Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity
Abstract
:1. Introduction
2. Ethnobotany
3. Phytochemistry
4. Biological Activities
4.1. Antioxidant Activity
4.2. Anti-Inflammatory Activity
4.3. Antibacterial and Antifungal Activity
4.4. Antiviral Activity
4.5. Anticancer Activity
4.6. Protective Activity of the Gastrointestinal Tract
4.7. Lipid Metabolism Regulation
4.8. Radioprotective Activity
4.9. Antipyretic Activity
Author Contributions
Funding
Conflicts of Interest
References
- Adetutu, A.; Morgan, W.A.; Corcoran, O. Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. J. Ethnopharmacol. 2011, 137, 50–56. [Google Scholar] [CrossRef]
- Shenoy, R.R.; Sudheendra, A.T.; Nayak, P.G.; Paul, P.; Kutty, N.G.; Rao, C.M. Normal and delayed wound healing is improved by sesamol, an active constituent of Sesamum indicum (L.) in albino rats. J. Ethnopharmacol. 2011, 133, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Sanwal, R.; Chaudhary, A.K. Wound healing and antimicrobial potential of Carissa spinarum Linn. in albino mice. J. Ethnopharmacol. 2011, 135, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Sarikurkcud, C. Bioactive compounds profile, enzyme inhibitory and antioxidant activities of water extracts from five selected medicinal plants. Ind. Crops Prod. 2020, 151, 112448. [Google Scholar] [CrossRef]
- Builders, P.F. Introductory chapter: Introduction to herbal medicine. In Herbal Medicine; Builders, F., Ed.; IntechOpen: London, UK, 2019; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S.; Ahmadpour, P.; Javadzadeh, Y. Effects of Vitex agnus and Flaxseed on cyclic mastalgia: A randomized controlled trial. Complem. Ther. Med. 2016, 24, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.K. Herbal medicines in India: Retrospect and prospect. Fitoterapia 1994, 65, 483–491. [Google Scholar]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Shen, B. A new golden age of natural products drug discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Kew Royal Botanic Gardens. State of the World’s Plants 2017. Available online: https://stateoftheworldsplants.org/2017/useful-plants.html (accessed on 12 September 2020).
- Saroya, A.S. Herbalism, Phytochemistry and Ethnopharmacology; Science Publishers: Enfield, NH, USA, 2011; pp. 8–12. [Google Scholar]
- De Luca, V.; Salim, V.; Atsumi, M.S.; Yu, F. Mining the biodiversity of plants: A revolution in the making. Plant. Metab. 2012, 336, 1658–1661. [Google Scholar] [CrossRef]
- Suvarna, V.; Gujar, P.; Murahari, M. Complexation of phytochemicals with cyclodextrin derivatives–An insight. Biomed. Pharmacother. 2017, 88, 1122–1144. [Google Scholar] [CrossRef]
- Hussain, T.; Tana, B.; Murtaza, G.; Liu, G.; Rahu, N.; Kalhoro, M.S.; Kalhoro, D.H.; Adebowale, T.O.; Mazhar, M.U.; ur Rehman, Z.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef] [PubMed]
- Sferrazza, G.; Corti, M.; Brusotti, G.; Pierimarchi, P.; Temporini, C.; Serafino, A.; Calleri, E. Nature-derived compounds modulating Wnt/β-catenin pathway: A preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm. Sin. B 2020, 10, 1814–1834. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Goya, L.; Ramos, S. Antidiabetic actions of cocoa flavanols. Mol. Nutr. Food Res. 2016, 69, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid, N.; Moussa, N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef]
- Paulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; Ruphuy, G.; Lopes, J.C.; Dias, M.M.; Barros, L.; Barreiro, F.; Ferreira, I.C.F.R. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chem. 2015, 188, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Silva, I.S.; Nicolau, L.A.D.; Sousa, F.B.M.; de Araújo, S.; Oliveira, A.P.; Araújo, T.S.L.; Souza, L.K.M.; Martins, C.S.; Aquino, P.E.A.; Carvalho, L.L.; et al. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn. in mice. Int. J. Biol. Macromol. 2017, 105, 1105–1116. [Google Scholar] [CrossRef]
- Zhang, X.W.; Choe, Y.H.; Park, Y.J.; Kim, B.S. Effect of Korean arbor vitae (Thuja koraiensis) extract on antimicrobial and antiviral activity. Afr. J. Pharm. Pharmacol. 2014, 8, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Aljos, F. A monograph of Cupressaceae and Sciadopitys. Surrey: Royal Botanic Gardens. “Flora of China” editorial board (1978). Flora of China. Science 2005, 7, 318. [Google Scholar]
- Chung, I.M.; Praven, N.; Ahmad, A. Composition of the essential oil and antioxidant activity of petroleum ether extract of Thuja koraiensis. Chem. Asian J. 2011, 23, 3703–3706. [Google Scholar]
- Hudson, J.; Kuo, M.; Vimalanathan, S. The antimicrobial properties of cedar leaf (Thuja plicata) oil; a safe and efficient decontamination agent for buildings. Int. J. Environ. Res. Public Health 2011, 8, 4477–4487. [Google Scholar] [CrossRef] [PubMed]
- Tsiri, D.; Graikou, K.; Pobłocka-Olech, L.; Krauze-Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules 2009, 14, 4707–4715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guleria, S.; Kumar, A.; Tiku, A.K. Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the North-Western Himalaya. Z. Naturforsch. 2008, 63, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Demirci, B.; Demirci, F.; Kocak, S.; Akinci, C.; Malyer, H.; Guleryuz, G. Composition and antimicrobial activity of the essential oil of Achillea multifida. Planta Med. 2002, 68, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Sivropoulou, A.; Nikolaou, C.; Papanikolaou, E.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial, cytotoxic, and antiviral activities of Salvia fructicosa essential oil. J. Agric. Food Chem. 1997, 45, 3197–3201. [Google Scholar] [CrossRef]
- Tanaka, R.; Ohtsu, H.; Iwamoto, M.; Minami, T.; Tokuda, H.; Nishino, H.; Matsunaga, S.; Yoshitake, A. Cancer chemopreventive agents, labdane diterpenoids from the stem bark of Thuja standishii (Gord.) Carr. Cancer Lett. 2000, 161, 165–170. [Google Scholar] [CrossRef]
- Iwamoto, M.; Minami, T.; Tokuda, H.; Ohtsu, H.; Tanaka, R. Potential antitumor promoting diterpenoids from the stem bark of Thuja standishii. Planta Med. 2003, 69, 69–72. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ohtsu, H.; Tokuda, H.; Nishino, H.; Matsunaga, S.; Tanaka, R. Anti-tumor promoting diterpenes from the stem bark of Thuja standishii (Cupressaceae). Bioorg. Med. Chem. 2001, 9, 1911–1921. [Google Scholar] [CrossRef]
- Bellili, S.; Aouadhi, C.; Dhifi, W.; Ghazghazi, H.; Jlassi, C.; Sadaka, C.; El Beyrouthy, M.; Maaroufi, A.; Cherif, A.; Mnif, W. The influence of organs on biochemical properties of tunisian Thuja occidentalis essential oils. Symmetry 2018, 10, 649. [Google Scholar] [CrossRef] [Green Version]
- Gohla, S.H.; Zeman, R.A.; Bogel, M.; Jurkiewicz, E.; Schrum, S.; Haubeck, H.D.; Schmitz, H.; Hunsmann, G.; Neth, R.D. Modification of the in vitro replication of the Human Immunodeficiency Virus HIV-1 by TPSg, a Polysaccaride Fraction Isolated from the Cupressaceae Thuja occidentalis L. (Arborvitae). Haematol. Blood Transfus. 1992, 35, 140–149. [Google Scholar]
- Asha, R.; Nisha, P.; Suneer, K.; Mythili, A.; Shafeeq Hassan, A.; Panneer Selvam, K.; Manikandan, P.; Shobana, C.S. In vitro activity of various potencies of homeopathic drug Thuja against molds involved in mycotic keratitis. Internat. J. Pharm. Pharm. Sci. 2014, 6, 555–559. [Google Scholar]
- Nazir, M.Z.; Chandel, S.; Sehgal, A. In vitro screening of antioxidant potential of Thuja occidentalis. J. Chem. Pharm. Sci. 2016, 8, 283–286. [Google Scholar]
- Stan, M.S.; Voicu, S.N.; Caruntu, S.; Nica, I.C.; Olah, N.K.; Burtescu, R.; Balta, C.; Rosu, M.; Herman, H.; Hermenean, A.; et al. Antioxidant and anti-inflammatory properties of a Thuja occidentalis mother tincture for the treatment of ulcerative colitis. Antioxidants 2019, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.K.; Barta, A. Antioxidant activities of Thuja occidentalis Linn. Asian J. Pharm. Clin. Res. 2009, 2, 73–76. [Google Scholar]
- Yogesh, K.; Ali, J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol. 2014, 51, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- Caruntu, S.; Olah, N.K.; Balta, C.; Rosu, M.; Mladin, B.; Hermenean, A. Thuja occidentalis mother tincture alleviate the COX-2 expression in intestinal mucosa of the TNBS-induced ulcerative colitis model in mice. Studia Univ. Vasile Goldiş Ser. Ştiinţele Vieţii 2020, 30, 145–148. [Google Scholar]
- Biswas, R.; Mandal, S.K.; Dutta, S.; Bhattacharyya, S.S.; Boujedaini, N.; Khuda-Bukhsh, A.R. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. Evid. Based Complement. Altern. Med. 2011, 2011, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Vargas, Y.; Uribe, D.; Carrasco, C.; Torres, C.; Rocha, R.; Oyarzun, C.; Martin, R.S.; Quezada, C. Pro-apoptotic and anti-angiogenic properties of the α/β-thujone fraction from Thuja occidentalis on glioblastoma cells. J. Neurooncol. 2016, 128, 9–19. [Google Scholar] [CrossRef]
- Sunila, E.S.; Hamsa, T.P.; Kuttan, G. Effect of Thuja occidentalis and its polysaccharide on cell-mediated immune responses and cytokine levels of metastatic tumor-bearing animals. Pharm. Biol. 2011, 49, 1065–1073. [Google Scholar] [CrossRef]
- Sunila, E.S.; Kuttan, G. A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model. Immunopharmacol. Immunotoxicol. 2006, 28, 269–280. [Google Scholar] [CrossRef]
- Das, S.; Rani, R. Antioxidant and gastroprotective properties of the fruits of Thuja occidentalis, Linn. Asian J. Biochem. Pharm. Res. 2013, 3, 80–87. [Google Scholar]
- Dubey, S.K.; Batra, A. Hepatoprotective activity from ethanol fraction of Thuja occidentalis Linn. Asian J. Research Chem. 2008, 1, 32–35. [Google Scholar]
- Dubey, S.K.; Barta, A. Antidiabetic activity of Thuja occidentalis Linn. Res. J. Pharm. Technol. 2008, 1, 362–365. [Google Scholar]
- Dubey, S.K.; Batra, A. Role of phenolics in anti-atherosclerotic property of Thuja occidentalis Linn. Ethnobot. Leafl. 2009, 13, 791–800. Available online: https://opensiuc.lib.siu.edu/ebl/vol2009/iss6/12 (accessed on 15 September 2020).
- Sunila, E.S.; Kuttan, G. Protective effect of Thuja occidentalis against radiation induced toxicity in mice. Integr. Cancer Ther. 2005, 4, 322–328. [Google Scholar] [CrossRef]
- Aziz, A.; Khan, I.A.; Ahmed, M.B.; Munawar, S.H.; Manzoor, Z.; Bashir, S.; Raza, M.A. Evaluation of antipyretic activity of Thuja occidentalis Linn. in PGE1 and TAB-vaccine induced pyrexia models in rabbits. Int. J. Pharm. Sci. 2014, 4, 481–484. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Lavédrine, B. Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int. Biodeterior. Biodegrad. 2005, 55, 141–147. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 2005, 76, 691–696. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Hudson, J. The Activity of Cedar Leaf oil Vapor against Respiratory Viruses: Practical Applications. J. Appl. Pharm. Sci. 2013, 3, 11–15. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts. Biochim. Open 2017, 4, 56–60. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Y.; Sua, C.; Liang, F.; Su, W.; Hui, M.; Shaw, P.; Luo, Y. Chemical composition and antifungal activity of essential oils of Thuja sutchuenensis, a critically endangered species endemic to China. Nat. Prod. Commun. 2010, 10, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhao, L.; Chen, K.; Shang, Y.; Wu, J.; Guo, X.; Chen, Y.; Liu, H.; Tan, H.; Qiu, S.X. Antibacterial sesquiterpenes from the stems and roots of Thuja sutchuenensis. Bioorg. Chem. 2020, 96, 103645. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.D.S.; Figueirêdo, C.B.M.; Silva, C.C.A.R.; Marques, G.S.; Ferreira, P.A.; Soares, M.F.R.; Silva, R.M.F.; Rolim-Neto, P.J. Thuja occidentalis L. (Cupressaceae): Review of botanical, phytochemical, pharmacological and toxicological aspects. Int. J. Pharm. Sci. Res. 2014, 5, 1163–1177. [Google Scholar] [CrossRef]
- Naser, B.; Bodinet, C.; Tegtmeier, M.; Lindequist, U. Thuja occidentalis (Arborvitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Alternat. Med. 2005, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Song, L.L.; Park, E.J.; Luyengi, L.; Lee, K.J.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 2000, 63, 1235–1238. [Google Scholar] [CrossRef]
- Akkol, E.K.; Ilhan, M.; Demirel, M.A.; Keles, H.; Tümen, I.; Süntar, I. Thuja occidentalis L. and its active compound, α-thujone: Promising effects in the treatment of polycystic ovary syndrome without inducing osteoporosis. J. Ethnopharmacol. 2015, 168, 25–30. [Google Scholar] [CrossRef]
- Brijesh, K.; Ruchi, R.; Sanjita, D.; Saumya, D. Phytoconstituents and therapeutic potential of Thuja occidentalis. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 354–362. [Google Scholar]
- Shimada, K. Contribution to anatomy of the central nervous system of the Japanese. Okajimas Folia Anat. Jpn. 1956, 28, 207–227. [Google Scholar] [CrossRef]
- Saha, S.; Bhattacharjee, P.; Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Khurana, A.; Nayak, D.; Manchanda, R.; Chakrabarty, R.; Das, T.; et al. Contribution of the ROS-p53 feedback loop in thuja induced apoptosis of mammary epithelial carcinoma cells. Oncol. Rep. 2014, 31, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
- Nash, E.B. Expanded Works of Nash Hardcover; B Jain Publishers Pvt Ltd.: Noida, India, 2002. [Google Scholar]
- Ellingwood, F. Agents acting upon the genitourinary organs. In The American Materia Medica, Therapeutics and Pharmacognosy; Ellingwood, F., Lloyd, J.U., Eds.; Eclectic Medical Publications: Portland, OR, USA, 1919; pp. 8–10. [Google Scholar]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; JanikOlchawa, N.; Czyz, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Németh, E.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Harnischfeger, G.; Stolze, H. Bewährte Pflanzendrogen in Wipssenschaft und Medizin; Notamed Verlag: Bad Homburg/Melsungen, Germany, 1983; pp. 250–259. [Google Scholar]
- Kawai, S.; Hasegawa, T.; Gotoh, M.; Ohashi, H. 4-O-Demethylatein from the branch wood of Thuja occidentalis. Phytochemistry 1994, 37, 1699–1702. [Google Scholar] [CrossRef]
- Berlin, J.; Witte, L.; Schubert, W.; Wray, V. Determination and quantification of monoterpenoids secreted into the medium of cell cultures of Thuja occidentalis. Phytochemistry 1984, 23, 1277–1279. [Google Scholar] [CrossRef]
- Witte, L.; Berlin, J.; Wray, V.; Schubert, W.; Kohl, W.; Höfle, G.; Hammer, J. Monound diterpenes from cell cultures of Thuja occidentalis. Planta Med. 1983, 49, 216–221. [Google Scholar] [CrossRef]
- Neth, R.; Drize, N.; Gohla, S.; Offergeld, R.; Reski, R.; Schruhm, S. Phytotherapeutische Forschung: Thuja occidentalis L. Z. Allg. 1995, 71, 522–530. [Google Scholar]
- EMEA-The European Agency for the Evaluation of Medicinal Products. Committee for Veterinary Medicinal Products-Thuja Occidentalis. Available online: https://www.ema.europa.eu/en/documents/mrl-report/thuja-occidentalis-summary-report-committee-veterinary-medicinal-products_en.pdf (accessed on 20 September 2020).
- Hänsel, R.; Keller, R.; Rimpler, H.; Schneider, G. Hagers Handbuch der Pharmazeutischen, 5th ed.; Springer: Berlin, Germnay, 1994; pp. 955–966. [Google Scholar]
- Tegtmeier, M.; Harnischfeger, G. Die Abhängigkeit des Thujongehaltes vom Extraktionsverfahren bei Zubereitungen aus Thujae herba. Pharmazie 1994, 49, 56–58. [Google Scholar]
- Tegtmeier, M.; Harnischfeger, G. Methods for the reduction of thujone content in pharmaceutical preparations of Artemisia, Salvia and Thuja. Eur. J. Pharm. Biopharm. 1994, 40, 337–340. [Google Scholar]
- Kopanski, L.; Keese, E.; Schnelle, G. Flavonoids from Thuja occidentalis. Planta Med. 1989, 55, 609. [Google Scholar] [CrossRef]
- Schubert, W. Die Inhaltsstoffe von Thuja Occidentalis. Ph.D. Thesis, TU Braunschweig, Braunschweig, Germany, 1987. [Google Scholar]
- Jahan, N.; Ahmad, M.; Mehjabeen; Zia-ul-haq, M.; Alam, S.M.; Qureshi, M. Antimicrobial screening of some medicinal plants of Pakistan. Pak. J. Bot. 2010, 42, 4281–4284. [Google Scholar]
- Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E. Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Ernährung Nutr. 2006, 30, 152–159. [Google Scholar]
- Digrak, M.; Bagci, E.; Alma, M.H. Antibiotic action of seed lipids from five tree species grown in Turkey. Pharm. Biol. 2002, 40, 425–428. [Google Scholar] [CrossRef]
- Gupta, G.; Srivastava, A.K. In-vitro activity of Thuja occidentalis Linn. against human pathogenic aspergilli. Homoeopath. Herit. 2002, 27, 5–12. Available online: http://aohindia.in/xmlui/handle/123456789/2807 (accessed on 11 October 2020).
- Siveen, K.S.; Kuttan, G. Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice. Can. J. Physiol. Pharmacol. 2011, 89, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Sunila, E.S.; Kuttan, R.; Preethi, K.C.; Kuttan, G. Dynamized preparations in cell culture. Evid. Based Complement. Alternat. Med. 2009, 6, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenkel, M.; Mishra, B.M.; Sen, S.; Yang, P.; Pawlus, A.; Vence, L.; Leblanc, A.; Cohen, L.; Banerji, P.; Banerji, P. Cytotoxic effects of ultra-diluted remedies on breast cancer cells. Int. J. Oncol. 2010, 36, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Bodinet, C.; Freudenstein, J. Effects of an orally applied aqueous-ethanolic extract of a mixture of Thujae occidentalis herba, Baptisiae tinctoriae radix, Echinaceae purpureae radix and Echinaceae pallidae radix on antibody response against sheep red blood cells in mice. Planta Med. 1999, 65, 695–699. [Google Scholar] [CrossRef]
- Aziz, A.; Khan, I.A.; Munawar, S.H.; Raza, M.A. Pharmacological evaluation of sedative activity of methanolic extract of Thuja occidentalis in mice. Int. J. Adv. Biol. Biomed. 2014, 2, 202–210. [Google Scholar]
- Leopolsdini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Mighri, H.; Hajlaoui, H.; Akrout, A.; Najjaa, H.; Neffati, M. Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. Comptes Rendus Chim. 2010, 13, 380–386. [Google Scholar] [CrossRef]
- Mahomoodally, F.; Aumeeruddy-Elalfi, Z.; Venugopala, K.N.; Hosenally, M. Antiglycation, comparative antioxidant potential, phenolic content and yield variation of essential oils from 19 exotic and endemic medicinal plants. Saudi J. Biol. Sci. 2019, 26, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Gohla, S.H.; Zeman, R.A.; Gartner, S.; Popovic, M.; Jurkiewics, E.; Haubeck, H.D.; Schrum, S.; Gallo, R.C.; Neth, R.D.; Hunsmann, G. Inhibition of the replication of HIV-1 by TPSg, a polysaccharide-fraction isolated from the cupressaceae Thuja occidentalis L. AIDS Res. Hum. Retrovir. 1990, 6, 131. [Google Scholar]
- Siveen, K.S.; Kuttan, G. Augmentation of humoral and cell mediated immune responses by thujone. Int. Immunopharmacol. 2011, 11, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Jahan, N.; Mehjabeen, S.; Alam, S.M.; Ahmad, M. Effects of Thuja Occidentalis extract on histo-pathological parameters in rabbits treated with and without carbon tetrachloride. Br. J. Med. Health Res. 2014, 1, 16–24. [Google Scholar]
- Bodinet, K. Immunopharmacological Studies on a Herbal Immunomodulator. Ph.D. Thesis, Universitäts-und Hansestadt Greifswald, Greifswald, Germany, 1999. [Google Scholar]
Thuja Species | Benefits According to Biological Activities | |
---|---|---|
Medicinal Use | Industrial Use | |
T. koraiensis | antimicrobial [22,23]; antioxidant [24] | - |
T. occidentalis | antimicrobial [26,33,34,35]; antioxidant and anti-inflammatory [33,36,37,38,39,40]; antitumor [41,42,43,44]; hepatoprotective and gastroprotective [45,46]; antidiabetic [47]; antiatherosclerotic [48]; radioprotective [49]; antipyretic [50] | antifungal agent for biocontamination control in libraries and archives storage areas [51]; insecticidal activity [52] |
T. plicata | antimicrobial [25,26,53]; anti-inflammatory, immunomodulatory, and tissue remodeling [54] | antimicrobial agent for decontamination of buildings [25] |
T. standishii | antimicrobial [30,31,32]; antitumor [30,31,32] | - |
T. sutchuenensis | antimicrobial [55,56] | - |
Chemical Composition of the Fresh Plant | |
Essential oil (v/w) Essential oil compounds (mainly monoterpenes): thujone (65%); isothujone (8%); fenchone (8%); sabines (5%); α-pinene (2%) | 0.6% |
Reducing sugar | 2.07% |
Minerals | 2.11% |
Free acids | 1.67% |
Tannic agents | 1.31% |
The Constituents of the Dried Herbal Substance (Thuja occidentalis Herbal) | |
Essential oil | Borneol Camphene Fenchone Limonene Myricene α-Terpine Terpinolene Thujone (85% α-thujone and 15% β-thujone) is the main compound (0.76–2.4%) |
Coumarins | p-Coumaric acid Umbelliferone |
Flavonoids | Kaempferol Kaempferol-3-O-α-rhamnoside Mearnsitrin Myricetine Myricitrin Quercetin Quercitrin |
Tannins | Catechine Gallocatechine |
Proanthocyanidines | Procyanidin B-3 Prodelphinidin |
Biological Activity | In Vitro Studies | In Vivo Studies | Ref. | |
---|---|---|---|---|
Animal Model | Effects | |||
Antioxidant | ↑ DPPH, NO, O2(-), ABTS scavenging activity ↑ Anti-LPO activity | - | - | [33,36,38,39] |
↑ DPPH and NO scavenging activity ↓ MDA, ↑ GSH | TNBS-induced colitis mouse model | ↓ MDA, ↑ GSH | [37] | |
Anti-inflammatory | TNBS-induced colitis mouse model | ↓ IL-6, TNF-α expression ↓ COX-2 | [37,40] | |
Antibacterial | ↓ Gram-negative/positive bacteria | [33] | ||
Antifungal | inhibitory activity against the fungi causing keratitis | [35] | ||
Antiviral | inhibition of HIV-1 | [34] | ||
Anticancer | ↑ ROS generation ↑ Cyt c and caspase-3 activation ↑ DNA fragmentation ↑mitochondrial transmembrane potential collapse proapoptotic potential in the skin cancer cell line A375 | [41] | ||
antiproliferative, proapoptotic and antiangiogenic properties ↓ tumor progression | Sprague-Dawley rats | ↓ tumor size inhibition of angiogenic markers | [42] | |
B16F-10 melanoma cells in mice | ↓ IL-1β, IL-6, GM-CSF, TNF-α ↑ IL-2 and TIMP | [43] | ||
- | B16F-10 melanoma cells in C57BL/6 mice | inhibition of lung metastasis ↓ tumor-nodule formation ↓ lung collagen hydroxyproline ↓ lung uronic acid ↓ lung hexosamine ↓ serum sialic acid ↓ serum GGT | [44] | |
Hepatoprotective | - | Acute and chronic CCl4-induced rats liver damage | preserve normal histoarhitecture | [46] |
Gastroprotective | - | acute gastric ulcer model in rats | antiulcer action regeneration of the gastric epithelium ↓ ulcer index ↓ gastric acid production | [45] |
Antidiabetic | - | lloxan- induced diabetes in rats | hypoglycemic ↑ GSH improve lipid profile | [47] |
Antiatherosclerotic | - | cholesterol fed rats | ↓ cholesterol, LDL-cholesterol and triglycerides ↑ HDL-cholesterol ↓ atherogenic index free radical neutralization | [48] |
Radioprotective | - | exposure of Swiss albino mice to γ-rays | ↓ alkaline phosphatase ↓ glutamate pyruvate transaminase ↓ lipid peroxidation | [49] |
Antipyretic | - | TAB vaccine-induced pyrexia models in albino rabbits | ↓ fever normalized body temperature | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules 2020, 25, 5416. https://doi.org/10.3390/molecules25225416
Caruntu S, Ciceu A, Olah NK, Don I, Hermenean A, Cotoraci C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules. 2020; 25(22):5416. https://doi.org/10.3390/molecules25225416
Chicago/Turabian StyleCaruntu, Sonia, Alina Ciceu, Neli Kinga Olah, Ioan Don, Anca Hermenean, and Coralia Cotoraci. 2020. "Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity" Molecules 25, no. 22: 5416. https://doi.org/10.3390/molecules25225416
APA StyleCaruntu, S., Ciceu, A., Olah, N. K., Don, I., Hermenean, A., & Cotoraci, C. (2020). Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules, 25(22), 5416. https://doi.org/10.3390/molecules25225416