Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water
Abstract
:1. Introduction
2. Computational Methods
2.1. Quantum Chemical Calculations
2.2. Molecular Dynamics Simulations
2.3. Simulated XAS Spectra
3. Results and Discussion
3.1. Simulated EXAFS Spectrum Based on A NEVPT2 Force Field for NpO2+ in Aqueous Solution
3.2. Simulated EXAFS Spectrum Based on NEVPT2 Optimized Geometries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choppin, G.R.; Jensen, M.P. Actinides in Solution: Complexation and Kinetics. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, L.R., Edelstein, N., Fuger, J., Katz, J.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 4, Chapter 23; pp. 2524–2621. [Google Scholar]
- Cotton, S. Lanthanide & Actinide Chemistry; Wiley: London, UK, 2006. [Google Scholar]
- Bardin, N.; Rubini, P.; Madic, C. Hydration of Actinyl(VI), aq (M = U, Np, Pu). An NMR Study. Radiochim. Acta 1998, 83, 189–194. [Google Scholar] [CrossRef]
- Aaberg, M.; Ferri, D.; Glaser, J.; Grenthe, I. Structure of the hydrated dioxouranium (VI) ion in aqueous solution. An x-ray diffraction and proton NMR study. Inorg. Chem. 1983, 22, 3986–3989. [Google Scholar] [CrossRef]
- Allen, P.G.; Bucher, J.J.; Shuh, D.K.; Edelstein, N.M.; Reich, T. Investigation of aquo and chloro complexes of , , Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 1997, 36, 4676–4683. [Google Scholar] [CrossRef] [PubMed]
- Conradson, S.D. Application of X-ray absorption fine structure spectroscopy to materials and environmental science. Appl. Spectrosc. 1998, 52, 252A–279A. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, U.; Moll, H.; Grenthe, I.; Schimmelpfennig, B.; Maron, L.; Vallet, V.; Gropen, O. Structure of Uranium(VI) in Strong Alkaline Solutions. A Combined Theoretical and Experimental Investigation. J. Phys. Chem. A 1999, 103, 8257–8264. [Google Scholar] [CrossRef]
- Neuefeind, J.; Soderholm, L.; Skanthakumar, S. Experimental Coordination Environment of Uranyl(VI) in Aqueous Solution. J. Phys. Chem. A 2004, 108, 2733–2739. [Google Scholar] [CrossRef]
- Soderholm, L.; Skanthakumar, S.; Neuefeind, J. Determination of actinide speciation in solution using high-energy X-ray scattering. Anal. Bioanal. Chem. 2005, 383, 48–55. [Google Scholar] [CrossRef]
- McKibben, J.M. Chemistry of the Purex Process. Radiochim. Acta 1984, 36, 3–15. [Google Scholar] [CrossRef]
- Galbis, E.; Hernández-Cobos, J.; den Auwer, C.; Le Naour, C.; Guillaumont, D.; Simoni, E.; Pappalardo, R.R.; Sánchez Marcos, E. Solving the hydration structure of the heaviest actinide aqua ion known: The californium (III) case. Angew. Chem. Int. Ed. Engl. 2010, 122, 3899–3903. [Google Scholar] [CrossRef]
- Altmaier, M.; Gaona, X.; Fanghänel, T. Recent Advances in Aqueous Actinide Chemistry and Thermodynamics. Chem. Rev. 2013, 113, 901–943. [Google Scholar] [CrossRef]
- Denecke, M.A. Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev. 2006, 250, 730–754. [Google Scholar] [CrossRef]
- Atta-Fyn, R.; Bylaska, E.J.; Schenter, G.K.; de Jong, W.A. Hydration Shell Structure and Dynamics of Curium(III) in Aqueous Solution: First Principles and Empirical Studies. J. Phys. Chem. A 2011, 115, 4665–4677. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, P.; Martelli, F.; Spezia, R.; Filipponi, A.; Denecke, M.A. Hydration properties and ionic radii of actinide (III) ions in aqueous solution. Inorg. Chem. 2013, 52, 10318–10324. [Google Scholar]
- Pérez-Conesa, S.; Torrico, F.; Martínez, J.M.; Pappalardo, R.R.; Sánchez Marcos, E. A hydrated ion model of [UO2]2+ in water: Structure, dynamics, and spectroscopy from classical molecular dynamics. J. Chem. Phys. 2016, 145, 224502. [Google Scholar] [CrossRef]
- Spezia, R.; Migliorati, V.; D’Angelo, P. On the Development of Polarizable and Lennard-Jones Force Fields to Study Hydration Structure and Dynamics of Actinide(III) Ions Based on Effective Ionic Radii. J. Chem. Phys. 2017, 147, 161707. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.J.; Pfund, D.M.; Fulton, J.L. Direct modeling of EXAFS spectra from molecular dynamics simulations. J. Phys. Chem. 1996, 100, 13393–13398. [Google Scholar] [CrossRef]
- Campbell, L.; Rehr, J.; Schenter, G.; McCarthy, M.; Dixon, D. XAFS Debye-Waller factors in aqueous Cr3+ from molecular dynamics. J. Synchrotron. Rad. 1999, 6, 310–312. [Google Scholar] [CrossRef] [Green Version]
- Chilemi, G.; D’Angelo, P.; Pavel, N.V.; Sanna, N.; Barone, V. Development and validation of an intergrated computational approach for the study of ionic species in solution by means of effective two-body potentials. The case case of Zn2+, Ni2+ and Co2+ aqueous solutions. J. Am. Chem. Soc. 2002, 124, 1968–1976. [Google Scholar] [CrossRef]
- Merkling, P.J.; Adela Muñoz-Páez, A.; Sánchez Marcos, E. Exploring the Capabilities of X-ray Absorption Spectroscopy for Determining the Structure of Electrolyte Solutions: Computed Spectra for Cr3+ or Rh3+ in Water Based on Molecular Dynamics. J. Am. Chem. Soc. 2002, 124, 10911–10920. [Google Scholar] [CrossRef]
- Martínez, J.M.; Pappalardo, R.R.; Sánchez Marcos, E. First-Principles Ion-Water Interaction Potentials for Highly Charged Monatomic Cations. Computer Simulations of Al3+, Mg2+, and Be2+ in Water. J. Am. Chem. Soc. 1999, 121, 3175–3184. [Google Scholar] [CrossRef]
- Pérez-Conesa, S.; Torrico, F.; Martínez, J.M.; Pappalardo, R.R.; Sánchez Marcos, E. A general study of actinyl hydration by molecular dynamics simulations using ab initio force fields. J. Chem. Phys. 2019, 150, 104504. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Conesa, S.; Martínez, J.M.; Pappalardo, R.R.; Sánchez Marcos, E. Extracting the Americyl Hydration from an Americium Cationic Mixture in Solution: A Combined X-ray Absorption Spectroscopy and Molecular Dynamics Study. Inorg. Chem. 2018, 57, 8089–8097. [Google Scholar] [CrossRef] [PubMed]
- Riddle, C.; Czerwinski, K.; Kim, E.; Paviet, P.; Weck, P.; Poineau, F.; Conradson, S. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling. J. Radioanal. Nucl. 2016, 309, 1087–1095. [Google Scholar] [CrossRef]
- Nichols, P.; Bylaska, E.J.; Schenter, G.K.; de Jong, W. Equatorial and apical solvent shells of the ion. J. Chem. Phys. 2008, 128, 124507. [Google Scholar] [CrossRef]
- Duvail, M.; Dumas, T.; Paquet, A.; Coste, A.; Berthon, L.; Guilbaud, P. structure in solvent extraction phases resolved at molecular and supramolecular scales: A combined molecular dynamics, EXAFS and SWAXS approach. Phys. Chem. Chem. Phys. 2019, 21, 7894–7906. [Google Scholar] [CrossRef]
- Sukhbaatar, T.; Duvail, M.; Dumas, T.; Dourdain, S.; Arrachart, G.; Solari, P.L.; Guilbaud, P.; Pellet-Rostainga, S. Probing the existence of uranyl trisulfate structures in the AMEX solvent extraction process. Chem. Commun. 2019, 55, 7583–7586. [Google Scholar] [CrossRef]
- den Auwer, C.; Drot, R.; Simoni, E.; Conradson, S.D.; Gailhanou, M.; Mustre de Leon, J. Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces. New J. Chem. 2003, 27, 648–655. [Google Scholar] [CrossRef]
- Hennig, C.; Schmeide, K.; Brendler, V.; Moll, H.; Tsushima, S.; Scheinost, A.C. EXAFS investigation of U (VI), U (IV), and Th (IV) sulfato complexes in aqueous solution. Inorg. Chem. 2007, 46, 5882–5892. [Google Scholar] [CrossRef]
- Reich, T.; Bernhard, G.; Geipel, G.; Funke, H.; Hennig, C.; Roßberg, A.; Matz, W.; Schell, N.; Nitsche, H. The Rossendorf Beam Line ROBL—A dedicated experimental station for XAFS measurements of actinides and other radionuclides. Radiochim. Acta 2000, 88, 633–637. [Google Scholar] [CrossRef]
- Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A.C.; Bernhard, G.; Yaita, T. Electrochemical and complexation behavior of neptunium in aqueous perchlorate and nitrate solutions. Inorg. Chem. 2008, 47, 8294–8305. [Google Scholar] [CrossRef]
- Reich, T.; Geipel, G.; Funke, H.; Hennig, C.; Roßberg, A.; Bernhard, G. Plutonium. XAFS Measurements of Plutonium Hydrates; ESRF Highlights (Biannual Report 1999/2000); Project-Group ESRF-Beamline: Dresden, Germany, 2001; pp. 27–32. [Google Scholar]
- Rai, N.; Tiwari, S.P.; Maginn, E.J. Force field development for actinyl ions via quantum mechanical calculations: An approach to account for many body solvation effects. J. Phys. Chem. B 2012, 116, 10885–10897. [Google Scholar] [CrossRef] [PubMed]
- Pomogaev, V.; Tiwari, S.P.; Rai, N.; Goff, G.S.; Runde, W.; Schneider, W.F.; Maginn, E.J. Development and application of effective pairwise potentials for, , , and (n= 1, 2) ions with water. Phys. Chem. Chem. Phys. 2013, 15, 15954–15963. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Malrieu, J.P. N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 350, 297–305. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Malrieu, J.P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138–9153. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef] [Green Version]
- Küchle, W.; Dolg, M.; Stoll, H.; Preuss, J. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 1994, 100, 7535–7542. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09 Revision D.01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Siboulet, B.; Marsden, C.J.; Vitorge, P. A theoretical study of uranyl solvation: Explicit modelling of the second hydration sphere by quantum mechanical methods. Chem. Phys. 2006, 326, 289–296. [Google Scholar] [CrossRef]
- Vallet, V.; Macak, P.; Wahlgren, U.; Grenthe, I. Actinide chemistry in solution, quantum chemical methods and models. Theor. Chem. Acc. 2006, 115, 145–160. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Cao, Z. Theoretical Studies on Structures of Neptunyl Carbonates: NpO2(CO3)m(H2 (m= 1–3, n= 0–3) in Aqueous Solution. Inorg. Chem. 2007, 46, 10510–10519. [Google Scholar] [CrossRef] [PubMed]
- Clavaguéra-Sarrio, C.; Vallet, V.; Maynau, D.; Marsden, C.J. Can density functional methods be used for open-shell actinide molecules? Comparison with multiconfigurational spin-orbit studies. J. Chem. Phys. 2004, 121, 5312–5321. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Balasubramanian, K.; Nitsche, H. A comparative theoretical study of bonding in , , UO2, , OUCO, O2U(CO)2 and UO2CO3. Chem. Phys. Lett. 2002, 361, 143–151. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, X.; Truhlar, D. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295–305. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M.; Stoll, H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 2003, 118, 487–496. [Google Scholar] [CrossRef]
- Todorov, I.T.; Smith, W.; Trachenko, K.; Dove, M.T. DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mat. Chem. 2006, 16, 1911–1918. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Páez, A.; Sánchez Marcos, E. Molecular Structure of Solvates and Coordination Complexes in Solution as Determined with {EXAFS} and {XANES}. In Comprehensive Inorganic Chemistry II: From Elements to Applications, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Leiden, The Netherlands, 2013; Volume 9, pp. 133–159. [Google Scholar]
- Rehr, J.J.; Kas, J.J.; Vila, F.D.; Prange, M.P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513. [Google Scholar] [CrossRef]
- Hudson, E.; Rehr, J.; Bucher, J.J. A hydrated ion model of [UO2]2+ in water: Structure, dynamics, and spectroscopy from classical molecular dynamics. Phys. Rev. B 1995, 52, 13815–13826. [Google Scholar] [CrossRef] [PubMed]
- Infante, I.; Severo Pereira Gomes, A.; Vissche, L. On the performance of the intermediate Hamiltonian Fock-space coupled-cluster method on linear triatomic molecules: The electronic spectra of , , . J. Chem. Phys. 2006, 125, 074301. [Google Scholar] [CrossRef] [PubMed]
- Infante, I.; Kovacs, A.; La Macchia, G.; Shahi, A.R.M.; Gibson, J.K.; Gagliardi, L. Ionization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment. J. Phys. Chem. A 2010, 114, 6007–6015. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Glendening, E.D.; Peterson, K.A. Actinyl cation–cation interactions in the gas phase: An accurate thermochemical study. Phys. Chem. Chem. Phys. 2019, 21, 7953–7964. [Google Scholar] [CrossRef]
System | |||||
---|---|---|---|---|---|
[UO2]2+(aq) | |||||
Quantum Mechanics | |||||
B3LYP-opt | 1.74 | 2.49 | |||
MP2-opt | 1.77 | 2.50 | |||
Force Field | |||||
B3LYPPOT-opt | 1.76 | 2.49 | |||
B3LYP-MD | 1.76 | 0.0004 | 2.48 | 0.007 | |
Experimental | |||||
Hennig 2007 [30] | 1.76 ± 0.02 | 0.002 | 2.41 ± 0.02 | 0.007 | |
Allen 1997 [5] | 1.76 ± 0.01 | 0.002 | 2.41 ± 0.01 | 0.007 | |
[NpO2]2+(aq) | |||||
Quantum Mechanics | |||||
B3LYP-opt | 1.73 | 2.48 | |||
NEVPT2-opt | 1.77 | 2.42 | |||
Force Field | |||||
B3LYPPOT-opt | 1.74 | 2.47 | |||
B3LYP-MD | 1.74 | 0.0004 | 2.46 | 0.007 | |
Experimental | |||||
Ikeda 2008 [32] | 1.76 ± 0.01 | 0.002 | 2.42 ± 0.01 | 0.006 | |
Reich 2000 [31] | 1.754 ± 0.003 | 0.002 | 2.414 ± 0.006 | 0.006 | |
[NpO2]+(aq) | |||||
Quantum Mechanics | |||||
B3LYP-opt | 1.78 | 2.59 | |||
NEVPT2-opt | 1.83 | 2.52 | |||
Force Field | |||||
B3LYPPOT-opt | 1.78 | 2.59 | |||
NEVPOT-opt | 1.83 | 2.52 | |||
B3LYP-MD | 1.79 | 0.0007 | 2.61 | 0.012 | |
NEVPT2-MD | 1.84 | 0.0007 | 2.54 | 0.011 | |
Experimental | |||||
Ikeda 2008 [32] | 1.84 ± 0.01 | 0.002 | 2.49 ± 0.01 | 0.007 | |
Reich 2000 [31] | 1.822 ± 0.003 | 0.002 | 2.488 ± 0.009 | 0.006 | |
[PuO2]2+(aq) | |||||
Quantum Mechanics | |||||
B3LYP-opt | 1.71 | 2.46 | |||
NEVPT2-opt | 1.76 | 2.43 | |||
Force Field | |||||
B3LYPPOT-opt | 1.71 | 2.47 | |||
B3LYP-MD | 1.71 | 0.0006 | 2.45 | 0.009 | |
Experimental | |||||
Reich 2001 [33] | 1.74 ± 0.01 | 0.001 | 2.42 ± 0.01 | 0.005 |
(AnO) × 10 (MD Simulation) | ||||||
---|---|---|---|---|---|---|
Path Index | Path Type | NpO2+ (B3LYP) | NpO2+ (NEVPT2) | NpO22+ (B3LYP) | UO22+ (B3LYP) | PuO22+ (B3LYP) |
1 | O-An | 0.70 | 0.73 | 0.39 | 0.59 | 0.41 |
2 | O-An | 10.8 | 10.5 | 6.29 | 9.05 | 7.15 |
3 | O-O-An | 1.31 | 1.57 | 0.74 | 1.36 | 0.89 |
4 | O-An-O-An | 2.79 | 2.91 | 1.54 | 2.35 | 1.64 |
5 | O-An-O-An | 1.33 | 1.54 | 0.74 | 1.35 | 0.86 |
9 | O-An-O-An | 15.8 | 14.9 | 9.53 | 12.1 | 9.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Conesa, S.; Martínez, J.M.; Pappalardo, R.R.; Marcos, E.S. Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water. Molecules 2020, 25, 5250. https://doi.org/10.3390/molecules25225250
Pérez-Conesa S, Martínez JM, Pappalardo RR, Marcos ES. Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water. Molecules. 2020; 25(22):5250. https://doi.org/10.3390/molecules25225250
Chicago/Turabian StylePérez-Conesa, Sergio, José M. Martínez, Rafael R. Pappalardo, and Enrique Sánchez Marcos. 2020. "Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water" Molecules 25, no. 22: 5250. https://doi.org/10.3390/molecules25225250
APA StylePérez-Conesa, S., Martínez, J. M., Pappalardo, R. R., & Marcos, E. S. (2020). Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water. Molecules, 25(22), 5250. https://doi.org/10.3390/molecules25225250