Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biogas Production
2.1.1. Cumulative Biogas Yield with Various Mixing Ratios
2.1.2. Cumulative Specific Methane Yield (SMY)
2.2. Physicochemical Characteristics of Effluent
2.2.1. pH
2.2.2. Electrical Conductivity
2.2.3. Salinity
2.3. Nutrition
2.4. Regression Models for Data Fit
3. Materials and Methods
3.1. Pretreatment and Analytical Methods
3.2. Reactor Configuration
3.3. Biogas Study
3.3.1. Specific Methane Yield
3.3.2. COD-Equivalents
3.4. Statistical Treatment
3.5. Kinetic Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Australian Bureau of Statistics, Vineyards, Australia, 2014–2015: Production, Area and Number of Businesses by Australia; State and GI Zone and GI Region: Canberra, Australia, 2015.
- Corbin, K.R.; Hsieh, Y.S.; Betts, N.S.; Byrt, C.S.; Henderson, M.; Stork, J.; DeBolt, S.; Fincher, G.B.; Burton, R.A. Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresour. Technol. 2015, 193, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Pellera, F.-M.; Gidarakos, E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 2018, 71, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Wine Australia. National Vintage Report; Wine Australia: Adelaide, Australia, 2019; pp. 1–14. [Google Scholar]
- Toscano, G.; Riva, G.; Duca, D.; Pedretti, E.F.; Corinaldesi, F.; Rossini, G. Analysis of the characteristics of the residues of the wine production chain finalized to their industrial and energy recovery. Biomass Bioenergy 2013, 55, 260–267. [Google Scholar] [CrossRef]
- Environment Protection Authority. SA Waste Management Committee. Consultancy Report: Opportunities for the Re-Use of Winery Industry Solid Wastes; PPK Environment & Infrastructure: Adelaide, Australia, 2001. [Google Scholar]
- Baere, D.L. Anaerobic digestion of solid waste: State-of-the-art. Water Sci. Technol. 2000, 41, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Co-digestion of solid wastes: A review of its uses and perspectives including modelling. Crit. Rev. Biotechnol. 2011, 31, 99–111. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Javier, H.; Ángel, S.J.; Aida, G.; Carmen, G.M.D.; Ángeles, M.M.D.L. Revalorization of grape marc waste fromliqueur wine: Biomethanization. J. Chem. Technol. Biotechnol. 2019, 94, 1499–1508. [Google Scholar] [CrossRef]
- Makadia, T.; Shahsavari, E.; Adetutu, E.M.; Sheppard, P.J.; Ball, A.S. Effect of anaerobic co-digestion of grape marc and winery wastewater on energy production. Aust. J. Crop Sci. 2016, 10, 57–61. [Google Scholar]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, B. Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials. Biomass Bioenergy 2016, 91, 150–159. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sust. Energ. Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- De Leon-Rodriguez, A.; Rivera-Pastrana, D.; Medina-Rivero, E.; Flores-Flores, J.L.; Estrada-Baltazar, A.; Ordonez-Acevedo, L.G.; De la Rosa, A.P. Production of penicillin acylase by a recombinant Escherichia coli using cheese whey as substrate and inducer. Biomol. Eng. 2006, 23, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Domingos, J.M.B.; Martinez, G.A.; Scoma, A.; Fraraccio, S.; Kerckhof, F.-M.; Boon, N.; Reis, M.A.M.; Fava, F.; Bertin, L. Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities and microbial community structure. ACS Sustain. Chem. Eng. 2016, 5, 1400–1407. [Google Scholar] [CrossRef]
- Australian Dairy Farmers. Australian Dairy Plan. Aust. Dairy Situat. Anal. 2019, 5, 1–80. [Google Scholar]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef] [PubMed]
- Gallert, C.; Bauer, S.; Winter, J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl. Microbiol. Biotechnol. 1998, 50, 495–501. [Google Scholar] [CrossRef]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445–446, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.; Guttler, J.; Shilton, A. Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renew. Energy 2016, 96, 425–432. [Google Scholar] [CrossRef]
- Zielinski, M.; Korzeniewska, E.; Filipkowska, Z.; Debowski, M.; Harnisz, M.; Kwiatkowski, R. Biohydrogen production at low load of organic matter by psychrophilic bacteria. Energy 2017, 134, 1132–1139. [Google Scholar] [CrossRef]
- Lopez-Hidalgo, A.M.; Alvarado-Cuevas, Z.D.; De Leon-Rodriguez, A. Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up. Energy 2018, 159, 32–41. [Google Scholar] [CrossRef]
- Li, M.-F.; Sun, R.-C. Liquefaction and gasification of cereal straws. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels; Elsevier: Amsterdam, The Netherlands, 2010; Chapter 7.4; pp. 253–265. [Google Scholar]
- Lievore, P.; Simões, D.R.S.; Silva, K.M.; Drunkler, N.L.; Barana, A.C.; Nogueira, A.; Demiate, I.M. Chemical characterisation and application of acid whey in fermented milk. J. Food Sci. Technol. 2015, 52, 2083–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenes, J.P.; Steyer, J.P.; Escudie, R. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 2012, 111, 55–61. [Google Scholar] [CrossRef]
- Maria, F.D.; Sordi, A.; Micale, C. Optimization of Solid State Anaerobic Digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant. Appl. Energy 2012, 97, 462–469. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Wang, Z.-W. Mathematical modeling of solid-state anaerobic digestion. Prog. Energy Combust. Sci. 2015, 51, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Carlu, E.; Truong, T.; Kundevski, M. Biogas Opportunities for Australia; ENEA Consulting: Melbourne, Australia, 2019. [Google Scholar]
- Brown, D.; Shi, J.; Li, Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour. Technol. 2012, 124, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Boontian, N. Conditions of the Anaerobic Digestion of Biomass. Int. J. Environ. Eng. 2014, 8, 1036–1040. [Google Scholar]
- Mirmohamadsadeghi, S.; Karimi, K.; Amiri, H.; Horvath, I.S. Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. Biomed Res. Int. 2014, 2014, 350414. [Google Scholar] [CrossRef]
- Kabir, M.M.; Taherzadeh, M.J.; Horvath, I.S. Dry anaerobic digestion of lignocellulosic and protein residues. Biofuel Res. J. 2015, 2, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Z.; Stiverson, J.A.; Yu, Z.; Li, Y. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour. Technol. 2013, 136, 574–581. [Google Scholar] [CrossRef]
- Forster-Carneiro, T.; Pérez, M.; Romero, L.I.; Sales, D. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresour. Technol. 2007, 98, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Kassongo, J.; Togo, C.A. The potential of whey in driving microbial fuel cells: A dual prospect of energy recovery and remediation. Afr. J. Biotechnol. 2010, 9, 7885–7890. [Google Scholar]
- Kassongo, J.; Togo, C.A. The impact of electrode reuse on the biofilm community and performance of whey-fuelled H-type microbial fuel cell. Afr. J. Microbiol. Res. 2011, 5, 1090–1096. [Google Scholar] [CrossRef]
- Holm-Nielsen, H.B.; Angelidaki, I. Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour. Technol. 2008, 99, 7995–8001. [Google Scholar] [CrossRef]
- Fabbri, A.; Bonifazi, G.; Serranti, S. Micro-scale energy valorization of grape marc wastes in winery production plants. Waste Manag. 2015, 36, 156–165. [Google Scholar] [CrossRef]
- Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M. Co-digestion of cattle manure with food waste and sludge to increase the bio- gas production. Waste Manage. 2012, 32, 1821–18215. [Google Scholar] [CrossRef]
- Fernandez, J.; Perez, M.; Romero, L.I. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 2008, 99, 6075–6080. [Google Scholar] [CrossRef]
- Hernandez-Berriel, M.C.; Benavides, L.M.; Perez, D.J.G.; Delgado, O.B. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Manag. 2008, 28, 14–20. [Google Scholar] [CrossRef]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef]
- Rebecchi, S.; Bertin, L.; Vallini, V.; Bucchi, G.; Bartocci, F.; Fava, F. Biomethane production from grape pomaces: A technical feasibility study. Environ. Eng. Manag. J. 2013, 12, 105–108. [Google Scholar]
- Comino, E.; Riggio, V.A.; Rosso, M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012, 114, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.W.; Han, S.K.; Shin, H.S. The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 2003, 21, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Kavacik, B.; Topaloglu, B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy 2010, 34, 1321–1329. [Google Scholar] [CrossRef]
- Okonkwo, P.; Aderemi, B.; Okoli, C. Factors affecting biogas production during anaerobic decomposition of brewery effluent-wastewater in a fluidized bed digester. J. Environ. Earth Sci. 2013, 3, 32–40. [Google Scholar]
- Kayhanian, M.; Rich, D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass Bioenergy 1995, 8, 433–444. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Sexstone, A.J.; Myrold, D.O.; Robinson, J.A. Denitrification: Ecological niches, competition and survival. Antonie Leeuwenhoek 1992, 48, 569–583. [Google Scholar] [CrossRef]
- Slobodkina, G.B.; Mardanov, A.V.; Ravin, N.V.; Frolova, A.A.; Chernyh, N.A.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Respiratory ammonification of nitrate coupled to anaerobic oxidation of elemental sulfur in deep-sea autotrophic thermophilic bacteria. Front. Microbiol. 2017, 30, 87. [Google Scholar] [CrossRef]
- Stams, A.J.M.; Plugge, C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568–577. [Google Scholar] [CrossRef]
- Klein, R.; Slany, V.; Krcalova, E. Conductivity measurement for control of a biogas plant. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lee, S.H.; Park, H.D. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour. Technol. 2016, 205, 205–212. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yang, Y.; Quan, X.; Zhao, Z. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresour. Technol. 2017, 234, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Jung, H.; Kim, J.; Lee, C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Magnetic separation and recycling of magnetite. Bioresour. Technol. 2017, 241, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Suanon, F.; Sun, Q.; Li, M.; Cai, X.; Zhang, Y.; Yan, Y.; Yu, C.P. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. J. Hazard. Mater. 2017, 321, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane production and conductive materials: A critical review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 2017, 6, 308–314. [Google Scholar] [CrossRef]
- Wu, Q.L.; Guo, W.Q.; Zheng, H.S.; Luo, H.C.; Feng, X.C.; Yin, R.L.; Ren, N.Q. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Biores. Technol. 2016, 216, 653–660. [Google Scholar] [CrossRef]
- Lefebvre, O.; Quentin, S.; Torrijos, M.; Godon, J.J.; Delgenes, J.P.; Moletta, R. Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Appl. Microbiol. Biotechnol. 2007, 75, 61–69. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Ni, B.; Wang, Q.; Wang, D.; Yang, Q.; Sun, Y.; Zeng, G.; Li, X. Combined effect of free nitrous acid pretreatment and sodium dodecylbenzene sulfonate on short-chain fatty acid production from waste activated sludge. Sci. Rep. 2016, 6, 21622. [Google Scholar] [CrossRef] [Green Version]
- Rinzema, A.; van Lier, J.; Lettinga, G. Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzym. Microb. Technol. 1988, 10, 24–32. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, B. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production. J. Environ. Manag. 2017, 203, 745–752. [Google Scholar] [CrossRef]
- Cerón-Vivas, A.; Cáceres, K.T.; Rincón, A.; Cajigas, Á.A. Influence of pH and the C/N ratio on the biogas production of wastewater. Rev. Fac. Ing. Univ. Antioq. 2019, 92, 70–79. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Chung, D.W.C. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Sci. Technol. 1999, 40, 77–84. [Google Scholar] [CrossRef]
- Zhang, J.; Sui, Q.; Tong, J.; Zhong, H.; Wang, Y.; Chen, M.; Wei, Y. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Environ. Int. 2018, 118, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Moller, H.B.; Ahring, B.K. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: Collection and pretreatment. Waste Manag. Res. 2004, 22, 35–41. [Google Scholar] [CrossRef]
- Carucci, G.; Carrasco, F.; Trifoni, K.; Majone, M.; Beccari, M. Anaerobic digestion of food industry waste: Effect of codigestion on methane yield. J. Environ. Eng. 2005, 131, 1037–1045. [Google Scholar] [CrossRef]
- Spanghero, M.; Salem, A.Z.M.; Robinson, P.H. Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Anim. Feed Sci. Technol. 2009, 152, 243–255. [Google Scholar] [CrossRef]
- Eaton, A.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M. APHA: Standard Methods for the Examination of Water and Wastewater; Centennial Edition; APHA, AWWA, WEF: Washington, DC, USA, 2005.
- Tyagi, V.K.; Güelfo, L.A.F.; Zhou, Y.; Gallego, C.J.A.; Garcia, L.I.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sust. Energ. Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Pellera, F.-M.; Gidarakos, E. Microwave pretreatment of lignocellulosic agroindustrial waste for methane production. J. Environ. Chem. Eng. 2017, 5, 352–365. [Google Scholar]
- Cecchi, F.; Bolzonella, D.; Pavan, P.; Macé, S.; Álvarez, J.M. Anaerobic digestion of the organic fraction of municipal solid waste for methane production. Compr. Biotechnol. 2011, 6, 463–472. [Google Scholar] [CrossRef]
- Borja, R.; Martin, A.; Banks, C.J.; Alonso, V.; Chica, A. A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environ. Pollut. 1995, 88, 13–18. [Google Scholar] [CrossRef]
Parameter | Unit | 1/3 GM/CW | 2/2 GM/CW | 3/1 GM/CW | 4/0 GM/CW |
---|---|---|---|---|---|
TS | % | 1.60 ± 0.3 | 3.17 ± 3.3 | 10.5 ± 3.4 | 19.4 ± 1.7 |
VS | % | 0.91 ± 0.2 | 1.38 ± 0.3 | 7.58 ± 2.6 | 12.1 ± 0.5 |
CODt | g L−1 | 90.0 ± 10 | 191 ± 22 | 214 ± 5.0 | 219 ± 25 |
CODs | g L−1 | 27.0 ± 3.0 | 29.5 ± 3.5 | 22.0 ± 4.0 | 20.0 ± 3.0 |
TKN | g L−1 | 4.60 ± 0.1 | 8.29 ± 0.2 | 4.23 ± 0.5 | 12.8 ± 0.1 |
COD/N | — | 19.57 | 23.03 | 50.58 | 17.05 |
pH | — | 5.79 ± 0.0 | 6.44 ± 1.0 | 7.64 ± 0.1 | 8.21 ± 0.1 |
EC | mS cm−1 | 9.38 ± 0.0 | 12.9 ± 0.6 | 13.4 ± 2.5 | 10.6 ± 0.3 |
Salinity | % | 6.15 ± 2.3 | 8.70 ± 2.7 | 7.15 ± 1.4 | 3.65 ± 0.1 |
Simulation | Unit | 1/3 GM/CW | 2/2 GM/CW | 3/1 GM/CW | 4/0 GM/CW |
---|---|---|---|---|---|
First-order kinetic model | |||||
B0 | L CH4 kg−1 VS | 0.118993172 | 3663.316604 | 29.88610485 | 16.04597425 |
k | d−1 | 0.721169765 | 1.90423 × 10−5 | 0.015248799 | 0.006743193 |
Sum of squared deviations (SSD) | — | 0.003090119 | 188.8049528 | 287.6845951 | 33.82613142 |
Measured methane yield—day 144 | L CH4 kg−1 VS | 0.129553030 | 10.27407727 | 24.42713824 | 9.079883333 |
Predicted methane yield—day 144 | L CH4 kg−1 VS | 0.118993172 | 10.03137155 | 26.56078267 | 9.969417616 |
Difference between measured and predictive methane yield (in absolute value) | % | 8.150993042 | 2.362311641 | 8.734729456 | 9.796758942 |
Modified Gompertz model | |||||
B0 | L CH4 kg−1 VS | 1.565811821 | 9.784578865 | 24.03266289 | 9.011026908 |
λ | d | 0.000000000 | 53.17945245 | 14.84340725 | 18.32337505 |
Rm | L CH4 kg−1 VS d−1 | 0.000423702 | 0.292288763 | 0.550764399 | 0.148677144 |
Sum of squared deviations (SSD) | — | 0.002618254 | 2.713528645 | 6.691658696 | 2.748511505 |
Measured methane yield—day 144 | L CH4 kg−1 VS | 0.129553030 | 10.27407727 | 24.42713824 | 9.079883333 |
Predicted methane yield—day 144 | L CH4 kg−1 VS | 0.135785248 | 9.767920054 | 24.01174037 | 8.924128388 |
Difference between measured and predicted methane yield (in absolute value) | % | 4.810553244 | 4.926546741 | 1.700558883 | 1.715384878 |
Parameter | Unit | Grape Marc | Cheese Whey | Inoculum |
---|---|---|---|---|
TS | % | 38.7 ± 1.51 | 7.87 ± 1.02 | 2.80 ± 0.28 |
VS | % | 24.1 ± 0.54 | 3.80 ± 0.88 | 1.93 ± 0.22 |
CODt | g L−1 | 223 ± 16.3 | 67.1 ± 0.42 | 50.9 ± 1.91 |
CODs | g L−1 | 47.5 ± 12.0 | 48.0 ± 5.79 | 30.5 ± 0.35 |
TKN | g L−1 | 51.8 ± 0.76 | 11.5 ± 0.16 | 13.3 ± 0.72 |
pH | — | 9.19 ± 0.01 | 5.41 ± 0.01 | 8.47 ± 0.01 |
EC | mS cm−1 | 15.0 ± 0.20 | 14.0 ± 0.34 | 9.25 ± 0.17 |
Salinity | % | 5.20 ± 0.32 | 13.9 ± 0.11 | 2.30 ± 0.20 |
Parameter | Unit | 1/3 GM/CW | 2/2 GM/CW | 3/1 GM/CW | 4/0 GM/CW |
---|---|---|---|---|---|
TS | % | 11.3 ± 1.1 | 17.3 ± 3.3 | 28.5 ± 1.1 | 38.7 ± 1.2 |
VS | % | 6.60 ± 1.1 | 11.0 ± 2.1 | 17.1 ± 0.2 | 12.1 ± 0.5 |
CODt | g L−1 | 94.0 ± 1.5 | 241 ± 10 | 263 ± 20 | 223 ± 12 |
CODs | g L−1 | 54.5 ± 2.5 | 58.5 ± 4.5 | 19.5 ± 5.5 | 22.0 ± 2.0 |
TKN | g L−1 | 15.0 ± 0.0 | 8.03 ± 0.1 | 2.56 ± 0.5 | 12.6 ± 1.5 |
pH | — | 7.20 ± 0.0 | 7.20 ± 0.0 | 8.52 ± 0.0 | 9.03 ± 0.1 |
EC | mS cm−1 | 92.3 ± 2.3 | 17.3 ± 0.1 | 17.0 ± 1.0 | 31.0 ± 0.4 |
Salinity | % | 15.6 ± 0.0 | 11.9 ± 0.9 | 5.25 ± 0.4 | 7.00 ± 0.1 |
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassongo, J.; Shahsavari, E.; Ball, A.S. Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation. Molecules 2020, 25, 5754. https://doi.org/10.3390/molecules25235754
Kassongo J, Shahsavari E, Ball AS. Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation. Molecules. 2020; 25(23):5754. https://doi.org/10.3390/molecules25235754
Chicago/Turabian StyleKassongo, Josue, Esmaeil Shahsavari, and Andrew S. Ball. 2020. "Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation" Molecules 25, no. 23: 5754. https://doi.org/10.3390/molecules25235754
APA StyleKassongo, J., Shahsavari, E., & Ball, A. S. (2020). Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation. Molecules, 25(23), 5754. https://doi.org/10.3390/molecules25235754