Effect of Transitional Metals (Mn and Ni) Substitution in LiCoPO4 Olivines
Abstract
:1. Introduction
2. Results
2.1. X-Ray Diffraction
2.2. XANES
2.3. EXAFS
2.4. Galvanostatic Cycling
3. Discussion
- (a)
- The cell contraction along the a and c lattice axes,
- (b)
- The expansion/deformation of the TMO6 octahedra that share the O1 and O3 centers with the LiO6 octahedra,
- (c)
- The shift or deformation of the PO4 tetrahedra that share the O2 centers with the LiO6 octahedra,
- (d)
- The occurrence of extended anti-site disorder between the 4a and the 4c sites respectively occupied by the Li and TM ions,
- (e)
- The occurrence of lithium vacancies on the 4a lattice site.
4. Materials and Methods
4.1. Synthesis Route
4.2. X-ray Diffraction Experiments
4.3. X-Ray Absorption Experiments
4.4. Electrochemical Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brutti, S.; Panero, S. Recent Advances in the Development of LiCoPO4 as High Voltage Cathode Material for Li-Ion Batteries. ACS Symp. Ser. 2013, 1140, 67–99. [Google Scholar]
- Brutti, S.; Manzi, J.; De Bonis, A.; Di Lecce, D.; Vitucci, F.; Paolone, A.; Trequattrini, F.; Panero, S. Controlled Synthesis of LiCoPO4 by a Solvo-Thermal Method at 220 °C. Mater. Lett. 2015, 145, 324–327. [Google Scholar] [CrossRef]
- Di Lecce, D.; Manzi, J.; Vitucci, F.M.; De Bonis, A.; Panero, S.; Brutti, S. Effect of the Iron Doping in LiCoPO4 Cathode Materials for Lithium Cells. Electrochim. Acta 2015, 185, 17–27. [Google Scholar] [CrossRef]
- Boulineau, A.; Gutel, T. Revealing Electrochemically Induced Antisite Defects in LiCoPO4: Evolution upon Cycling. Chem. Mater. 2015, 27, 802–807. [Google Scholar] [CrossRef]
- Bramnik, N.N.; Nikolowski, K.; Baehtz, C.; Bramnik, K.G.; Ehrenberg, H. Phase Transitions Occurring upon Lithium Insertion−Extraction of LiCoPO4. Chem. Mater. 2007, 19, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Manzi, J.; Vitucci, F.M.; Paolone, A.; Trequattrini, F.; Di Lecce, D.; Panero, S.; Brutti, S. Analysis of the Self-Discharge Process in LiCoPO4 Electrodes: Bulks. Electrochim. Acta 2015, 179, 604–610. [Google Scholar]
- Han, D.-W.W.; Kang, Y.-M.M.; Yin, R.-Z.Z.; Song, M.-S.S.; Kwon, H.-S.S. Effects of Fe Doping on the Electrochemical Performance of LiCoPO4/C Composites for High Power-Density Cathode Materials. Electrochem. Commun. 2009, 11, 137–140. [Google Scholar] [CrossRef]
- Allen, J.L.L.; Jow, T.R.R.; Wolfenstine, J. Improved Cycle Life of Fe-Substituted LiCoPO4. J. Power Sources 2011, 196, 8656–8661. [Google Scholar] [CrossRef]
- Allen, J.L.; Thompson, T.; Sakamoto, J.; Becker, C.R.; Jow, T.R.; Wolfenstine, J. Transport Properties of LiCoPO4 and Fe-Substituted LiCoPO4. J. Power Sources 2014, 254, 204–208. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, H.; Zhang, Y.; Liu, L.; Wang, Y. Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J. Power Sources 2016, 312, 101–108. [Google Scholar] [CrossRef]
- Yang, S.M.G.; Aravindan, V.; Cho, W.I.; Chang, D.R.; Kim, H.S.; Lee, Y.S. Realizing the Performance of LiCoPO4 Cathodes by Fe Substitution with Off-Stoichiometry. J. Electrochem. Soc. 2012, 159, A1013–A1018. [Google Scholar] [CrossRef]
- Strobridge, F.C.; Middlemiss, D.S.; Pell, A.J.; Leskes, M.; Clément, R.J.; Pourpoint, F.; Lu, Z.; Hanna, J.V.; Pintacuda, G.; Emsley, L.; et al. Characterising Local Environments in High Energy Density Li-Ion Battery Cathodes: A Combined NMR and First Principles Study of LiFexCo1−xPO4. J. Mater. Chem. A 2014, 2, 11948. [Google Scholar] [CrossRef]
- Kosova, N.V.; Podgornova, O.A.; Devyatkina, E.T.; Podugolnikov, V.R.; Petrov, S.A. Effect of Fe2+ Substitution on the Structure and Electrochemistry of LiCoPO4 Prepared by Mechanochemically Assisted Carbothermal Reduction. J. Mater. Chem. A 2014, 2, 20697–20705. [Google Scholar] [CrossRef]
- Brutti, S.; Manzi, J.; Meggiolaro, D.; Vitucci, F.M.; Trequattrini, F.; Paolone, A.; Palumbo, O. Close interplay between local structure and transport properties in iron-doped LiCoPO4. J. Mater. Chem. A 2017, 5, 14020–14030. [Google Scholar] [CrossRef]
- Lin, Z.-P.; Zhao, Y.-J.; Zhao, Y.-M. Li-site and metal-site ion doping in phosphate-olivine LiCoPO4 by first-principles calculation. Chin. Phys. Lett. 2009, 26, 038202–1/4. [Google Scholar]
- Lin, Z.-P.; Zhao, Y.-M.; Zhao, Y.-J. First-principles studies of Mn-doped LiCoPO4. Chin. Phys. B 2011, 20, 018201-1/6. [Google Scholar] [CrossRef]
- Wolfenstine, J.; Allen, J. LiNiPO4-LiCoPO4 solid solutions as cathodes. J. Power Sources 2004, 136, 150–153. [Google Scholar] [CrossRef]
- Shanmukaray, D.; Murugan, R. Synthesis and characterization of LiNiyCo1-yPO4 (y= 0–1) cathode materials for lithium secondary batteries. Ionics 2004, 10, 88–92. [Google Scholar] [CrossRef]
- Taniguchi, I.; Doan, T.N.L.; Shao, B. Synthesis and electrochemical characterization of LiCoxMn1-xPO4/C nanocomposites. Electrochimica Acta 2011, 56, 7680–7685. [Google Scholar] [CrossRef]
- Li, M. Solvothermal synthesis of LiCo1-xMnxPO4/C cathode materials for lithium-ion batteries. Ionics 2012, 18, 507–512. [Google Scholar]
- Snyder, R.L.; Bish, D.L. Quantitative Analysis, Rev. Mineral. Geochemistry 1989, 20, 101–144. [Google Scholar]
- Kang, Y.-M.M.; Kim, Y.-I.U.J.; Oh, M.-W.; Yin, R.-Z.; Lee, Y.; Han, D.-W.; Kwon, H.-S.; Kim, J.H.; Ramanath, G. Structurally Stabilized Olivine Lithium Phosphate Cathodes with Enhanced Electrochemical Properties through Fe Doping. Energy Environ. Sci. 2011, 4, 4978. [Google Scholar] [CrossRef]
- Gaskell, D.R. The Ellingham diagrams. In Introduction to the Thermodynamics of Materials, 3rd ed.; Taylor and Francis: Abingdon, UK, 1995. [Google Scholar]
- Deb, A.; Bergmann, U.; Cramer, S.P.; Cairns, E.J. Structural Investigations of LiFePO4 Electrodes and in Situ Studies by Fe X-Ray Absorption Spectroscopy. Electrochim. Acta 2005, 50, 5200–5207. [Google Scholar] [CrossRef]
- Haas, O.; Deb, A.; Cairns, E.J.; Wokaun, A. Synchrotron X-Ray Absorption Study of LiFePO4Electrodes. J. Electrochem. Soc. 2005, 152, A191. [Google Scholar] [CrossRef]
- Brutti, S.; Manzi, J.; De Bonis, A.; Di Lecce, D.; Vitucci, F.; Paolone, A.; Trequattrini, F.; Panero, S. Corrigendum to “Controlled Synthesis of LiCoPO4 by a Solvo-Thermal Method at 220 °C” [Mater. Lett. 145 (2015) 324–327]. Mater. Lett. 2016, 172, 98. [Google Scholar] [CrossRef]
- Manzi, J.; Curcio, M.; Brutti, S. Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications. Nanomaterials 2015, 5, 2212–2230. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Chen, H.; Robert, R.; Zhu, B.Y.X.; Deng, J.; Wu, L.; Chung, C.Y.; Grey, C.P. Citric acid- and ammonium-mediated morphological transformations of olivine LiFePO4 particles. Chem. Mater. 2011, 23, 2848–2859. [Google Scholar] [CrossRef]
- Von Dreele, R.B.; Larson, A.C. General structure analysis system (GSAS). Los Alamos Natl. Lab. Rep. LAUR 2000, 86–748. [Google Scholar]
- Klementev, K.V. Extraction of the Fine Structure from X-Ray Absorption Spectra. J. Phys. D Appl. Phys. 2001, 34, 209–217. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Sample Coding | Tann Under Ar Flow | Li:Co:Mn:Ni Ratio by ICP-OES | CoSO4:Mn(Ni)SO4 Molar Ratio | Experimental Stoichiometry |
---|---|---|---|---|
LCmP | 0.933:1.001:0.104:0 | 9.0:1.0 | Li0.89(Co0.9Mn0.1)1.04PO4 | |
LCmP@Ar | 700 °C | 0.936:1.002:0.105:0 | 9.2:1.0 | Li0.89(Co0.9Mn0.1)1.04PO4 |
LCnP | 1.055:0.933:0:0.096 | 9.0:1.0 | Li1.02(Co0.9Ni0.1)0.99PO4 | |
LCnP@Ar | 700 °C | 1.051:0.941:0:0.099 | 8.9:1.0 | Li1.01(Co0.9Ni0.1)1.00PO4 |
Stoichiometry and Vacancy Occupation Factor on the (4a) Wycoff Site | Cell Volume Å3 | Cell Parameters Å | Antisite Disorder Occupancy (4a/4c) | wRp |
---|---|---|---|---|
Sample LCmP | ||||
Li0.89 (Co0.9Mn0.1)1.04PO4 Occ.(vac, 4a) = 0.05 | 286.1 (2) | a = 10.232 (1) b = 5.935 (1) c = 4.710 (1) | 0.046 | 0.0489 |
Sample LCmP@Ar | ||||
Li0.89(Co0.9Mn0.1)1.04PO4 Occ.(vac, 4a) = 0.05 | 287.6 (1) | a = 10.250 (1) b = 5.951 (1) c = 4.716(1) | 0.048 | 0.0422 |
Sample LCnP | ||||
Li1.01(Co0.9Ni0.1)0.99PO4 Occ.(vac, 4a) = 0 | 286.2 (1) | a = 10.230 (1) b = 5.934 (1) c = 4.715 (1) | 0.06 | 0.0503 |
Sample LCnP@Ar | ||||
Li1.01(Co0.9Ni0.1)0.99PO4 Occ.(vac, 4a) = 0 | 285.2 (1) | a = 10.212 (1) b = 5.925(5) c = 4.713 (4) | 0.045 | 0.0495 |
Reference LCP [14] | ||||
LiCoPO4 | 284.3 (4) | a = 10.207 (3) b = 5.923 (1) c = 4.702 (3) | 0.006 | 0.0250 |
LCmP | LCmP@Ar | LCnP | LCnP@Ar | LCP [14] |
---|---|---|---|---|
Mn-O | ||||
2.08 (x2) | 2.08 (x2) | 2.11 (x2) | 2.13 (x2) | 2.06 (x2) |
2.08 | 2.05 | 2.05 | 2.05 | 2.09 |
2.08 | 2.14 | 2.21 | 2.16 | 2.17 |
2.21 (x2) | 2.21 (x2) | 2.23 (x2) | 2.18 (x2) | 2.20 (x2) |
Mean | ||||
2.12 | 2.13 | 2.16 | 2.14 | 2.13 |
M-P | ||||
2.77 | 2.79 | 2.78 | 2.76 | 2.79 |
M-Li | ||||
3.22 | 3.22 | 3.22 | 3.20 | 3.21 |
Shell | M-Z | C-N | Co K-edge | Mn K-edge | ||
---|---|---|---|---|---|---|
LCmP | LCmP@Ar | LCmP | LCmP@Ar | |||
M-O | 2 | 1.90 | 1.96 | 1.94 | 1.93 | |
1st shell | M-O | 2 | 2.01 | 2.06 | 2.05 | 2.04 |
M-O | 2 | 2.16 | 2.18 | 2.22 | 2.19 | |
M-P | 1 | 2.81 | 2.82 | 2.83 | 2.90 | |
2nd shell | M-P | 4 | 3.26 | 3.29 | 3.27 | 3.28 |
M-O | 6 | 3.57 | 3.39 | 3.63 | 3.59 | |
M-M’ | 4 | 3.88 | 3.84 | 3.80 | 3.81 | |
3rd shell | M-M’ | 2 | 4.76 | 4.74 | 4.63 | 4.42 |
R factor (%) | 4.9 | 7.9 | 4.8 | 9.7 |
Shell | M-Z | C-N | Co K-edge | Ni K-edge | ||
---|---|---|---|---|---|---|
LCnP | LCnP@Ar | LCnP | LCnP@Ar | |||
M-O | 2 | 1.91 | 1.84 | 1.86 | 1.97 | |
1st shell | M-O | 2 | 2.01 | 2.01 | 2.00 | 2.05 |
M-O | 2 | 2.16 | 2.17 | 2.15 | 2.14 | |
M-P | 1 | 2.86 | 2.84 | 2.84 | 2.77 | |
2nd shell | M-P | 4 | 3.27 | 3.27 | 3.29 | 3.20 |
M-O | 6 | 3.53 | 3.56 | 3.34 | 3.63 | |
M-M’ | 4 | 3.84 | 3.87 | 3.97 | 3.80 | |
3rd shell | M-M’ | 2 | 4.71 | 4.75 | 4.86 | 4.72 |
R factor (%) | 3.9 | 5.9 | 8.6 | 16.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, O.; Manzi, J.; Meggiolaro, D.; Vitucci, F.M.; Trequattrini, F.; Curcio, M.; Paolone, A.; Brutti, S. Effect of Transitional Metals (Mn and Ni) Substitution in LiCoPO4 Olivines. Molecules 2020, 25, 601. https://doi.org/10.3390/molecules25030601
Palumbo O, Manzi J, Meggiolaro D, Vitucci FM, Trequattrini F, Curcio M, Paolone A, Brutti S. Effect of Transitional Metals (Mn and Ni) Substitution in LiCoPO4 Olivines. Molecules. 2020; 25(3):601. https://doi.org/10.3390/molecules25030601
Chicago/Turabian StylePalumbo, Oriele, Jessica Manzi, Daniele Meggiolaro, Francesco M. Vitucci, Francesco Trequattrini, Mariangela Curcio, Annalisa Paolone, and Sergio Brutti. 2020. "Effect of Transitional Metals (Mn and Ni) Substitution in LiCoPO4 Olivines" Molecules 25, no. 3: 601. https://doi.org/10.3390/molecules25030601
APA StylePalumbo, O., Manzi, J., Meggiolaro, D., Vitucci, F. M., Trequattrini, F., Curcio, M., Paolone, A., & Brutti, S. (2020). Effect of Transitional Metals (Mn and Ni) Substitution in LiCoPO4 Olivines. Molecules, 25(3), 601. https://doi.org/10.3390/molecules25030601