (Figure 5) was almost unlimited (up to mechanical cracking).

2.1.4. Iron Ion Response Characteristics and Influence of the Interfering Ions

As it is known that fluorine forms stable complexes in water with a series of metal ions
(most commonly with Al3+, Be2+, and Fe3+ ions), an electrode prepared in this way can be used to
determine them [21].

Electrode 7S was applied to the determination of iron ions, and the results are shown in Figure 6.
A wider linear range with respect to the commercial electrode (and, consequently, a lower limit of
detection) was observed.

The selectivity of the ISE is one of its most important characteristics. It indicates the specificity
of the sensor toward the target ion in the presence of interfering components. Slightly parallel shifts
of calibration curves (Figure 7) were obtained in the presence of the tested cation (0.01 M) solution.
This shift, which is more discernible at a low concentration of Fe3+, can be attributed to the change in
ionic strength in the solution because of a high concentration of interfering cations. Some deviations
were also observed in the presence of tested anions. These deviations were manifested as a decrease in
the slope and could be explained by oxidoreduction reactions in the case of I−. The impossibility of
iron determination in the presence of SCN− was probably due to strong complexation of Fe3+ with
SCN− (KFe(SCN)3 = 109).
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2.2. Membrane Characterization Using SEM

The LaF3 single-crystal membrane with diameter of 8.0 mm and thickness of 1.0 mm, doped with
1.0% Eu was morphologically analyzed (before the FexOy NP loading onto the membrane surface
and after membrane acid treatment) using SEM at 3 kV. The membrane surface was smooth before
the FexOy NP loading; however, tiny grooves are visible in Figure 8a, resulting from the polishing
procedure. On the other hand, significant changes were observed on the FexOy NP surface-modified
membrane after 24 h treatment in 1 M nitric acid solution (Figure 8b). The surface morphology in
Figure 8a,b is noticeably different. The first surface is smooth with no porosity, while the second is
rough with high surface area and visible open macropores. The reason for such a difference in surface
morphology was the leaching out of some FexOy NPs from the electrode composite (LaF3/FexOy NPs).
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2.3. Membrane Elemental Analysis Using EDS

To gain insight into the chemical composition of the membrane before and after loading the FexOy

NPs, an EDS analysis (within SEM) was performed. It is clear from Table 4 and Figure 9 that the
membrane is chemically composed of fluorine and lanthanum in an atomic ratio of 1 to 3 and a small
amount of adventitious carbon. However, this is to be expected and is consistent with the primary
LaF3 composition of the membrane.
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After FexOy NP membrane loading, the EDS composition showed relatively thick FexOy NP
layers. The results from EDS (Table 5 and Figure 10) are consistent with the expected chemical
composition of FexOy. Since the substrate LaF3 was not detected by EDS, the FexOy NPs deposits
on the membrane were several µm thick. In addition, some impurities were also detected in low
concentrations, which were residues from FexOy NPs synthesis [22,23] that could not be removed.
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Table 5. Elemental analysis after FexOy NP loading.

Element Weight (%) Atomic (%)

O 10.84 61.41
Na 0.25 0.98
Si 3.97 12.80
S 0.16 0.47
Cl 0.88 2.24
K 0.19 0.44
Fe 13.17 21.37
La 0.42 0.28

Total 29.87 99.99
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3. Materials and Methods

3.1. Apparatus

The Millivoltmeter Mettler-Toledo GmbH Seven Easy was used to measure the potential of the
FISE against an Ag/AgCl single-junction reference electrode in a reaction vessel at 25 ◦C. A lightly
constructed multipurpose electrode body [8,9] was used for the assembly of the LaF3 membrane.
The following LaF3 membranes were used for the measurement: with diameter of 8.0 mm and thickness
of 1.0 mm, doped with 1.0% Eu (membrane 1); with diameter of 8.0 mm and thickness of 1.5 mm, doped
with 0.3% Eu (membrane 2); with diameter of 8.0 mm and thickness of 5.0 mm, doped with 1.0% Eu
(membrane 3). All three were manufactured by Crystran Ltd, United Kingdom. The internal contact
between the Ag/AgCl reference electrode and LaF3 membrane was electrolytic or solid. An Orion
fluoride ion-selective electrode Model 94-09 SC was used as a commercial electrode.

Characterization of the membrane surface and microstructure was performed with the Zeiss ULTRA
plus (SEM) scanning field-emission electron microscope (Jena, Germany). Furthermore, an elemental
analysis of the membranes inside SEM was performed with an EDS Oxford X-Max SDD detector
(Oxford, United Kingdom) with a working area of 50 mm2, which was processed with INCA 4.14
5 software (Oxford Instruments, Oxford, United Kingdom). The SEM images were taken at 3 kV,
while the EDS analysis was performed at 20 kV.

3.2. Reagents

All chemicals used were of analytical grade and were used as received without further purification.
Sodium fluoride, hydrochloride acid, and silver nitrate were supplied by Sigma-Aldrich, Schnelldorf,
Germany. Anhydrous sodium acetate was purchased from Gram-mol, Zagreb, Croatia. Glacial acetic
acid, potassium nitrate, potassium chloride, potassium rhodanide, potassium sulfate, potassium iodide,
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calcium nitrate tetrahydrate, lead(II) nitrate, copper(II) nitrate trihydrate, and iron(III) nitrate
nonahydrate were purchased from Kemika, Zagreb, Croatia. The solutions were prepared with
double-distilled water.

Standard sodium fluoride solution (0.1000 M) was prepared in a polypropylene calibrated flask
from dried (110 ◦C) sodium fluoride. The diluted standard solution fluoride was prepared by mixing
the sodium standard solution fluoride with 0.10 M KNO3 and acetate buffer using propylene flasks
and pipettes. The stock Fe3 solution (0.01 M) was prepared by weighing and dissolving an appropriate
amount of Fe(NO3)3 in 0.10 M KNO3 and acetate buffer. Fe3+ was titrated using a standardized 0.01 M
ethylenediaminetetraacetic acid (EDTA) solution. Other solutions of iron were prepared from the stock
solution by dilution with 0.1 M KNO3 and acetate buffer. Solutions of interfering ions were prepared
in the same way as the Fe3+ solution. Acetate buffer, pH 5, was prepared by diluting glacial acetic acid
(6.5 mL) and sodium acetate (16.3 g) in distilled water using a 1000 mL volumetric flask.

The electrode inner electrolyte solution was prepared by mixing 10 mL of saturated KCl, 1 mL of
concentrated HCl, and one or two drops of 0.10 M AgNO3. The preparation and characterization of
FexOy NPs have already been described in the literature [22,23].

3.3. Potentiometric Measurements

To measure the potential reaction, 50.0 mL of 0.1000 M NaF, prepared in 0.10 M KNO3 in acetate
buffer solution, was added to the reaction vessel at 25 ◦C. The potential response of the FISE was
measured by serial dilution (to 10−7 M) of the cell solution. During the measurements, the solution
was stirred with a polytetrafluoroethylene (PTFE)-coated magnetic rod. The potential–time behavior
of the electrode was measured using a regular analysis set-up and recorded on a computer.

3.4. Elemental Analysis

Membranes were adhered to the aluminum SEM holder with conductive carbon tape and
introduced to the SEM. The membranes were then analyzed using an Oxford X-Max SDD detector
(calibrated by Co-Standard, Haarlem, The Netherlands) inside the SEM at 20 kV using point analysis.

4. Conclusions

For the first time, an FISE with an LaF3 membrane coated with FexOy NPs was prepared.
The membranes of LaF3 single crystals were of different thicknesses and had different Eu ratios.
The Eu ratio and the membrane thickness influenced the response of the electrodes. Without FexOy NP
loading, the electrodes showed non-Nernstian behavior. After treatment of the electrode with FexOy

NPs, the potential change per concentration decade increased and ranged between 44.1 and 62.4 mV.
A detection fluoride limit of 7.41 × 10−8 M was calculated. Loss in electrode sensitivity on fluoride
determination was not observed over 2 years.

Iron ions are able to form complexes with fluoride ions; thus, the prepared electrode is selective
for iron ions. A detection limit for iron below a concentration of 10−5 M was observed. No significant
influence of cations as an interfering species was observed, while the pronounced interfering species
constituted SCN− anions. An elemental analysis after FexOy NP loading showed that they were
mainly present in a thin film on the membrane surface. The advantage of this electrode is preparation
simplicity, as well as a solid-state contact, which allows the electrode to be used in different positions
and at higher temperatures.

Supplementary Materials: Figure S1. Potentiometric response of internal solid contact LaF3 electrodes before
FexOy NP loading; Figure S2. Potentiometric response of internal electrolyte contact LaF3 electrodes before
FexOy NP loading, Figure S3. Potentiometric response of internal solid contact LaF3 electrodes after washing
FexOy NPs out; Figure S4. Potentiometric response of internal electrolyte contact LaF3 electrodes after washing
FexOy NPs out; Figure S5. Calibration curves for fluoride determination with 7E and commercial FISE.
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8. Radić, N.; Bralić, M. Fluoride-selective electrode with internal redox reference electrode. Microchim. Acta

1995, 118, 221–227. [CrossRef]
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