Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo
Abstract
:1. Introduction
2. Results
2.1. The Antifungal Activity of α-MG against Twenty Phytopathogenic Fungi
2.2. The Effects on Mycelial Growth and Spore Germination of C. gloeosporioides
2.3. Effects of α-MG on Control of C. gloeosporioides in Mango Leaves
2.4. Effect of α-MG on Hyphae Morphology of C. gloeosporioides
2.5. The Effects of α-MG on the Ultrastructure Transformation of C. gloeosporioides
2.6. The Combined Effects of α-MG and Adenosine Triphosphate (ATP) on C. gloeosporioides
3. Discussion
4. Materials and Methods
4.1. Preparation of α-Mangostin
4.2. Fungicides and Pathogenic Fungi
4.3. Antifungal Activity Assay
4.3.1. In Vitro Effects on Mycelial Growth
4.3.2. Spore Germination Assay
4.4. In Vivo Trials on Mango Leaves
4.5. Light Microscope Observation
4.6. Transmission Electron Microscopy (TEM) Observation
4.7. The Effects of ATP on α-MG Inhibiting Spore Germination
4.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siddiqui, Y.; Ali, A. Chapter 11—Colletotrichum gloeosporioides (anthracnose). In Postharvest Decay; Bautista-Baños, S.E., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 337–371. [Google Scholar]
- Piccirillo, G.; Carrieri, R.; Polizzi, G.; Azzaro, A.; Lahoz, E.; Fernández-Ortuño, D.; Vitale, A. In vitro and in vivo activity of QoI fungicides against Colletotrichum gloeosporioides causing fruit anthracnose in Citrus sinensis. Sci. Hortic. 2018, 236, 90–95. [Google Scholar] [CrossRef]
- Kamle, M.; Kumar, P. Colletotrichum gloeosporioides: Pathogen of Anthracnose Disease in Mango (Mangiferaindica L.). In Current Trends in Plant Disease Diagnostics and Management; Springer International Publishing: Cham, Switzerland, 2016; pp. 207–219. [Google Scholar]
- Chiangsin, R.; Wanichkul, K.; Guest, D.I.; Sangchote, S. Reduction of anthracnose on ripened mango fruits by chemicals, fruit bagging, and postharvest treatments. Australas. Plant. Path. 2016, 45, 629–635. [Google Scholar] [CrossRef]
- Dessalegn, Y.; Ayalew, A.; Woldetsadik, K. Integrating plant defense inducing chemical, inorganic salt and hot water treatments for the management of postharvest mango anthracnose. Postharvest Biol. Technol. 2013, 85, 83–88. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Yang, D.P.; Yang, B.; Gao, Z.Y.; Li, M.; Jiang, Y.M.; Hu, M.J. β-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Sci. Hortic-Amst. 2013, 160, 78–84. [Google Scholar] [CrossRef]
- Hüter, O.F. Use of natural products in the crop protection industry. Phytochem. Rev. 2011, 109, 185–194. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent trends in studies on botanical fungicides in agriculture. Plant. Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Phys. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Yoon, M.; Kim, Y.S.; Ryu, S.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Cha, B.J.; Han, S.S.; Kim, J.C. In vitro and in vivo antifungal activities of decursin and decursinol angelate isolated from Angelica gigas against Magnaporthe oryzae, the causal agent of rice blast. Pestic. Biochem. Phys. 2011, 101, 118–124. [Google Scholar] [CrossRef]
- Wang, M.H.; Zhang, K.J.; Gu, Q.L.; Bi, X.L.; Wang, J.X. Pharmacology of mangostins and their derivatives: A comprehensive review. Chin. J. Nat. Med. 2017, 15, 81–93. [Google Scholar] [CrossRef]
- Jindarat, S. Xanthones from mangosteen (Garcinia mangostana): Multi-targeting pharmacological properties. J. Med. Assoc. Thail. 2014, 97, S196–S201. [Google Scholar]
- Schmid, W. Ueber das mangostin. Eur. J. Org. Chem. 1855, 93, 83–88. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, Z.; Lan, W.J.; Li, H.J. Advances in studies on chemical constituents of Garcinia mangostana and bioactivities of xanthenones. Zhong Cao Yao 2013, 44, 1052–1061. [Google Scholar]
- Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem. 2016, 9, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Beninati, S.; Oliverio, S.; Cordella, M.; Rossi, S.; Senatore, C.; Liguori, I.; Lentini, A.; Piredda, L.; Tabolacci, C. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by alpha-mangostin. Biochem. Biophys. Res. Commun. 2014, 450, 1512–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, J.J.; Qiu, S.X.; Zou, H.X.; Lakshminarayanan, R.; Li, J.G.; Zhou, X.J.; Tang, C.; Saraswathi, P.; Verma, C.; Tan, D.T.H.; et al. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta 2013, 1828, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.T.; Lorch, J.M.; Pridgeon, J.W.; Becnel, J.J.; Clark, G.G.; Lan, Q. The biological activity of alpha-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J. Med. Entomol. 2010, 47, 249–257. [Google Scholar]
- Gopalakrishnan, G.; Banumathi, B.; Suresh, G. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J. Nat. Prod. 1997, 60, 519–524. [Google Scholar] [CrossRef]
- Kaomongkolgit, R.; Jamdee, K.; Chaisomboon, N. Antifungal activity of alpha-mangostin against Candida albicans. J. Oral Sci. 2009, 51, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of alpha-mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.C.; Zhang, J.; Zhou, Y.; Xiao, J.H.; Yan, C.; Feng, G. Pesticide Activity of the Extracts from the Pericarp of Garcinia mangostana Linn. Chin. J. Trop. Agric. 2016, 36, 64–68. [Google Scholar]
- Nguyen, P.T.; Falsetta, M.L.; Hwang, G.; Gonzalez-Begne, M.; Koo, H. Alpha-mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS ONE 2014, 9, e111312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slawecki, R.A.; Ryan, E.P.; Young, D.H. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl. Environ. Microbiol. 2002, 68, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaya, G.; Zheng, D.S.; Köller, W. Differential responses of germinating Venturia inaequalis conidia to kresoxim-methyl. Pest. Manag. Sci. 1998, 54, 230–236. [Google Scholar] [CrossRef]
- Veloukas, T.; Karaoglanidis, G.S. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest. Manag. Sci. 2012, 68, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Karadimos, D.A.; Karaoglanidis, G.S.; Tzavella-Klonari, K. Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercosporabeticola. Crop. Prot. 2005, 24, 23–29. [Google Scholar] [CrossRef]
- Subikova, V.; Subik, J. Energetic aspects of spore germination in filamentous fungi. Folia Microbiol. 1974, 19, 367–372. [Google Scholar] [CrossRef]
- Matsumoto, K.; Akao, Y.; Yi, H.; Ohguchi, K.; Ito, T.; Tanaka, T.; Kobayashi, E.; Iinuma, M.; Nozawa, Y. Preferential target is mitochondria in alpha-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg. Med. Chem. 2004, 12, 5799–5806. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Marquis, R.E. Antimicrobial actions of alpha-mangostin against oral streptococci. Can. J. Microbiol. 2011, 57, 217–225. [Google Scholar] [CrossRef]
- Kuhlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Bertram, R.; Gram, P.M.; Luciani, D.S.; Sherman, A. A simplified model for mitochondrial ATP production. J. Theor. Biol. 2006, 243, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Owen, W.J.; Yao, C.; Myung, K.; Kemmitt, G.; Leader, A.; Meyer, K.G.; Bowling, A.J.; Slanec, T.; Kramer, V.J. Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops. Pest. Manag. Sci. 2017, 73, 2005–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaw, K.Y.; Chong, C.W.; Murugaiyah, V. LC-QTOF-MS analysis of xanthone content in different parts of Garcinia mangostana and its influence on cholinesterase inhibition. J. Enzyme Inhib. Med. Chem. 2020, 35, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Iikubo, K.; Ishikawa, Y.; Ando, N.; Umezawa, K.; Nishiyama, S. The first direct synthesis of α-mangostin, a potent inhibitor of the acidic sphingomyelinase. Tetrahedron Lett. 2002, 43, 291–293. [Google Scholar] [CrossRef]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Zhang, J.; Yan, L.T.; Yuan, E.L.; Ding, H.X.; Ye, H.C.; Zhang, Z.K.; Yan, C.; Liu, Y.Q.; Feng, G. Antifungal activity of compounds extracted from Cortex pseudolaricis against Colletotrichum gloeosporioides. J. Agric. Food Chem. 2014, 62, 4905–4910. [Google Scholar] [CrossRef]
- Liu, F.; Huang, Y.J. Antifungal bioactivity of 6-bromo-4-ethoxyethylthio quinazoline. Pestic. Biochem. Phys. 2011, 101, 248–255. [Google Scholar] [CrossRef]
- Fang, X.L.; Li, Z.Z.; Wang, Y.H.; Zhang, X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J. Appl. Microbiol. 2011, 111, 145–154. [Google Scholar] [CrossRef]
- Jing, C.L.; Gou, J.Y.; Han, X.B.; Wu, Q.; Zhang, C.S. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae. Pestic. Biochem. Phys. 2017, 142, 148–154. [Google Scholar] [CrossRef]
- Duan, Y.B.; Ge, C.Y.; Liu, S.M.; Chen, C.J.; Zhou, M.G. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic. Biochem. Phys. 2013, 106, 61–67. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, M.; Yang, Y.; Li, Y.L. Evaluation of pathogenicity of Botryodiplodia theobromae and resistance to stem-end rots on the main varieties of mango. J. Fruit Sci. 2015, 32, 481–486. [Google Scholar]
- Liu, X.M.; Ouyang, C.B.; Wang, Q.X.; Li, Y.; Yan, D.D.; Yang, D.S.; Fang, W.S.; Cao, A.C.; Guo, M.X. Effects of oil extracts of Eupatorium adenophorum on Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 2017, 140, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.J.; Qin, W.C.; Sun, L.P.; Qi, S.H.; Yang, D.B.; Qin, Z.H.; Yuan, H.Z. Study of inhibitory effects and action mechanism of the novel fungicide pyrimorph against Phytophthora capsici. J. Agric. Food Chem. 2010, 58, 2720–2725. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Fungi a | Inhibitory Activity | Regression Equation b | r | EC50 (μg·mL−1) b | 95% CI (μg·mL−1) b |
---|---|---|---|---|---|
CBD-s | Mycelia growth | y = 1.134x − 2.117 | 0.995 | 73.50 | 58.40–96.83 |
Spore germination | y = 1.160x − 1.110 | 0.997 | 9.06 | 7.14–12.17 | |
CBD-r | Mycelia growth | y = 1.027x − 1.503 | 0.992 | 29.09 | 20.75–37.86 |
Spore germination | y = 0.831x − 0.369 | 0.919 | 2.78 | 1.37–4.20 |
Sample | Concentration/(μg·mL−1) | Protective Effect | Therapeutic Effect | ||
---|---|---|---|---|---|
Disease Index * | Control Efficacy | Disease Index | Control Efficacy | ||
Control | 86.67 ± 4.44 | − | 58.64 ± 1.07 | − | |
α-MG | 100 | 40.74 ± 2.57 | 52.91 ± 3.94 c | 48.77 ± 1.07 | 16.80 ± 3.38 d |
1000 | 25.93 ± 2.57 | 70.14 ± 1.76 b | 42.59 ± 1.85 | 27.39 ± 2.12 c | |
2000 | 20.74 ± 1.28 | 76.97 ± 1.38 a | 33.33 ± 1.85 | 43.15 ± 3.30 b | |
Difenoconazole | 100 | 16.30 ± 1.28 | 79.54 ± 1.52 a | 20.99 ± 2.83 | 64.15 ± 5.49 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Wang, Q.; Zhu, F.; Feng, G.; Yan, C.; Zhang, J. Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo. Molecules 2020, 25, 5335. https://doi.org/10.3390/molecules25225335
Ye H, Wang Q, Zhu F, Feng G, Yan C, Zhang J. Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo. Molecules. 2020; 25(22):5335. https://doi.org/10.3390/molecules25225335
Chicago/Turabian StyleYe, Huochun, Qin Wang, Fadi Zhu, Gang Feng, Chao Yan, and Jing Zhang. 2020. "Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo" Molecules 25, no. 22: 5335. https://doi.org/10.3390/molecules25225335
APA StyleYe, H., Wang, Q., Zhu, F., Feng, G., Yan, C., & Zhang, J. (2020). Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo. Molecules, 25(22), 5335. https://doi.org/10.3390/molecules25225335