High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process
Abstract
:1. Introduction
2. Results
2.1. Disintegration of Activated Sludge by Electro-Fenton Process
2.1.1. Physicochemical Analysis
2.1.2. Capillary Suction Time (CST) Analysis
2.1.3. Fourier Transform Infrared Spectroscopy Analysis (FTIR)
2.1.4. Biogas Potential
2.2. Semi-Continuous Fermentation of Raw and Pretreated WAS
3. Discussion
4. Materials and Methods
4.1. WAS and Anaerobic Inoculum
4.2. Electro-Fenton Pretreatment
4.3. Batch Anaerobic Digestion
4.4. Semi-Continuous Anaerobic Reactor
4.5. Analytical Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
COD | chemical oxygen demand |
CST | capillary suction time |
EF | electro-Fenton |
FTIR | Fourier transform infrared spectroscopy |
OLR | organic loading rate |
VFA | volatile fatty acids |
WAS | waste activated sludge |
References and Note
- Ennouri, H.; Miladi, B.; Diaz, S.Z.; Gûelfo, L.A.F.; Solera, R.; Hamdi, M.; Bouallagui, H. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour. Technol. 2016, 214, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Neczaj, E.; Grosser, A. Biogas production by thermal hydrolysis and thermophilic anaerobic digestion of waste-activated sludge. Ind. Munic. Sludge 2019, 741–781. [Google Scholar]
- Akgul, D.; Cella, M.A.; Eskicioglu, C. Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge. Energy 2017, 123, 271–282. [Google Scholar] [CrossRef]
- Kim, J.; Yu, Y.; Lee, C. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: Effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 2013, 144, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Tong, Y.W.; Peng, Y.H. A comparative life cycle assessment on mono- and co-digestion of food waste and sewage sludge. Energy Procedia 2019, 158, 4166–4171. [Google Scholar] [CrossRef]
- Devlin, D.C.; Esteves, S.R.R.; Dinsdale, R.M.; Guwy, A.J. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 2011, 102, 4076–4082. [Google Scholar] [CrossRef]
- Müller, J.; Lehne, G.; Schwedes, J.; Battenberg, S.; Naveke, R.; Kopp, J.; Dichtl, N.; Scheminski, A.; Krull, R.; Hempel, D.C. Disintegration of sewage sludges and influence on anaerobic digestion. Water Sci. Technol. 1998, 38, 425–433. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Wang, Y.; Jiang, Q.; Liu, H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresour. Technol. 2012, 106, 20–26. [Google Scholar] [CrossRef]
- Nges, I.A.; Liu, J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew. Energy 2010, 35, 2200–2206. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degreve, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Gonzalez, A.; Hendriks, A.T.W.M.; Vanlier, J.B.; Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1431–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulun, S.; Bilgin, M. Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment. Fuel 2019, 254, 115671. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Wang, D.; Yang, Q.; Xu, Q.; Deng, Y.; Yang, W.; Zeng, G. An efficient and green pretreatment to stimulate short chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere 2016, 144, 160–167. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 2012, 40, 105–111. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Lee, K.; Chantrasakdakul, P.; Kim, D.; Kong, M.; Park, K.Y. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. Waste Manag. 2014, 34, 1035–1040. [Google Scholar] [CrossRef]
- Ehimen, E.A.; Hom-Nielsen, J.B.; Poulsen, M.; Boelsmand, J.E. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew. Energy 2013, 50, 476–480. [Google Scholar] [CrossRef]
- Luo, K.; Yang, Q.; Li, X.; Yang, G.; Liu, Y.; Wang, D.; Zheng, W.; Zeng, G. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochem. Eng. J. 2012, 62, 17–21. [Google Scholar] [CrossRef]
- Ana, R.R.; Olga, C.N.; Manuel, F.R.P.; Adrián, M.T.S. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar]
- Anjum, M.; Al-Talhi, H.A.; Mohamed, S.A.; Kumar, R.; Barakat, M.A. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production. J. Environ. Manag. 2018, 216, 120–127. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Li, J.; Xiao, L. Rapid and efficient activated sludge treatment by electro- Fenton oxidation. Water Res. 2019, 152, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Khoufi, S.; Feki, F.; Sayadi, S. Detoxification of olive mill wastewater by electrocoagulation an sedimentation processes. J. Hazard. Mater. 2007, 142, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Israilides, C.J.; Vlyssides, A.G.; Mourafeti, V.N.; Kavouni, G. Olive oil wastewater treatment with the use of an electrolysis system. Bioresour. Technol. 1997, 61, 163–170. [Google Scholar] [CrossRef]
- Chen, W.; Gao, X.; Xu, H.; Cai, Y.; Cui, J. Influence of extracellular polymeric substances (EPS) treated by combined ultrasound pretreatment and chemical re-flocculation on water treatment sludge settling performance. Chemosphere 2017, 170, 196–206. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, H.; Lin, J.; Yuan, W. Evaluation of thermal, thermal-alkaline, alkaline and electrochemical pretreatments on sludge to enhance anaerobic biogas production. J. Taiwan Inst. Chem. Eng. 2014, 45, 2531–2536. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, M.; Li, D.P. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system. Appl. Biochem Biotechnol. 2014, 172, 11. [Google Scholar] [CrossRef]
- Gulbin, E.; Filibeli, A. Improving anaerobic biodegradability of biological sludges by Fenton pre-treatment: Effects on single stage and two-stage anaerobic digestion. Desalination 2010, 251, 58–63. [Google Scholar]
- Jin, B.; Wilén, B.-M.; Lant, P. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chem. Eng. J. 2004, 98, 115–126. [Google Scholar] [CrossRef]
- Hernando, A.; Hernando, R.; Plastino, A. Space–time correlations in urban sprawl. J. R. Soc. Interface 2014, 11, 20130930. [Google Scholar] [CrossRef]
- Peng, Z.; Fang, F.; Chen, Y.P.; Shen, Y.; Zhang, W.; Yang, J.X.; Li, C.H.; Guo, J.S.; Liu, S.Y.; Huang, Y.; et al. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation. Chemosphere 2014, 117, 59–65. [Google Scholar]
- Zhang, L.; Vrieze, J.D.; Hendrickx, T.L.G.; Wei, W.; Temmink, H.; Rijnaarts, H.; Zeeman, G. Anaerobic treatment of raw domestic wastewater in a UASB-digester at 10 °C and microbial community dynamics. Chem. Eng. J. 2018, 334, 2088–2097. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Zhu, N.; Zhang, H.; Li, Y.; He, S.; Yang, C.; Yao, H. A comprehensive insight into the combined effects of Fenton’s reagent and skeleton builders on sludge deep dewatering performance. J. Hazard. Mater. 2013, 258, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shen, K.; Ding, T.; Cui, J.; Ding, M.; Lu, C. Dewatering of drinking water treatment sludge using the Fenton-like process induced by electro-osmosis. Chem. Eng. J. 2016, 293, 207–215. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, Y.; Long, Y.; Zhu, Y.; Wang, H.; Lu, W. Evaluation of the biological stability of waste during landfill stabilization by thermogravimetric analysis and Fourier transform infrared spectroscopy. Bioresour. Technol. 2011, 102, 9403–9408. [Google Scholar] [CrossRef] [PubMed]
- Smidt, E.; Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007, 27, 268–276. [Google Scholar] [CrossRef]
- Naumann, A.; Heine, G.; Rauber, R. Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. Field Crop. Res. 2010, 119, 78–84. [Google Scholar] [CrossRef]
- Dewil, R.; Appels, L.; Baeyens, J.; Buczynska, A.; Vaeck, L.V. The analysis of volatile siloxanes in waste activated sludge. Talanta 2007, 74, 14–19. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Huang, S.; Zeeman, G.; Rijnaarts, H.; Liu, Y. Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment. Biochem. Eng. J. 2018, 135, 71–78. [Google Scholar] [CrossRef]
- Chong, S.; Kanti Sen, T.; Kayaalp, A.; Ming Ang, H. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatmentA State-of-the-art review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew. Sustain. Energy Rev. 2012, 16, 1696–1708. [Google Scholar] [CrossRef]
- Nair, A.T.; Ahammed, M.M. The reuse of water treatment sludge as a coagulant for post-treatment of UASB reactor treating urban wastewater. J. Clean. Prod. 2015, 96, 272–281. [Google Scholar] [CrossRef]
- Feki, E.; Khoufi, S.; Loukil, S.; Sayadi, S. Improvement of anaerobic digestion of waste activated sludge by using H2O2 oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments. Environ. Sci. Pollut. Res. 2015, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Bio2E, INRA, 2019. Environemental Biotechnology and Biorefinery Platform.
Sample Availability: Not available. |
Parameters | Raw WAS | EF-Pretreated WAS |
---|---|---|
pH | 6.95 ± 0.2 | 7.5 ± 0.8 |
Conductivity (mS/cm) | 3.72 ± 0.3 | 13.72 ± 0.1 |
TS (g/L) | 19.45 ± 1.4 | 14.28 ± 2 |
VS (g/L) | 12.67 ± 1.2 | 10.34 ± 1.3 |
TSS (g/L) | 15.16 ± 0.9 | 10.5 ± 0.5 |
VSS (g/L) | 7.27 ± 1.3 | 3 ± 0.6 |
TCOD (g/L) | 20.4 ± 4 | 26 ± 1.2 |
SCOD (g/L) | 1.73 ± 2 | 4.1 ± 0.3 |
NTK (mg/L) | 914 ± 10 | 920 ± 3 |
VFA (mg/L) | 84.3 ± 13 | 925 ± 35 |
Wave Number (cm−1) | Vibration and Functional Groups |
---|---|
1634 | C=O carboxylic acids |
C=C alkenes | |
OH adsorbed water | |
3275 | O-H hydroxyl group and water |
NH2 amine |
Feed Sample | OLR (g VS/L.d) | Biogas Yield (mL/g VS) | CH4 (%) |
---|---|---|---|
Raw | 0.25 ± 0.02 | 434 ± 0.017 | 48 ± 4 |
0.35 ± 0.01 | 480 ± 0.031 | 54 ± 2 | |
0.50 ± 0.02 | 440 ± 0.024 | 56 ± 1 | |
Pretreated | 0.50 ± 0.016 | 400 ± 0.028 | 58 ± 3 |
1.60 ± 0.018 | 625 ± 0.030 | 66 ± 2 | |
2 ± 0.027 | 735 ± 0.032 | 68 ± 1 | |
2.50 ± 0.030 | 685 ± 0.029 | 67 ± 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feki, E.; Battimelli, A.; Sayadi, S.; Dhouib, A.; Khoufi, S. High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process. Molecules 2020, 25, 626. https://doi.org/10.3390/molecules25030626
Feki E, Battimelli A, Sayadi S, Dhouib A, Khoufi S. High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process. Molecules. 2020; 25(3):626. https://doi.org/10.3390/molecules25030626
Chicago/Turabian StyleFeki, Emna, Audrey Battimelli, Sami Sayadi, Abdelhafidh Dhouib, and Sonia Khoufi. 2020. "High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process" Molecules 25, no. 3: 626. https://doi.org/10.3390/molecules25030626
APA StyleFeki, E., Battimelli, A., Sayadi, S., Dhouib, A., & Khoufi, S. (2020). High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process. Molecules, 25(3), 626. https://doi.org/10.3390/molecules25030626