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Abstract: This paper examines the time independent and incompressible flow of magnetohydrodynamic
(MHD) nanofluid through a porous rotating disc with velocity slip conditions. The mass and heat
transmission with viscous dissipation is scrutinized. The proposed partial differential equations
(PDEs) are converted to ordinary differential equation (ODEs) by mean of similarity variables.
Analytical and numerical approaches are applied to examine the modeled problem and compared
each other, which verify the validation of both approaches. The variation in the nanofluid flow due to
physical parameters is revealed through graphs. It is witnessed that the fluid velocities decrease with
the escalation in magnetic, velocity slip, and porosity parameters. The fluid temperature escalates
with heightening in the Prandtl number, while other parameters have opposite impacts. The fluid
concentration augments with the intensification in the thermophoresis parameter. The validity of the
proposed model is presented through Tables.

Keywords: nanofluid; porous medium; MHD; viscous dissipation; slip effect; rotating disk; HAM;
shooting

1. Introduction

Nanofluid is the suspension (mixture) of base fluid (water, gasoline oil, kerosene oil, ethylene
glycol) and nanometer-sized particles, which is called nanofluid. Nanofluids are made of different
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martials, like metals (Ag, Au, Cu), carbon (CNTs, diamonds, graphite), metal nitrides and oxide
ceramics (CuO, Al2O3), etc. In the current science era, nanofluid has turned in a significant constituency
of research. Due to its extensive variety of applications in science, engineering, and technologies, like
computers, heating and cooling devices, microelectronics, heat exchanger MHD micropumps, etc.
Therefore, nanofluid flow in microchannel captivated the significant consideration of researchers. In the
last several years, these fluids have been comprehensively use, one of them being ′nanofluid′. The word
in this context nanofluid had first been actually invented by Choi [1], which characterizes the dilution
of nanoscale materials in a base body fluid, like ethylene glycol, water, and oil. Makinde and Aziz [2]
reported the heat transfer flow of nanofluid through the extending sheet. Turkyilmazoglu et al. [3]
analyzed the cumulative consequences of the mass and heat transfer of nanofluids across a horizontal
plate, together with radiation. Mustafa et al. [4] examined the boundary layer flow of nanofluid over a
rashly stretched surface. Ashorynejad et al. [5] investigated the properties of MHD nanofluid flow and
heat transmession. Murthy et al. [6] observed the thermal conduction transfer rate of stratified nanofluid
coated with a non-dark porous medium thorough a horizontal layer. Rashidi et al. [7] demonstrated
the entropy production of nanofluid in the existence of a magnetic field that is caused by a rotated
porous disk. Tham et al. [8] examined the convection flow of gyrotactic microorganism-containing
nanofluid to a solid sphere encoded in a porous medium. Aziz et al. [9] have reported convection heat
transfer flow that is caused by nanofluid across a vertical flat plate comprising motile microorganisms.
Shah et al. [10] numerically deliberated the heat transfer in MHD nanofluid with shape factor in
permeable media. Zubair et al. [11] presented the MHD Casson nanofluid flow with entropy generation.
Kumam et al. [12] scrutinized the radiative flow of MHD Casson nanofluid with entropy generation in
rotating channels. Shah et al. [13] studied the ferrofluid with Cattaeo heat flux by means of thermal
conductivity model.

Air cleaning machines, centrifugal filtration, food processing, power penetration, gas turbines
rotors, medical apparatus, etc. are the real-world applications of rotating fluids flow documented by
researchers. The viscous fluid flow by rotating disk was initially reported by Karman [14]. The MHD
slip flow with entropy generation analysis by rotating disk was deliberated by Rashidi et al. [15].
Sheikholeslami et al. numerically analyzed the nanofluid flow through rotating disk [16]. Xun et al. [17]
scrutinized the heat transfer in a fluid flow due to rotating disk. Latiff et al. examined the bioconvective
flow of fluid due to rotating disk [18]. Imtiaz et al. [19] determined the MHD slip flow by rotating disk.
Doh and Muthtamilselvan [20] probed the MHD fluid flow by rotating disk. Ellahi et al. [21] deliberated
the multi-fluid flow with nano-sized gold and silver particles by rotating disk. Hayat et al. [22] explored
the MHD fluid flow with slip conditions by rotating disk. Bhatti et al. [23] analyzed the MHD
non-Newtonian nanofluid with entropy generation over a shrinking surface. Shah et al. [24] deliberated
the MHD thin film flow of nanofluid through a rotating disk. Dawar et al. [25] premeditated the
flow of unsteady squeezing nanofluid in rotating channels. Dawar et al. [26] scrutinized the MHD
thin film flow by a rotating disk. Recently, Asma et al. analyzed the flow of nanofluid with chemical
reaction [27]. Others related articles can be seen in [28–32].

The procedure of heat transmission in engineering and industrial processes is exceedingly
dependent on the structure of the surface from which heat transfer occurs to the fluid. The phenomenon
of heat transmission occurs due to temperature differences. The heat transfer process can be studied
via convective boundary condition, constant or prescribed surface temperature, constant or prescribed
heat flux, and Newtonian heating. Vo et al. studied heat transport in the flow of nanomaterial
with porous medium over a permeable stretched sheet [33]. Sheikholeslami et al. [34,35] examined
magnetohydrodynamic flow of heated nanofluid with thermal radiation in a porous enclosure. They
used numerical approached. Recent study about heat transfer and nanofluid with different approached
in different geometries can be seen [36–39].

Here, in this article, we have presented the MHD nanofluid flow through a porous rotating disk
with slip conditions. The impact of heat source sink is also studied. The nanofluid flow is analyzed
with thermophoresis and Brownian motion impacts. The joule dissipation influence is also taken in
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this nanofluid flow phenomenon. Analytical and numerical approaches are applied to examine the
modeled problem and also compared each other, and good results were obtained.

2. Problem Formulation

The MHD nanofluid flow subject to velocity slip conditions is considered here. The nanofluid flow
is considered as time dependent and incompressible. The flow is studied over a rotating porous disk.
The disk rotates along z−axis with angular velocity Ω (see Figure 1). The magnetic field is functional
along the z−direction. The electric and Hall current influences are ignored throughout the study.
The fluid flow is treated with viscous dissipation impact. The heat and mass transmission characteristics
are analyzed in the presence of thermophoresis and Brownian motion impacts. The nanofluid flow is
based on the present situations [5,22,29]:
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Figure 1. Fluid flow geometry. 

Figure 1. Fluid flow geometry.

The consistent boundary conditions are

u = Luz, v = Ωr + Lvz, w = 0, T = Tw, C = Cw at z = 0,
u→ 0, v→ 0, T→ T∞, C→ C∞ as z→∞.

(7)
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The similarity transformations are defined as

u = Ωr f ′(ξ), v = Ωrg(ξ), w = −(2Ωυ)
1
2 f (ξ),θ(ξ) =

T − T∞
Tw − T∞

, φ(ξ) =
C−C∞

Cw −C∞
, ξ =

(2Ω
υ

) 1
2
z. (8)

Using (8), (1) satisfies, and ((2)–(7)) are reduced as

2 f ′′′ + 2 f f ′′ + g2
− ( f ′)2

−M f ′ − κ f ′ = 0, (9)

2g′′ + 2 f g′ − 2g f ′ −Mg− κg = 0, (10)

1
Pr
θ′′ + fθ′ + Nbθ′φ′ + Nt(θ′)2 + γθ+ MEc

{
( f ′)2 + (g)2

}
= 0, (11)

φ′′ + LePr fφ′ +
Nt
Nb
θ′′ = 0, (12)

f = 0, f ′ = ψ f ′′ , g = 1 +ψg′, θ = 1, φ = 1 at ξ= 0,
f ′ → 0, g→ 0, θ→ 0, φ→ 0 as ξ→∞.

(13)

where the dimensionless parameters are defined as:

M =

√
σB2

0
ρ f Ω , κ = υ

kΩ , Pr = υ
α , γ = Q0

2Ω , Nb =
(ρc)p

(ρc) f

(Tw−T∞)DT
T∞υ ,
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DB

, ψ = L
(

2Ω
υ

) 1
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(ρc)p

(ρc) f

(Cw−C∞)DB
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.

(14)

The dimensionless surface quantities are defined as√
RerC f = f ′′ (0),

√
RerCg = g′(0),

1
√

Rer
Nu = −θ′(0),

1
√

Rer
Sh = −φ′(0), (15)

Entirely the overhead factors are defined in nomenclature.

3. Analytical Solution

Here, the proposed model is elucidated by using HAM [40–43]. In view of ((9)–(12)) with (13); the
primary assumptions are deliberated as:

f0(ξ) = 0, g0(ξ) =
1

1 +ψ
e−ξ, θ0(ξ) = e−ξ, φ0(ξ) = e−ξ. (16)

The L f , Lg, Lθ and Lφ are picked as:

L f ( f ) = f ′′′ − f ′, Lg(g) = g′′ − g, Lθ(F) = θ′′ − θ, Lφ(φ) = φ′′ −φ, (17)

with the following properties:

L f
(
m1 + m2e−ξ + m3eξ

)
= 0, Lg

(
m4e−ξ + m5eξ

)
= 0, Lθ

(
m6e−ξ + m7eξ

)
= 0, Lφ

(
m8e−ξ + m9eξ

)
= 0, (18)

where mi(i = 1− 9) are constants.
The resultant non-linear operators N f , Ng, Nθ, and Nφ are indicated as:

N f [ f (ξ; τ), g(ξ; τ)] = 2∂
3 f (ξ;τ)
∂ξ3 + 2 f (ξ; τ) ∂

2 f (ξ;τ)
∂2ξ

+(g(ξ; τ))2
−

(
∂ f (ξ;τ)
∂ξ

)2
−M∂ f (ξ;τ)

∂ξ − κ
∂ f (ξ;τ)
∂ξ ,

(19)
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Ng[g(ξ; τ), f (ξ; τ)] = 2
∂2g(ξ; τ)
∂ξ2 + 2 f (ξ; τ)

∂g(ξ; τ)
∂ξ

− 2g(ξ; τ)
∂ f (ξ; τ)
∂ξ

−Mg(ξ; τ) − κg(ξ; τ), (20)

Nθ[θ(ξ; τ), f (ξ; τ), g(ξ; τ), φ(ξ; τ)] = 1
Pr
∂2θ(ξ;τ)
∂ξ2 + f (ξ; τ) ∂θ(ξ;τ)

∂ξ +

Nb∂θ(ξ;τ)
∂ξ

∂φ(ξ;τ)
∂ξ + Nt

(
∂θ(ξ;τ)
∂ξ

)2
+ γθ(ξ; τ) + MEc

{(
∂ f (ξ;τ)
∂ξ

)2
+ (g(ξ; τ))2

}
,

(21)

Nφ[φ(ξ; τ), f (ξ; τ), θ(ξ; τ)] =
∂2φ(ξ; τ)
∂ξ2 + LePr + f (ξ; τ)

∂φ(ξ; τ)
∂ξ

+
Nt
Nb

∂2θ(ξ; τ)
∂ξ2 . (22)

The zeroth-order problem is

(1− τ)L f [ f (ξ; τ) − f0(ξ)] = τh f N f [ f (ξ; τ), g(ξ; τ)], (23)

(1− τ)Lg[g(ξ; τ) − g0(ξ)] = τhgNg[g(ξ; τ), g(ξ; τ)], (24)

(1− τ)Lθ[θ(ξ; τ) − θ0(ξ)] = τhθNθ[θ(ξ; τ), f (ξ; τ), g(ξ; τ), φ(ξ; τ)], (25)

(1− τ)Lφ[φ(ξ; τ) −φ0(ξ)] = τhφNφ[φ(ξ; τ), f (ξ; τ), g(ξ; τ), θ(ξ; τ)]. (26)

The equivalent boundary conditions are:

f (ξ; τ)
∣∣∣
ξ=0 = 0, ∂ f (ξ;τ)

∂ξ

∣∣∣∣
ξ=0

= ψ
∂2 f (ξ;τ)
∂ξ2 , ∂ f (ξ;τ)

∂ξ

∣∣∣∣
ξ→∞

= 0,

g(ξ; τ)
∣∣∣
ξ=0 = 1 +ψ

∂g(ξ;τ)
∂ξ , g(ξ; τ)

∣∣∣
ξ→∞

= 0,
θ(ξ; τ)

∣∣∣
ξ=0 = 1, θ(ξ; τ)

∣∣∣
ξ→∞

= 0,
φ(ξ; τ)

∣∣∣
ξ=0 = 1, φ(ξ; τ)

∣∣∣
ξ→∞

= 0,

(27)

where τ ∈ [0, 1] is the imbedding parameter and h f , hg, hθ, and hφ are used to regulate the convergence
of the solution. When τ = 0 and τ = 1, we have:

f (ξ; 0) = f0(ξ), f (ξ; 1) = f (ξ),
g(ξ; 0) = g0(ξ), g(ξ; 1) = g(ξ),
θ(ξ; 0) = θ0(ξ), θ(ξ; 1) = θ(ξ),
φ(ξ; 0) = φ0(ξ), φ(ξ; 1) = φ(ξ),

(28)

Expanding f (ξ; τ), g(ξ; τ),θ(ξ; τ) and φ(ξ; τ) by Taylor’s series

f (ξ; τ) = f0(ξ) +
∞∑

q=1
fq(ξ)τq,

g(ξ; τ) = g0(ξ) +
∞∑

q=1
gq(ξ)τq,

θ(ξ; τ) = θ0(ξ) +
∞∑

q=1
θq(ξ)τq,

φ(ξ; τ) = φ0(ξ) +
∞∑

q=1
φq(ξ)τq.

(29)

where
fq(ξ) = 1

q!
∂ f (ξ;τ)
∂ξ

∣∣∣∣
τ=0

, gq(ξ) = 1
q!
∂g(ξ;τ)
∂ξ

∣∣∣∣
τ=0

, θq(ξ) = 1
q!
∂θ(ξ;τ)
∂ξ

∣∣∣∣
τ=0

and φq(ξ) = 1
q!
∂φ(ξ;τ)
∂ξ

∣∣∣∣
τ=0

.
(30)
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The secondary constraints h f , hg, hθ, and hφ are selected, such that the series (29) converges at
τ = 1, changing τ = 1 in (29), we get:

f (ξ) = f0(ξ) +
∞∑

q=1
fq(ξ),

g(ξ) = g0(ξ) +
∞∑

q=1
gq(ξ),

θ(ξ) = θ0(ξ) +
∞∑

q=1
θq(ξ),

φ(ξ) = φ0(ξ) +
∞∑

q=1
φq(ξ).

(31)

The qth-order problem satisfies the following:

L f
[

fq(ξ) − χq fq−1(ξ)
]
= h f U f

q (ξ),

Lg
[
gq(ξ) − χqgq−1(ξ)

]
= hgUg

q (ξ),

Lθ
[
θq(ξ) − χqθq−1(ξ)

]
= hθUθ

q (ξ),

Lφ
[
φq(ξ) − χqφq−1(ξ)

]
= hφUφ

q (ξ).

(32)

The equivalent boundary conditions are:

fq(0) = f ′q(0) −ψ f ′′ q(0) = f ′q(∞) = 0,
gq(0) −ψg′q(0) − 1 = gq(∞) = 0,
θq(0) = θq(∞) = 0,
θq(0) = θq(∞) = 0.

(33)

Here

U f
q (ξ) = 2 f ′′′ q−1 + 2

q−1∑
k=0

fq−1−k f ′′ k +
(
gq−1

)2
−

(
f ′q−1

)2
−M

(
f ′q−1

)2
− κ

(
f ′q−1

)2
, (34)

Ug
q (ξ) = 2g′′ q−1 + 2 fq−1g′q−1 − 2gq−1 f ′q−1 −Mgq−1 − κgq−1, (35)

Uθ
q (ξ) =

1
Pr
θ′′ q−1 +

q−1∑
k=0

fq−1−kθ
′
k + Nb

q−1∑
k=0

θ′q−1−kφ
′

k + Nt
(
θ′q−1

)2
+ γθq−1 + MEc

{(
f ′q−1

)2
+

(
gq−1

)2
}
, (36)

Uφ
q (ξ) = φ′′ q−1 + LePr

q−1∑
k=0

fq−1−kφ
′

k +
Nt
Nb
θ′′ q−1, (37)

where

χq =

{
0, if τ ≤ 1
1, if τ > 1

(38)

4. Convergence Solution

HAM guarantees the convergence of the series solution of the modeled problem. The auxiliary
parameter h plays an important role in adjusting the region of convergence of the series solution.
Figure 2 indicates the h−curves of the velocities profiles. The auxiliary parameters h f and hg are
−0.26 ≤ h f ≤ 0.1 and −0.22 ≤ hg ≤ 0.06. Figure 3 indicates the h−curves of the temperature and
concentration profiles. The auxiliary parameters hθ and hφ are −0.28 ≤ h f ≤ 0.02 and −0.24 ≤ hg ≤ 0.02.
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5. Results and Discussion

The aim of this section is to visualize variations in velocities, temperature, concentration, Nusselt
number, and skin friction coefficient due to involved parameters, like magnetic field (M), porosity
(κ), velocity slip (ψ), Eckert number (Ec), heat source/sink (γ), thermophoresis (Nt), Prandtl number
(Pr), Lewis number (Le), and Brownian motion (Nb) developed during the nanofluid flow that are
displayed in Figures 4–18. Figures 4 and 5 depict the reducing influence of M on f ′(ξ) and g(ξ).
The increasing M causes deterioration in momentum boundary layer thickness and velocity profiles.
M relates with the Lorentz force theory. The Lorentz force always creates conflicting force to the
flow of fluid and decays motion of the fluid particles. Accordingly, the escalating magnetic force
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declines the fluid velocity. The escalating κ declines f ′(ξ) and g(ξ) is depicted in Figures 6 and 7.
The porous media usually performs opposite behavior to the fluid flow. With an increase in the
porous media, the fluid particles motion reduces and, thus, the fluid velocity diminishes. Therefore,
the growing estimations of κ diminishes f ′(ξ) and g(ξ). Figures 8 and 9 depict the escalating ψ
diminishes f ′(ξ) and g(ξ). The velocity slip parameter always performs a reverse impact on velocity
profiles. The corresponding boundary layer thickness declines by ψ, which deescalates f ′(ξ) and g(ξ).
Figure 10 depicts the impression of M on θ(ξ). It is witnessed that the escalating M escalates θ(ξ).
The influence of γ on θ(ξ) is demonstrated in Figure 11. The heat source/sink plays like heat producer.
As the parameter estimations intensify, the fluid particles temperature heightens. For that reason
θ(ξ) upsurges. Figure 12 portrays the effect of Ec on θ(ξ). It is used for extremely fast compressible
flow. The positive Eckert number represents the freezing of wall and, as a result, the convection of
heat transmission to the fluid is augmented. Figure 13 shows the consequence of Pr on θ(ξ). Pr
makes the association of fluid viscosity with thermal conductivity. The fluids have high thermal
conductivity with large Pr, while the impact is reverse for higher Pr. Hence, the escalating estimations
of Pr deescalates θ(ξ). Figure 14 illustrates the effect of Nb on θ(ξ). Higher Brownian motion induces
the random acceleration of the fluid particles. Extra energy is generated because of this random
acceleration. Therefore, the thermal rise is reported. Figure 15 presents the impression of Nt on θ(ξ).
In the thermophoresis phenomenon, tiny fluid particles are forced back from those in the warmer to the
cold surface. As a result, the fluid particles returned from those in the warmed surface and the thermal
curve then increased. The outcome of Nb and Nt on φ(ξ) are shown in Figures 16 and 17. The higher
estimations of Nb shows reverse impact on φ(ξ). Figure 17 illustrates the rising impression of Nt
on φ(ξ). Figure 18 demonstrates the influence of Le on φ(ξ). Le is the correlation of mass diffusion
to fluid thermal conductivity. The increasing Le causes thickness of the concentration layer, which
consequently escalates the concentration profile.
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Tables 1–3 are displayed to examine the surface drag force, heat transfer rate, and mass transfer
rate, respectively. Table 1 depicts that the increasing M and κ reduce both C f and Cg, while the rising
values of ψ reduces C f and increases Cg. From Table 2, the escalating M, ψ, Le, Nb and Nt reduces
Nu, while the higher Pr escalates the Nu. From Table 3, M and ψ deescalate Sh, while the higher Le,
Pr, Nb, and Nt escalate Sh. Tables 4 and 5 show the comparison of HAM and Shooting approaches
for velocities, temperature, and concentration profiles. Both of the techniques are treated with the
established computer codes and validated by publishing the results to the accessible standard and they
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have computed with software mathematica. At 20th order of approximations, the results of HAM have
been computed. Here, the validity of the proposed model is observed.

Table 1. Results of C f and Cg against M, ψ, and κ.

M ψ κ Cf Cg

0.0 0.7 0.5 0.110921 −1.038800
0.7 0.096164 −1.135091
1.4 0.071695 −1.377442
0.3 0.2 0.5 0.204806 −1.265867

0.5 0.136281 −1.133058
0.8 0.094705 −1.022374

0.3 0.7 0.6 0.103762 −1.077193
0.8 0.098619 −1.116139
1.0 0.093783 −1.153702

Table 2. Results of Nu against M, ψ, Le, Pr, Nb and Nt.

M ψ Le Pr Nb Nt Nu

0.0 0.7 0.8 1.0 0.3 0.2 0.304942
0.7 0.244218
1.4 0.175662
0.3 0.2 0.8 1.0 0.3 0.2 0.326557

0.5 0.303604
0.8 0.287156

0.3 0.7 0.5 1.0 0.3 0.2 0.296330
1.0 0.289543
1.5 0.283952

0.3 0.7 0.8 0.5 0.3 0.2 0.249898
1.0 0.292115
1.5 0.322861

0.3 0.7 0.8 1.0 0.5 0.2 0.263410
0.7 0.236772
1.0 0.200563

0.3 0.7 0.8 1.0 0.3 0.5 0.259131
0.7 0.238654
1.0 0.210105

Table 3. Results of Sh against M, ψ, Le, Pr, Nb, and Nt.

M ψ Le Pr Nb Nt Sh

0.0 0.7 0.8 1.0 0.3 0.2 0.270000
0.7 0.253871
1.4 0.237227
0.3 0.2 0.8 1.0 0.3 0.2 0.275832

0.5 0.269335
0.8 0.264939

0.3 0.7 0.5 1.0 0.3 0.2 0.264933
1.0 0.213734
1.5 0.301323

0.3 0.7 0.8 0.5 0.3 0.2 0.386903
1.0 0.229347
1.5 0.266243

0.3 0.7 0.8 1.0 0.5 0.2 0.312629
0.7 0.393384
1.0 0.478752

0.3 0.7 0.8 1.0 0.3 0.5 0.329593
0.7 0.222062
1.0 0.225392

0.3 0.7 0.8 1.0 0.3 0.2 0.228550
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Table 4. Comparison of HAM and Shooting techniques for f ′(ξ) and g(ξ) while considering other
parameters constant (ψ = 0.3, κ = 0.8, M = 0.6 ).

ξ f
′

(ξ) g(ξ)

HAM Solution Shooting Solution HAM Solution Shooting Solution

0.0 −0.025173 −0.025358 −0.364493 −0.373437
0.5 −0.028523 −0.028712 −1.177880 −1.190384
1.0 0.016743 −0.016840 −0.938948 −0.947851
1.5 −0.009319 −0.009366 −0.623657 −0.629256
2.0 −0.005282 −0.005307 −0.391893 −0.395249
2.5 −0.003064 −0.003078 −0.241243 −0.243298
3.0 −0.001808 −0.001853 −0.147222 −0.148561
3.5 −0.001078 −0.001083 −0.089652 −0.090400
4.0 −0.000647 −0.000650 −0.054470 −0.054923
4.5 −0.000390 −0.000391 −0.033069 −0.033343
5.0 −0.000235 −0.000236 −0.020068 −0.020234

Table 5. Comparison of HAM and Shooting techniques for θ(ξ) and φ(ξ) considering other parameters
constant (M = 0.6, Ec = 0.2, Nb = 0.4, Nt = 0.5, γ = 0.6, Pr = 7.0, Le = 1.0 ).

ξ θ(ξ) φ(ξ)

HAM Solution Shooting Solution HAM Solution Shooting Solution

0.0 0.000000 1.000000 1.000000 1.000000
0.5 0.574478 0.574313 0.529982 0.529510
1.0 0.339813 0.339696 0.294610 0.294223
1.5 0.203589 0.203481 0.169102 0.168819
2.0 0.122669 0.122605 0.099093 0.098905
2.5 0.074132 0.074092 0.058838 0.058817
3.0 0.044869 0.044845 0.035224 0.035248
3.5 0.027181 0.027160 0.021194 0.021148
4.0 0.016474 0.016465 0.012793 0.012764
4.5 0.009988 0.009982 0.007736 0.007719
5.0 0.006056 0.006053 0.004643 0.004673

6. Conclusions

The steady and incompressible flow of MHD nanofluid over a porous rotating disc with slip
conditions is examined. The mass and heat transmission with viscous dissipation impact is also
intentional. The problem is solved with the help of analytical and numerical methods. The core points
of the current inspection are mentioned beneath:
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Nomenclature 

Increasing magnetic, velocity slip, and porosity parameters perform reducing behavior on
velocities profiles.
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Nomenclature

B0 Magnetic field
[
NmA−1

]
C Concentration
Cw Surface concentration
C∞ Concentration away from the surface
DB Brownian coefficient

[
m2s−1

]
DT Thermophoretic coefficient

[
m2s−1

]
Ec Eckert number
k Thermal conductivity

[
Wm−1K−1

]
L Velocity slip constant
Rer Local Reynolds number
T Temperature [K]

Tw Surface temperature
T∞ Temperature away from the surface
u, v, w Components of velocity

[
ms−1

]
r,φ, z Coordinates [m]

Q0 Heat flux
[
Wm−2

]
γ Heat source/sink parameter
υ Kinematic viscosity

[
m2s−1

]
ρ f Density

[
Kgm−3

]
σ Electrical conductivity

[
Sm−1

]
(ρc) f Fluid heat capacity
(ρc)p nanoparticles heat capacity
Parameters
Le Lewis number
M Magnetic
Nb Brownian motion
Nt Thermophoresis
Pr Prandtl number
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