Application of Ionic Liquids in Electrochemistry—Recent Advances
Abstract
:1. Introduction
IL | Solvent | Salt | Electrode | Potential Window/V | Reference |
---|---|---|---|---|---|
[P2225][NTf2] | - | - | Pt wire | 6.3 | [15] |
[P2228][NTf2] | 6.4 | ||||
[P222(1O1)][NTf2] | 5.7 | ||||
[P222(2O1)][NTf2] | 5.4 | ||||
[bmim][NTf2] | Carbon film | 3 | [16] | ||
[bmim][NO3] | 2.8 | ||||
[Pyr14][NTf2] | TiC-CDC | 2.5 | [20] | ||
[Pyr14][NTf2] | AC | 3.5 | [21] | ||
[EdMPN][NTf2] | Sucrose | ±2.3 | [22] | ||
- | Acetone | [NEt4][ClO4], [NBu4][PF6], NaClO4 | Pt wire | 3.5 | [23] |
CH3CN | [NEt4][ClO4], [NBu4][PF6], LiClO4 | 4 | |||
CH2Cl2 | [NBu4][PF6], [NBu4][ClO4], [NBu4][X] (X = Cl, Br, F, I) | 3.7 | |||
DMF | [NEt4][ClO4], [NBu4][PF6], LiCl, NaClO4 | 4.3 | |||
DMSO | [NEt4][ClO4], [NBu4][PF6] | 3.3 | |||
THF | [NBu4][PF6], LiClO4, NaClO4 | 3.7 | |||
H2O | NaClO4,KNO3 | 2 |
2. Imidazolium-Based Ionic Liquids
3. Ammonium-, Pyrrolidinium-, Phosphonium- and Sulfonium-Based ILs
4. General Remarks Considering ILs Purification and Viscosity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sustainable Finance: High-Level Conference Kicks EU’s Strategy for Greener and Cleaner Economy into High Gear. Available online: https://ec.europa.eu/clima/news/sustainable-finance-high-level-conference-kicks-eus-strategy-greener-and-cleaner-economy-high_en (accessed on 7 November 2020).
- Climate Strategies & Targets, 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 7 November 2020).
- Song, M.H.; Pham, T.P.T.; Yun, Y.S. Ionic liquid-assisted cellulose coating of chitosan hydrogel beads and their application as drug carriers. Sci. Rep. 2020, 10, 13905. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem. 2010, 12, 2099–2119. [Google Scholar] [CrossRef]
- Weingarth, D.; Czekaj, I.; Fei, Z.; Foelske-Schmitz, A.; Dyson, P.J.; Wokaun, A.; Koetz, R. Electrochemical stability of imidazolium based ionic liquids containing cyano groups in the anion: A cyclic voltammetry, XPS and DFT study. J. Electrochem. Soc. 2012, 159, H611–H615. [Google Scholar] [CrossRef]
- Rupp, A.B.; Krossing, I. Ionic Liquids with Weakly Coordinating [MIII(ORF)4]− Anions. Acc. Chem. Res. 2015, 48, 2537–2546. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Sun, J.K.; Yuan, J. Poly (ionic liquid) composites. Chem. Soc. Rev. 2020, 49, 1726–1755. [Google Scholar] [CrossRef] [Green Version]
- DuVall, S.H.; McCreery, R.L. Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal. Chem. 1999, 71, 4594–4602. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Sci. Mag. 2008, 321, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Kühnel, R.S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chem. Commun. 2016, 52, 10435–10438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruch, P.W.; Cericola, D.; Foelske, A.; Kötz, R.; Wokaun, A. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim. Acta 2010, 55, 2352–2357. [Google Scholar] [CrossRef]
- Tsunashima, K.; Sugiya, M. Electrochemical behavior of lithium in room-temperature phosphonium ionic liquids as lithium battery electrolytes. Electrochem. Solid State Lett. 2007, 11, A17–A19. [Google Scholar] [CrossRef]
- Pauliukaite, R.; Doherty, A.P.; Murnaghan, K.D.; Brett, C.M. Characterisation and application of carbon film electrodes in room temperature ionic liquid media. J. Electroanal. Chem. 2008, 616, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A. Green Solvents II: Properties and Applications of Ionic Liquids; Springer Science & Business Media: London, UK, 2012; Volume 2, p. 506. [Google Scholar]
- Yuan, W.L.; Yang, X.; He, L.; Xue, Y.; Qin, S.; Tao, G.H. Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids. Front. Chem. 2018, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. 2015, 51, 17499–17516. [Google Scholar] [CrossRef]
- Largeot, C.; Taberna, P.L.; Gogotsi, Y.; Simon, P. Microporous carbon-based electrical double layer capacitor operating at high temperature in ionic liquid electrolyte. Electrochem. Solid State Lett. 2011, 14, A174–A176. [Google Scholar] [CrossRef]
- Jaramillo, M.M.; Mendoza, A.; Vaquero, S.; Anderson, M.; Palma, J.; Marcilla, R. Role of textural properties and surface functionalities of selected carbons on the electrochemical behaviour of ionic liquid based-supercapacitors. RSC Adv. 2012, 2, 8439–8446. [Google Scholar] [CrossRef]
- Wei, L.; Yushin, G. Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. J. Power Sources 2011, 196, 4072–4079. [Google Scholar] [CrossRef]
- Elvington, M.C.; Brewer, K.J. Electrochemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: Blacksburg, VA, USA, 2011; pp. 1–22. [Google Scholar] [CrossRef]
- Ibrahim, M.A.M.; Messali, M. Ionic liquid [BMPy]Br as an effective additive during zinc electrodeposition from an aqueous sulfate bath. Prod. Finish 2011, 76, 14. [Google Scholar]
- Liu, Y.; Shi, L.; Wang, M.; Li, Z.; Liu, H.; Li, J. A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application. Green Chem. 2005, 7, 655–658. [Google Scholar] [CrossRef]
- Frackowiak, E.; Lota, G.; Pernak, J. Room-temperature phosphonium ionic liquids for supercapacitor application. Appl. Phys. Lett. 2005, 86, 164104. [Google Scholar] [CrossRef]
- Balducci, A.; Dugas, R.; Taberna, P.L.; Simon, P.; Plée, D.; Mastragostino, M.; Passerini, S.J. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 2007, 165, 922–927. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Cassel, F.; Croce, F.; Hendrickson, M.; Plichta, E.; Salomon, M.J. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. J. Phys. Chem. B 2005, 109, 4492–4496. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Yong, H.H.; Lee, Y.J.; Kim, S.K.; Ahn, S. Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. J. Phys. Chem. B 2005, 109, 13663–13667. [Google Scholar] [CrossRef] [PubMed]
- Fredin, K.; Gorlov, M.; Pettersson, H.; Hagfeldt, A.; Kloo, L.; Boschloo, G. On the influence of anions in binary ionic liquid electrolytes for monolithic dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 13261–13266. [Google Scholar] [CrossRef]
- Pinilla, C.; Del Popolo, M.G.; Lynden-Bell, R.M.; Kohanoff, J. Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 17922–17927. [Google Scholar] [CrossRef]
- Caporali, S.; Marcantelli, P.; Chiappe, C.; Pomelli, C.S. Electrodeposition of transition metals from highly concentrated solutions of ionic liquids. Surf. Coat. Technol. 2015, 264, 23–31. [Google Scholar] [CrossRef]
- Barrado, E.; Rodriguez, J.A.; Hernández, P.; Castrillejo, Y. Electrochemical behavior of copper species in the 1-buthyl-3-methyl-imidazolium chloride (BMIMCl) ionic liquid on a Pt electrode. J. Electroanal. Chem. 2016, 768, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Gupta, S.K.; Gamre, J.S.; Lohithakshan, K.V.; Natarajan, V.; Aggarwal, S.K. Understanding the dynamics of Eu3+ ions in room-temperature ionic liquids—Electrochemical and time-resolved fluorescence spectroscopy studies. Eur. J. Inorg. Chem. 2015, 104–111. [Google Scholar] [CrossRef]
- Rama, R.; Rout, A.; Venkatesan, K.A.; Antony, M.P.; Rao, P.R.V. Electrochemical behavior of Eu(III) in imidazolium ionic liquid containing tri-n-butyl phosphate and N,N-dihexyloctanamide ligands. J. Electroanal. Chem. 2015, 757, 36–43. [Google Scholar] [CrossRef]
- Krishna, G.M.; Rout, A.; Venkatesan, K.A. Voltammetric investigation of some lanthanides in neutral ligand-ionic liquid. J. Electroanal. Chem. 2020, 856, 113671. [Google Scholar] [CrossRef]
- Sengupta, A.; Murali, M.S.; Mohapatra, P.K.; Iqbal, M.; Huskens, J.; Verboom, W. Extracted species of Np(IV) complex with diglycolamide functionalized task specific ionic liquid: Diffusion, kinetics and thermodynamics by cyclic voltammetry. J. Radioanal. Nucl. Chem. 2015, 304, 563–570. [Google Scholar] [CrossRef]
- Sengupta, A.; Murali, M.S.; Mohapatra, P.K.; Iqbal, M.; Huskens, J.; Verboom, W. Np(IV) complex with task-specific ionic liquid based on CMPO: First cyclic voltammetric study. Monatsh. Chem. 2015, 146, 1815–1821. [Google Scholar] [CrossRef]
- Rama, R.; Rout, A.; Venkatesan, K.A.; Antony, M.P. Effect of alkyl chain length of tri-n-alkyl phosphate extractants on the electrochemical behaviour of U(VI) in ionic liquid medium. J. Electroanal. Chem. 2016, 771, 87–93. [Google Scholar] [CrossRef]
- Krishna, G.M.; Suneesh, A.S.; Kumaresan, R.; Venkatesan, K.A.; Antony, M.P. Electrochemical behavior of U(VI) in imidazolium ionic liquid medium containing tri-n-butyl phosphate and chloride ion and spectroscopic characterization of uranyl species. ChemistrySelect 2017, 2, 8706–8715. [Google Scholar] [CrossRef]
- Krishna, G.M.; Venkatesan, K.A. Coordination and electrochemical behavior of U(VI) in dicyanamide ionic liquid. Vib. Spectrosc. 2019, 103, 102927. [Google Scholar] [CrossRef]
- Ejigu, A.; Greatorex-Davies, P.A.; Walsh, D.A. Room temperature ionic liquid electrolytes for redox flow batteries. Electrochem. Commun. 2015, 54, 55–59. [Google Scholar] [CrossRef]
- Balo, L.; Shalu; Gupta, H.; Singh, V.K.; Singh, R.K. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim. Acta 2017, 230, 123–131. [Google Scholar] [CrossRef]
- Prasanna, C.M.S.; Suthanthiraraj, S.A. Dielectric and thermal features of zinc ion conducting gel polymer electrolytes (GPEs) containing PVC / PEMA blend and EMIMTFSI ionic liquid. Ionics 2018, 24, 2631–2646. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Lan, X.; Huo, Y. Imidazolium-based ionic liquids as electrolyte additives for high-voltage Li-ion batteries. Res. Chem. Intermed. 2020, 46, 3007–3023. [Google Scholar] [CrossRef]
- Das, S.K.; Palaniselvam, T.; Adelhelm, P. Electrochemical study on the rechargeability of TiO2 as electrode material for Al-ion batteries with chloroaluminate ionic liquid electrolyte. Solid State Ion. 2019, 340, 115017. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, R.; Ma, Z.; Zhu, W. Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. ChemElectroChem 2019, 6, 4681–4688. [Google Scholar] [CrossRef]
- Benchakar, M.; Naéjus, R.; Damas, C.; Santos-Peña, J. Exploring the use of EMImFSI ionic liquid as additive or co-solvent for room temperature sodium ion battery electrolytes. Electrochim. Acta 2020, 330, 135193. [Google Scholar] [CrossRef]
- Wong, S.I.; Lin, H.; Sunarso, J.; Wong, B.T.; Jia, B. Optimization of ionic-liquid based electrolyte concentration for high-energydensity graphene supercapacitors. App. Mat. Today 2020, 18, 100522. [Google Scholar] [CrossRef]
- Bentley, C.L.; Bond, A.M.; Hollenkamp, A.F.; Mahon, P.J.; Zhang, J. Electrochemistry of iodide, iodine, and iodine monochloride in chloride containing nonhaloaluminate ionic liquids. Anal. Chem. 2016, 88, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, M.V.; Gribov, E.N. Electrochemical behavior and structure evolution of polyaniline/carbon composites in ionic liquid electrolyte. J. Solid State Electrochem. 2020, 24, 739–751. [Google Scholar] [CrossRef]
- Honores, J.; Quezada, D.; García, M.; Calfumán, K.; Muena, J.P.; Aguirre, M.J.; Arévalo, M.C.; Isaacs, M. Carbon neutral electrochemical conversion of carbon dioxide mediated by [Mn+(cyclam)Cln] (M = Ni2+ and Co3+) on mercury free electrodes and ionic liquids as reaction media. Green Chem. 2017, 19, 1155–1162. [Google Scholar] [CrossRef]
- Medina-Ramos, J.; Zhang, W.; Yoon, K.; Bai, P.; Chemburkar, A.; Tang, W.; Atifi, A.; Lee, S.S.; Fister, T.T.; Ingram, B.J.; et al. Cathodic corrosion at the bismuth−ionic liquid electrolyte interface under conditions for CO2 reduction. Chem. Mater. 2018, 30, 2362–2373. [Google Scholar] [CrossRef]
- Ratschmeier, B.; Kemna, A.; Braunschweig, B. Role of H2O for CO2 reduction reactions at platinum/electrolyte interfaces in imidazolium room-temperature ionic liquids. ChemElectroChem 2020, 7, 1765–1774. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, X.; McMahan, J.; Kumar, A.; Khan, A.; Sevilla, M.; Zeng, X. Adsorption and electrochemistry of carbon monoxide at the ionic liquid−Pt interface. J. Phys. Chem. B 2019, 123, 4726–4734. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, J.; Yin, W.; Yu, J.; Chen, R.; Song, D.; Liu, Q.; Li, R.; Wang, J. Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing. Talanta 2020, 209, 120515. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, W.; Wu, T.; Ma, X.; Jiang, K.; Jin, X. Monoethanolamine-enabled electrochemical detection of H2S in a hydroxylfunctionalized ionic liquid. Electrochem. Commun. 2018, 88, 93–96. [Google Scholar] [CrossRef]
- Bhise, S.C.; Awale, D.V.; Vadiyar, M.M.; Patil, S.K.; Ghorpade, U.V.; Kokare, B.N.; Kim, J.H.; Kolekar, S.S. A mesoporous nickel oxide nanosheet as an electrode material for supercapacitor application using the 1-(2_,3_-dihydroxypropyl)-3- methylimidazolium hydroxide ionic liquid electrolyte. Bull. Mater. Sci. 2019, 42, 263. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Dutta, T.; Borah, R. Comparative study of the physical and electrochemical behavior of direct N-SO3H functionalized 1, 3-disulfo-2-alkyl imidazolium trifluoroacetate ionic liquids in molecular solvents. J. Mol. Liq. 2019, 289, 111099. [Google Scholar] [CrossRef]
- Tayade, S.; Patil, K.; Sharma, G.; Patil, P.; Mane, R.M.; Mahulikar, P.; Sharma, K.K.K. Electrochemical investigations of thymine and thymidine in 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquids at room temperature. Chem. Pap. 2019, 73, 2275–2282. [Google Scholar] [CrossRef]
- Sultana, S.; Tachikawa, N.; Yoshii, K.; Magagnin, L.; Toshima, K.; Katayama, Y. Electrochemical behavior of bis(acetylacetonato)platinum(II) complex in an amide-type ionic liquid. J. Electrochem. Soc. 2016, 163, D401–D406. [Google Scholar] [CrossRef]
- Bhujbal, A.V.; Rout, A.; Venkatesan, K.A.; Bhanage, B.M. Electrochemical behavior and direct electrodeposition of UO2 nanoparticles from uranyl nitrate dissolved in an ammonium-based ionic liquid. J. Mol. Liq. 2020, 307, 112975. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Maslakov, K.I.; Egorov, A.V.; Savilov, S.V.; Lunin, V.V. Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte. Microporous Mesoporous Mater. 2020, 294, 109851. [Google Scholar] [CrossRef]
- Pajak, M.; Hubkowska, K.; Czerwinski, A. Nitrate protic ionic liquids as electrolytes: Towards hydrogen sorption in Pd. Electrochim. Acta 2019, 324, 134851. [Google Scholar] [CrossRef]
- Bouvet, C.B.; Krautscheid, H. Chiral and redox-active room-temperature ionic liquids based on ferrocene and L-proline. Eur. J. Inorg. Chem. 2016, 4573–4580. [Google Scholar] [CrossRef]
- Sultana, S.; Tachikawa, N.; Yoshii, K.; Toshima, K.; Magagnin, L.; Katayama, Y. Electrochemical preparation of platinum nanoparticles from bis (acetylacetonato)platinum(II) in some aprotic amide-type ionic liquids. Electrochim. Acta 2017, 249, 263–270. [Google Scholar] [CrossRef]
- Manjum, M.; Tachikawa, N.; Serizawa, N.; Katayama, Y. Electrochemical behavior of samarium species in an amide-type ionic liquid at different temperatures. J. Electrochem. Soc. 2019, 166, D483–D486. [Google Scholar] [CrossRef]
- Ma, N.; Kosasang, S.; Phattharasupakun, N.; Sawangphruk, M. Addition of redox additive to ionic liquid electrolyte for high-performance electrochemical capacitors of N-doped graphene aerogel. J. Electrochem. Soc. 2019, 166, A695–A703. [Google Scholar] [CrossRef]
- Endrikat, A.; Borisenko, N.; Ispas, A.; Peipmann, R.; Endres, F.; Bund, A. Electrochemical reduction mechanism of NbF5 and NbCl5 in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate. Electrochim. Acta 2019, 321, 134600. [Google Scholar] [CrossRef]
- Lahiri, A.; Pulletikurthi, G.; El Abedin, S.Z.; Endres, F. Electrodeposition of Ge, Sn and GexSn1-x from two different room temperature ionic liquids. J. Solid State Electrochem. 2015, 19, 785–793. [Google Scholar] [CrossRef]
- Gligor, D.; Cuibus, F.; Peipmann, R.; Bund, A. Novel amperometric sensors for nitrite detection using electrodes modified with PEDOT prepared in ionic liquids. J. Solid State Electrochem. 2017, 21, 281–290. [Google Scholar] [CrossRef]
- Girard, G.M.A.; Hilder, M.; Zhu, H.; Nucciarone, D.; Whitbread, K.; Zavorine, S.; Moser, M.; Forsyth, M.; MacFarlane, D.R.; Howlett, P.C. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Phys. Chem. Chem. Phys. 2015, 17, 8706–8713. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Arkhipova, D.M.; Shekurov, R.P.; Gerasimova, T.P.; Ermolaev, V.V.; Islamov, D.R.; Miluykov, V.A.; Kataeva, O.N.; Khrizanforova, V.V.; Sinyashin, O.G.; et al. Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J. Solid State Electrochem. 2015, 19, 2883–2890. [Google Scholar] [CrossRef]
- Ota, H.; Matsumiya, M.; Sasaya, N.; Nishihata, K.; Tsunashima, K. Investigation of electrodeposition behavior for Nd(III) in [P2225][TFSA] ionic liquid by EQCM methods with elevated temperatures. Electrochim. Acta 2016, 222, 20–26. [Google Scholar] [CrossRef]
- Venker, A.; Vollgraff, T.; Sundermeyer, J. Ferrocenyl-sulfonium ionic liquids—Synthesis, characterization and electrochemistry. Dalton Trans. 2018, 47, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, V.S.; Thayumanasundaram, S.; Locquet, J.-P. Ionic liquid electrolytes based on sulfonium cation for lithium rechargeable batteries. Electrochim. Acta 2019, 328, 135133. [Google Scholar] [CrossRef]
- Klein, J.M.; Panichi, E.; Gurkan, B. Potential dependent capacitance of [EMIM][TFSI], [N1114][TFSI] and [PYR13][TFSI] ionic liquids on glassy carbon. Phys. Chem. Chem. Phys. 2018, 21, 3712–3720. [Google Scholar] [CrossRef] [PubMed]
- Vélez, J.F.; Vázquez-Santos, M.B.; Amarilla, J.M.; Herradón, B.; Mann, E.; del Río, C.; Morales, E. Geminal pyrrolidinium and piperidinium dicationic ionic liquid electrolytes. Synthesis, characterization and cell performance in LiMn2O4 rechargeable lithium cells. J. Power Sources 2019, 439, 227098. [Google Scholar] [CrossRef]
- Hernández-Vargas, S.G.; Cevallos-Morillo, C.A.; Aguilar-Cordero, J.C. Effect of ionic liquid structure on the electrochemical response of dopamine at room temperature ionic liquid-modified carbon paste electrodes (IL–CPE). Electroanalysis 2020, 32, 1–12. [Google Scholar] [CrossRef]
- Zhou, J.; Sui, H.; Jia, Z.; Yang, Z.; He, L.; Li, X. Recovery and purification of ionic liquids from solutions: A review. RSC Adv. 2018, 8, 32832–32864. [Google Scholar] [CrossRef] [Green Version]
- Amith, W.D.; Araque, J.C.; Margulis, C.J. A Pictorial View of Viscosity in Ionic Liquids and the Link to Nanostructural Heterogeneity. J. Phys. Chem. Lett. 2020, 11, 2062–2066. [Google Scholar] [CrossRef] [Green Version]
- 1-Butyl-3-methylimidazolium tetrafluoroborate, 98+%, ACROS OrganicsTM, Fisherscientific. Available online: https://www.fishersci.com/shop/products/1-butyl-3-methylimidazolium-tetrafluoroborate-98-acros-organics-3/AC354211000 (accessed on 7 November 2020).
General Properties | Features |
---|---|
Low melting point Non volatility Composed by ions Organic ions | • Treated as liquid at ambient temperature • Wide temperature interval for applications • Thermal stability • Flame retardancy • High ion density • High ion conductivity • Designable/Tuneable • Unlimited combinations possible |
Cation | |
Anion |
Methods | Characteristics | |
---|---|---|
Distillation | Distillation of volatile compounds | ILs are remained as residue. |
Distillation through reactions of ILs | ILs are distilled as neutral species or intact ion pairs. | |
Extraction | Extraction with water | Extract hydrophilic solutes from hydrophobic ILs. |
Extraction with organic solvents | Extract hydrophobic solutes from ILs. | |
Extraction with scCO2 | Both hydrophobic and hydrophilic ILs can be separated. | |
Adsorption | Adsorption by ACs | Affected by pore structure and surface chemistry of ACs. |
Adsorption by soils and sediments | Affected by TOC and CEC of soils. | |
AAdsorption by ion exchange resins | Affected by functional group and ionic form of resins. | |
Membrane separation | Pressure-driven membrane techniques | ILs can be either permeated or rejected. |
Pervaporation | ILs are rejected while volatile species are permeated. | |
Membrane distillation | ILs are rejected while water vapor is permeated. | |
Electrodialysis | Cations and anions of ILs cross ion exchange membranes. | |
Aqueous two-phase extraction (ATPE) | ATPE based on chemicals addition | Formation of ATPS by adding salts, carbohydrates or CO2. |
ATPE based on changing temperature | Formation of ATPS or LCST-type phase separation. | |
Crystallization | Solution crystallization | ILs are crystallized from solution. |
Melt crystallization | ILs are crystallized from melt. | |
Pressure-induced crystallization | ILs are crystallized under high pressure. | |
Force field | Gravity separation | ILs are separated from immiscible liquids. |
Centrifugation | ILs emulsion were separated by centrifugation. | |
Magnetic separation | ILs are separated by magnetic field. |
Methods | Advantages | Disadvantages |
---|---|---|
Distillation | Simple to operate | Energy consuming |
Low impurity | ||
Extraction | Simple, low cost | Limited application |
Cross-contamination | ||
Requirement of special apparatus | ||
Adsorption | Non-destructive, suitable for diluted solutions | Insufficient desorption data |
Membrane separation | Low energy demand, selective permeability | Concentration polarization |
Large membrane area | ||
Membrane fouling | ||
Membrane fouling | ||
Aqueous two-phase extraction | Rapid, low-cost, scalable | High concentration of salts or organics |
Limited application | ||
Crystallization | High purity | Energy consuming |
Force field | Simple, low energy demand | Low separation rate |
Small throughput | ||
Limited application |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiago, G.A.O.; Matias, I.A.S.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules 2020, 25, 5812. https://doi.org/10.3390/molecules25245812
Tiago GAO, Matias IAS, Ribeiro APC, Martins LMDRS. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules. 2020; 25(24):5812. https://doi.org/10.3390/molecules25245812
Chicago/Turabian StyleTiago, Gonçalo A. O., Inês A. S. Matias, Ana P. C. Ribeiro, and Luísa M. D. R. S. Martins. 2020. "Application of Ionic Liquids in Electrochemistry—Recent Advances" Molecules 25, no. 24: 5812. https://doi.org/10.3390/molecules25245812
APA StyleTiago, G. A. O., Matias, I. A. S., Ribeiro, A. P. C., & Martins, L. M. D. R. S. (2020). Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules, 25(24), 5812. https://doi.org/10.3390/molecules25245812