From 1D to 2D Cd(II) and Zn(II) Coordination Networks by Replacing Monocarboxylate with Dicarboxylates in Partnership with Azine Ligands: Synthesis, Crystal Structures, Inclusion, and Emission Properties

Victor Ch.KRAVTSOV^a, Vasile LOZOVAN^{b,c}, Nikita SIMINEL^a, Eduard B. COROPCEANU^{b,c}, Olga V. KULIKOVA^a, Natalia V. COSTRIUCOVA^a, Marina S. FONARI^{a,*}

^cInstitute of Applied Physics, Academiei 5, MD2028, Chisinau, Republic of Moldova *E-mails: <u>kravtsov@phys.asm.md; siminel.n@gmail.com; olga.kulikova@phys.asm.md;</u> <u>costriucova@phys.asm.md; fonari.xray@phys.asm.md</u> ^bInstitute of Chemistry, Academiei 3, MD2028, Chisinau, Republic of Moldova ^cTiraspol State University, Chemistry Department, Iablocikin 5, MD2069, Chisinau,*

Republic of Moldova

E-mails: lozovanvasile90@gmail.com; coropceanu.eduard@ust.md;

	1			
2.333(3)	Cd(1)-O(2)	2.356(3)		
Cd(1)-N(2) 2.340(3)		2.391(3)	2.391(3)	
2.348(3)	Cd(1)-O(3)	2.398(3)		
169.36(10)	O(1)-Cd(1)-N(6) 141.55(10)			
89.61(9)	651(9)O(2)-Cd(1)-N(6)86.24(10)90(10)N(5)#1-Cd(1)-O(3)87.41(9)			
89.90(10)	N(5)#1-Cd(1)-O(3)	87.41(9)		
94.48(10)	N(2)-Cd(1)-O(3)	85.44(11)		
93.98(11)	O(1)-Cd(1)-O(3)	135.11(9)		
55.32(9)	O(2)-Cd(1)-O(3)	169.49(9)		
93.39(10)	N(6)-Cd(1)-O(3)	83.33(10)		
93.60(10)				
ons used to generate	e equivalent atoms: #1 x, y, z	-1		
	2			
2.303(6)	Cd(2)-N(9)	2.322(5)		
2.316(6)	Cd(2)-O(8) 2.332(6)			
2.316(5)	Cd(2)-O(5)	2.336(5)		
	2.333(3) 2.340(3) 2.348(3) 169.36(10) 89.61(9) 89.90(10) 94.48(10) 93.98(11) 55.32(9) 93.39(10) 93.60(10) ons used to generated 2.303(6) 2.316(5)	1 2.333(3) Cd(1)-O(2) 2.340(3) Cd(1)-N(6) 2.348(3) Cd(1)-O(3) 169.36(10) O(1)-Cd(1)-N(6) 89.61(9) O(2)-Cd(1)-N(6) 89.90(10) N(5)#1-Cd(1)-O(3) 94.48(10) N(2)-Cd(1)-O(3) 93.98(11) O(1)-Cd(1)-O(3) 93.98(11) O(1)-Cd(1)-O(3) 93.98(10) N(6)-Cd(1)-O(3) 93.39(10) N(6)-Cd(1)-O(3) 93.60(10) Image: State of the second seco	1 2.333(3) Cd(1)-O(2) 2.356(3) 2.340(3) Cd(1)-N(6) 2.391(3) 2.348(3) Cd(1)-O(3) 2.398(3) 169.36(10) O(1)-Cd(1)-N(6) 141.55(10) 89.61(9) O(2)-Cd(1)-N(6) 86.24(10) 89.90(10) N(5)#1-Cd(1)-O(3) 87.41(9) 94.48(10) N(2)-Cd(1)-O(3) 85.44(11) 93.98(11) O(1)-Cd(1)-O(3) 135.11(9) 55.32(9) O(2)-Cd(1)-O(3) 169.49(9) 93.39(10) N(6)-Cd(1)-O(3) 83.33(10) 93.60(10) Image: State of the stat	

Table S1. Bond lengths [Å] and angles [°] for 1-8

Cd(1)-O(3)	2.323(5)	Cd(2)-N(10)	2.354(6)		
Cd(1)-O(4)#2	2.378(5)	Cd(2)-O(6)#3	2.416(6)		
Cd(1)-O(2)	2.465(6)	Cd(2)-O(7)	2.448(7)		
Cd(1)-O(4)	2.580(5)	Cd(2)-O(6)	2.542(6)		
N(3)-Cd(1)-N(6)#1	174.4(2)	N(9)-Cd(2)-O(8)	97.3(2)		
N(3)-Cd(1)-O(1)	93.5(2)	N(9)-Cd(2)-O(5)	92.8(2)		
N(6)#1-Cd(1)-O(1)	89.9(2)	O(8)-Cd(2)-O(5)	140.3(2)		
N(3)-Cd(1)-O(3)	90.2(2)	N(9)-Cd(2)-N(10)	173.5(2)		
N(6)#1-Cd(1)-O(3)	90.1(2)	O(8)-Cd(2)-N(10)	83.6(2)		
O(1)-Cd(1)-O(3)	139.5(2)	O(5)-Cd(2)-N(10)	90.5(2)		
N(3)-Cd(1)-O(4)#2	85.4(2)	N(9)-Cd(2)-O(6)#3	84.9(2)		
N(6)#1-Cd(1)-O(4)#2	90.1(2)	O(8)-Cd(2)-O(6)#3	89.4(2)		
O(1)-Cd(1)-O(4)#2	91.62(19)	O(5)-Cd(2)-O(6)#3	129.8(2)		
O(3)-Cd(1)-O(4)#2	128.88(19)	N(10)-Cd(2)-O(6)#3	88.7(2)		
O(2)-Cd(1)-O(4)	137.41(18)	N(9)-Cd(2)-O(7)	94.0(2)		
N(3)-Cd(1)-O(2)	91.7(2)	O(8)-Cd(2)-O(7)	54.0(2)		
N(6)#1-Cd(1)-O(2)	93.9(2)	O(5)-Cd(2)-O(7)	87.2(2)		
O(1)-Cd(1)-O(2)	53.86(19)	N(10)-Cd(2)-O(7)	91.7(2)		
D(3)-Cd(1)-O(2) 85.75(19)		O(6)#3-Cd(2)-O(7)	143.0(2)		
O(4)#2-Cd(1)-O(2)	145.17(19)	N(9)-Cd(2)-O(6)	86.58(19)		
N(3)-Cd(1)-O(4)	81.45(19)	O(8)-Cd(2)-O(6)	165.2(2)		
N(6)#1-Cd(1)-O(4)	94.33(19)	O(5)-Cd(2)-O(6)	53.12(19)		
O(1)-Cd(1)-O(4)	167.37(19)	N(10)-Cd(2)-O(6)	91.0(2)		
O(3)-Cd(1)-O(4)	52.54(18)	O(6)#3-Cd(2)-O(6)	76.70(19)		
O(4)#2-Cd(1)-O(4)	76.49(18)	O(7)-Cd(2)-O(6)	140.3(2)		
Symmetry transforma	tions used to generate	e equivalent atoms: #1 <i>x</i> , <i>y</i> -1,	<i>z</i> ; #2 2- <i>x</i> , - <i>y</i> , 1- <i>z</i> ; #3 1- <i>x</i> , 1-		
<i>y</i> , 2- <i>z</i>					
		3			
Cd(1)-O(3)#1	2.331(4)	Cd(1)-O(1)	2.384(4)		
Cd(1)-N(4)#2	2.336(4)	Cd(1)-O(4)#3	2.416(3)		
Cd(1)-N(1)	2.348(4)	Cd(1)-O(3)#3	2.466(4)		
Cd(1)-O(2)	2.361(4)				
O(3)#1-Cd(1)-N(4)#2	89.57(13)	O(2)-Cd(1)-O(1)	54.84(13)		
O(3)#1-Cd(1)-N(1)	89.92(13)	O(3)#1-Cd(1)-O(4)#3	126.27(14)		
N(4)#2-Cd(1)-N(1)	178.45(14)	N(4)#2-Cd(1)-O(4)#3	90.22(12)		
O(3)#1-Cd(1)-O(2)	144.94(13)	N(1)-Cd(1)-O(4)#3	88.89(12)		
N(4)#2-Cd(1)-O(2)	96.75(14)	O(2)-Cd(1)-O(4)#3	88.29(14)		
N(1)-Cd(1)-O(2)	84.50(14)	O(1)-Cd(1)-O(4)#3	142.98(15)		
D(3)#1-Cd(1)-O(1) 90.74(14)		O(3)#1-Cd(1)-O(3)#3	73.76(13)		
N(4)#2-Cd(1)-O(1)	90.98(13)	N(4)#2-Cd(1)-O(3)#3	89.40(13)		
N(1)-Cd(1)-O(1)	90.49(13)	N(1)-Cd(1)-O(3)#3	89.05(13)		
O(2)-Cd(1)-O(3)#3	140.42(12)	O(1)-Cd(1)-O(3)#3	164.50(13)		

O(4)#3-Cd(1)-O(3)#3	52.50(12)				
Symmetry transforma	tions used to genera	ate equivalent atoms: #1 2-x, 1-	<i>y</i> , 1- <i>z</i> ; #2 <i>x</i> +1, <i>y</i> , <i>z</i> +1; #3 <i>x</i> ,		
<i>y, z</i> +1	C C	-	, c		
		4			
Cd(1)-O(3)#3	2.344(2)	2.310(2)			
Cd(1)-N(4)#2	2.342(2)	Cd(1)-O(4)	2.3900(19)		
Cd(1)-N(1)	2.323(2)	2.456(2)			
Cd(1)-O(2)#1	2.485(2)				
O(1)#1-Cd(1)-N(1)	O(1)#1-Cd(1)-N(1) 92.75(8) O(3)#3-Cd(1)-O(4)				
O(1)#1-Cd(1)-N(4)#2	88.09(8)	O(1)#1-Cd(1)-O(3)	161.61(8)		
N(1)-Cd(1)-N(4)#2	177.37(8)	N(1)-Cd(1)-O(3)	95.75(8)		
O(1)#1-Cd(1)-O(3)#3	90.63(8)	N(4)#2-Cd(1)-O(3)	82.75(8)		
N(1)-Cd(1)-O(3)#3	90.00(8)	O(3)#3-Cd(1)-O(3)	73.12(8)		
N(4)#2-Cd(1)-O(3)#3	87.50(8)	O(4)-Cd(1)-O(3)	53.29(7)		
O(1)#1-Cd(1)-O(4)	143.12(8)	54.27(8)			
N(1)-Cd(1)-O(4)	90.24(8)	N(1)-Cd(1)-O(2)#1	101.33(8)		
N(4)#2-Cd(1)-O(4)	90.57(8)	N(4)#2-Cd(1)-O(2)#1	81.18(8)		
O(3)#3-Cd(1)-O(2)#1	143.17(8)	O(4)-Cd(1)-O(2)#1	89.12(8)		
O(3)-Cd(1)-O(2)#1	138.74(7)				
Symmetry transforma	tions used to genera	ate equivalent atoms: #1 <i>x, y, z</i> +	-1; #2 <i>x</i> , <i>y</i> +1, <i>z</i> +1; #3 1- <i>x</i> , 1-		
<i>y</i> , 2- <i>z</i>					
		5			
Cd(1)-O(3)#1	2.232(2)	Cd(1)-N(4)#3	2.322(3)		
Cd(1)-O(4)#2)-O(4)#2 2.245(2)		2.335(3)		
Cd(1)-O(1))-O(1) 2.296(2) Cd(1)-O(2		2.503(2)		
O(3)#1-Cd(1)-O(4)#2	Zd(1)-O(4)#2 124.06(9) O(1)-Cd(1)-N		89.61(9)		
O(3)#1-Cd(1)-O(1)	93.07(8)	N(4)#3-Cd(1)-N(1)	172.18(8)		
O(4)#2-Cd(1)-O(1)	142.61(8)	O(3)#1-Cd(1)-O(2)	146.04(8)		
O(3)#1-Cd(1)-N(4)#3	87.41(9)	O(4)#2-Cd(1)-O(2)	88.46(8)		
O(4)#2-Cd(1)-N(4)#3	83.39(9)	O(1)-Cd(1)-O(2)	54.21(7)		
O(1)-Cd(1)-N(4)#3	95.30(9)	N(4)#3-Cd(1)-O(2)	87.04(9)		
O(3)#1-Cd(1)-N(1)	98.42(8)	N(1)-Cd(1)-O(2)	90.93(9)		
O(4)#2-Cd(1)-N(1)	89.01(9)				
Symmetry transforma	tions used to genera	ate equivalent atoms: #1 1-x, -y,	2- <i>z</i> ; #2 <i>x</i> +1, <i>y</i> , <i>z</i> ; #3 <i>x</i> +1, <i>y</i> ,		
z+1					
		6			
Zn(1)-O(3)#1	2.0246(16)	Zn(1)-N(1)	2.163(2)		
Zn(1)-O(4)#2	2.0538(16)	Zn(1)-N(4)#3	2.164(2)		
Zn(1)-O(2)	2.1446(17)	Zn(1)-O(1)	2.3165(19)		
O(3)#1-Zn(1)-O(4)#2	117.42(7)	O(2)-Zn(1)-N(4)#3	91.71(8)		
O(3)#1-Zn(1)-O(2) 152.02(7) N(1)-Zn(1)-N(4)#3 176.76(7)					
O(4)#2-Zn(1)-O(2)	90.32(7)	O(3)#1-Zn(1)-O(1)	94.06(7)		

O(3)#1-Zn(1)-N(1)	89.79(8)	O(4)#2-Zn(1)-O(1)	148.43(7)			
O(4)#2-Zn(1)-N(1)	86.59(8)	O(2)-Zn(1)-O(1)	58.11(6)			
O(2)-Zn(1)-N(1)	88.26(8)	N(1)-Zn(1)-O(1)	91.49(8)			
O(3)#1-Zn(1)-N(4)#3	91.75(8)	N(4)#3-Zn(1)-O(1)	91.24(8)			
O(4)#2-Zn(1)-N(4)#3	90.17(8)					
Symmetry transformat	ions used to generate	e equivalent atoms #1 x, y+1,	z; #2 -x, 2-y, 2-z; #3 x, y+1,			
z+1		-				
		7				
Cd(1)-O(2)#1	2.225(3)	Cd(1)-N(4)#3	2.33(3)			
Cd(1)-O(1)#2	2.278(4)	Cd(1)-O(4)	2.380(4)			
Cd(1)-N(1)	2.307(5)	Cd(1)-O(3)	2.390(13)			
O(2)#1-Cd(1)-O(1)#2	122.27(14)	O(2)#1-Cd(1)-O(4)	91.86(13)			
O(2)#1-Cd(1)-N(1)	89.7(2)	O(1)#2-Cd(1)-O(4)	144.95(13)			
O(1)#2-Cd(1)-N(1)	86.5(2)	N(1)-Cd(1)-O(4)	102.7(2)			
O(2)#1-Cd(1)-N(4)#3	84(2)	N(4)#3-Cd(1)-O(4)	87(2)			
O(1)#2-Cd(1)-N(4)#3	88(2)	O(2)#1-Cd(1)-O(3)	141.7(3)			
N(1)-Cd(1)-N(4)#3	168(2)	O(1)#2-Cd(1)-O(3)	93.5(3)			
N(1)-Cd(1)-O(3)	107.2(3)	N(4)#3-Cd(1)-O(3)	84(2)			
O(4)-Cd(1)-O(3)	51.4(3)					
Symmetry transforma	tions used to generat	e equivalent atoms: #1 x, y-1,	z; #2 1-x, 1-y, 1-z; #3 x-1,			
1/ 7+1	0	1 , , , ,	, , ,, ,, ,			
<i>y, 2</i> .1		8				
Cd(1)-N(1)	2.337(2)	Cd(1)-O(1)	2.326(4)			
Cd(1)-N(3)	2.363(2)					
N(1)-Cd(1)-N(3)	93.94(8)	N(1)#1-Cd(1)-O(1)	90.36(13)			
N(1)#1-Cd(1)-N(3)	86.06(8)	N(3)#1-Cd(1)-O(1)	100.58(15)			
N(1)-Cd(1)-O(1)	89.64(13)	N(3)-Cd(1)-O(1)) 79.42(15)			
Symmetry transformation	tions used to generat	e equivalent atoms: #1 2-x, 2-	у, 1-z			

Figure S1. Infrared spectra of compounds 1-8

Figure S2. XRPD patterns for compound **2**: (a) simulated; (b) as-synthesized; (c) desolvated product; (d) product after keeping the crystals in MeOH solvent; (e) product after keeping the crystals in EtOH solvent; (f) product after keeping the crystals in H₂O solvent.

Figure S3. XRPD patterns of compound 7: (a) simulated; (b) as-synthesized; (c) desolvated product.

Figure S4. N₂ adsorption-desorption isotherms for desolvated compounds 2d and 7d at 77K.

Compound	1	2	3	4	5	6	7	8
CCDC number	2022947	2022948	2022949	2022950	2022951	2022952	2022953	2022954
Empirical formula	C28H27CdN9O6	C28.25H27.25CdN6.75O4.75	C22H28CdN4O5	C24H32CdN4O5	C21H16CdN4O4	C23H22N4O5Zn	C23H22CdN4O5	C36H32CdN12O6
Formula weight	697.98	649.72	540.88	568.93	500.78	499.81	546.84	841.13
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	<i>P-</i> 1	<i>P-</i> 1	<i>P-</i> 1	<i>P-</i> 1	<i>P-</i> 1	<i>P</i> -1	<i>P-</i> 1	<i>P</i> -1
a, Å	10.2003(7)	15.0892(8)	10.0768(8)	10.0126(6)	7.9286(5)	9.1741(5)	9.8636(6)	9.5960(7)
b, Å	10.3387(4)	15.8585(7)	10.1625(7)	11.3491(7)	10.2530(7)	10.0959(6)	10.3856(5)	10.0623(8)
с, Å	15.9371(10)	15.8843(7)	12.7653(7)	12.8116(8)	13.8228(7)	12.7739(6)	11.9413(8)	10.2938(8)
<i>α</i> , °	77.209(5)	60.650(5)	106.911(5)	97.992(5)	94.035(5)	103.514(5)	101.408(5)	66.957(8)
β, °	88.096(5)	65.928(5)	91.992(5)	97.620(5)	100.886(5)	95.606(4)	92.074(5)	88.604(7)
γ, °	84.390(5)	65.649(5)	109.708(7)	114.365(6)	111.823(6)	104.631(5)	104.721(5)	87.270(7)
Volume, Å ³	1631.03(17)	2915.2(3)	1164.57(15)	1283.84(15)	1012.12(12)	1097.52(11)	1154.90(13)	913.58(14)
Z	2	4	2	2	2	2	2	1
D(calcd) Mg/m ³	1.421	1.479	1.542	1.472	1.643	1.512	1.573	1.529
μ, mm ⁻¹	0.717	0.797	0.977	0.891	1.114	1.162	0.987	0.662
F(000)	708	1318	552	584	500	516	552	428
Reflections collected	10,619	18,829	6319	8185	5443	7355	7156	4900
Independent reflections	5723 [R(int) =	10,524 [R(int) =	4061 [R(int) =	4767 [R(int) =	3563 [R(int) =	4062 [R(int) =	4281 [R(int) =	3196 [R(int) =
independent renections	0.0378]	0.0354]	0.0328]	0.0296]	0.0230]	0.0263]	0.0319]	0.0215]
Reflections with $[I > 2\sigma(I)]$	4776	7264	3182	4057	3126	3428	3619	2927
Data/restraints/parameters	5723/72/431	10,521/320/833	4061/3/322	4767/0/310	3563/0/271	4062/38/323	4281/97/436	3196/24/287
Goodness-of-fit on F ²	0.991	1.002	1.009	1.039	1.008	1.077	1.000	1.030
Final R indices $[I > 2\sigma(I)]$, R_1 , wR_2	0.0404, 0.0852	0.0612, 0.1640	0.0461, 0.0813	0.0340, 0.0669	0.0322, 0.0575	0.0370, 0.0839	0.0446, 0.1061	0.0338, 0.0721
R indices (all data) R_1 , wR_2	0.0506, 0.0915	0.0958, 0.1857	0.0649, 0.0907	0.0438, 0.0708	0.0397, 0.0615	0.0480, 0.0898	0.0562, 0.1141	0.0395, 0.0756
Largest diff. peak and hole e. \mathring{A}^{-3}	0.735 and -0.476	0.843 and -0.670	0.789 and -0.496	0.489 and -0.460	0.441 and -0.483	0.330 and -0.255	0.710 and -0.501	0.396 and -0.431

 Table S2. Crystal data and structure refinement parameters for 1–8.