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Abstract: Aromatase is an enzyme member of the cytochrome P450 superfamily coded by the CYP19A1
gene. Its main action is the conversion of androgens into estrogens, transforming androstenedione
into estrone and testosterone into estradiol. This enzyme is present in several tissues and it has a key
role in the maintenance of the balance of androgens and estrogens, and therefore in the regulation
of the endocrine system. With regard to chemical safety and human health, azoles, which are used
as agrochemicals and pharmaceuticals, are potential endocrine disruptors due to their agonist or
antagonist interactions with the human aromatase enzyme. This theoretical study investigated the
active agonist and antagonist properties of “chemical classes of azoles” to determine the relationships
of azole interaction with CYP19A1, using stereochemical and electronic properties of the molecules
through classification and multilinear regression (MLR) modeling. The antagonist activities for
the same substituent on diazoles and triazoles vary with its chemical composition and its position
and both heterocyclic systems require aromatic substituents. The triazoles require the spherical
shape and diazoles have to be in proper proportion of the branching index and the number of ring
systems for the inhibition. Considering the electronic aspects, triazole antagonist activity depends
on the electrophilicity index that originates from interelectronic exchange interaction (ωHF) and the
LUMO energy (EPM7

LUMO), and the diazole antagonist activity originates from the penultimate orbital
(EPM7

HOMONL) of diazoles. The regression models for agonist activity show that it is opposed by the
static charges but favored by the delocalized charges on the diazoles and thiazoles. This study
proposes that the electron penetration of azoles toward heme group decides the binding behavior
and stereochemistry requirement for antagonist activity against CYP19A1 enzyme.

Keywords: aromatase CYP19A1 enzyme; agonist; antagonist; quantum-mechanical
descriptors; stereochemistry

1. Introduction

Azoles are compounds which have a wide range of applications such as antifungals, pesticides,
and also as aromatase inhibitors for cancer patients. They are classified as mono-, di-, tri-, and
tetrazoles based on the basis of the number of nitrogen atoms (1, 2, 3, or 4, respectively) present in
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the ring, and as thiazoles and oxazoles for rings containing N, S, and N, O atoms, respectively [1].
The nonbonded electrons of the heteroatom(s), especially nitrogen, enable the biological applications
of these compounds against the cytochrome P450 enzymes. Cytochrome P450 enzymes have a
heme prosthetic group, which promotes chemical reactivity through the formation of a dative bond
with nonbonded electrons of azole chemical species, and hence interferes with natural biochemical
reactions [2]. Relating to environmental and human health concerns, the prolonged use of these
compounds as pesticides, antibacterials, and antifungals increases their concentration in air, soil, water,
and living organisms. Moreover, the growing resistance of some microbes requires the discovery and
development of new fungicides and antibacterial compounds [3,4].

The cytochrome P450 aromatase CYP19A1 enzyme is responsible for the main steps in the
conversion of androstenedione into oestrogen during steroid genesis. Azole compounds have been
shown to interfere with its biological catalysis and, as such, are referred to as endocrine disruptors [5].
Azoles are also classified as inactive, active agonist, and active antagonist with respect to their aromatase
CYP19A1 activity, where active agonists and active antagonists both contribute to endocrine disruption.
To distinguish the two activities, the antagonist is represented by the pIC50 (logarithmic inhibition
concentration) and the agonist activity is represented by the pEC50 (logarithmic effective concentration).
New antifungal and antibacterial azoles should be inactive against human cytochrome P450 aromatase
CYP19A1 enzyme, while targeting specific CYP19A1 aromatase inhibitors. Thus, antagonists are
required for oestrogen receptor positive postmenopausal breast cancer patients. Modeling of the
inhibitors’ lone pair interactions with the iron of the heme group in the electronic and stereochemical
environment of CYP19A1 is among the strategies for target specific drug design [6].

Recently, an X-ray characterized structure of CYP19A1 aromatase identified the van der Waals
and polarizing regions in the reaction cavity to pucker the natural androgen substrate and catalyze
the androstenedione to oestrogen biochemical aromatization reaction [7]. The hydrophobic amino
acid residues are Arg115, Ile133, Phe134, Phe221, Trp224, Ala306, Thr310, Val370, Val373, Met374,
and Leu477. The C3 and C17 atoms at different ends of androstenedione interact with Asp309 and
Met374, respectively, through hydrogen bonding; this is the polar region of CYP19A1 [7]. The concerted
aromatization reaction occurs at the interface of the van der Waals and polar regions at Ala306 and
Thr310 to remove hydrogen at C2 (C2-H) using water as the catalyst. Asp309 helps to convert the
ketone form to the alcohol in the presence of a proton. The rest of the process is catalyzed by the Fe3+

in the heme group in the presence of O2. The key interactions are hydrophobic, acidic, basic, and polar
which have been exploited for the synthesis of steroidal aromatase inhibitors. However, most of these
inhibitors have reduced activity due to irreversible inhibition. This is probably because of the strong
polar interaction of the inhibitor (substituted at C6 of exemestane) with the Ser478 and Thr310 [5,8,9].
Reversible inhibition is one advantage of the azole compounds, although these strongly interfere with
other cytochrome enzymes such as CYP2A6 and CYP3A4 [10].

To understand the aromatase inhibition (AI) action of the azoles, docking studies have been
mostly employed [10–12]. A docking study by Suvannang et al., (2011) [11], found that Phe134, Trp224,
Thr310, and Val373 amino acid residues have common hydrophobic interactions in all the nonsteroidal
aromatase inhibitors (AIs), while other CYP19A1 enzyme–inhibitor interactions change with respect to
the inhibitors’ shape, chemical constituents, and orientation of inhibitor in enzyme cavity. For example,
comparing the docking of letrozole and anastrozole, anastrozole hydrogen bonds with Leu372, whereas,
for letrozole, all hydrophobic interactions are only suggested. Another difference is that anastrozole
interacts with Ser478 but letrozole interacts with Arg435. In addition to these differences, more than
one pose for binding of azoles with aromatase is possible with only a small change of energy [10,11].
The docking experiments absolutely find the key functional groups and a functional group’s position in
inhibitor for its activity; however underlying questions regarding driving the binding force and enzyme
specific selectivity of inhibitors need to be answered. The quantum-mechanical descriptors encoding
the information of electronic phenomenon are helpful to model and investigate hidden electronic
interaction. Moreover, for global application of models, and the verification of the correctness of models,
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the docking experiments, fragment extraction with classification structural activity relationships, and
regression models must be collaborated for enzymatic action modeling. However, a combination of
two strategies, i.e., fragment extraction with advanced classification modeling and linear regression
using quantum-mechanical descriptors, are being utilized for mechanistically interpretable modeling
of mutagenicity data [13].

Two techniques are commonly used for the global application of the predictive modeling in
toxicology, for example, employing either a large dataset using techniques such as machine learning
methods or deriving mechanistically interpretable simple models [14,15]. Both techniques have been
exploited to create predictive models for the antagonist activity of azoles with CYP19A1 [16–20].
Shoombuatong et al., 2018, reviewed this area and concluded that the modeling of nonsteroidal
aromatase inhibition requires nitrogen-containing descriptors, polarizability, the energy of highest
occupied molecular orbital (HOMO), the energy gap of highest occupied molecular orbital and lowest
unoccupied molecular orbital (HOMO-LUMO gap), and descriptors for hydrogen bond acceptors [21].
A comparison of two multilinear regression QSARs for a dataset of diarylalkylimidazoles and
diarylalkyltriazoles for AI, by Ghodsi et al., 2016 [22], Nagar et al., 2010 [23], and Ghodsi et al.,
2016 [22], found that the Dragon descriptors, namely topological and van der Waals interactions,
were significant, whereas Nagar et al., 2010 [23], modeled the binding interactions through molecular
operating environment (MOE) based descriptors and found that van der Waals interactions relating,
number of hydrogen bonds and bond angle potential energy were significant. These studies suggested
that approximately the same information relating to the inhibition of the aromatase CYP19A1 is
encoded by different descriptors for van der Waals and electrostatic interactions [22,23]. However,
Ghodsi et al., 2016 [22], hypothesized the mode of action for the interaction between CYP19A1 and
diarylalkylimidazole and diarylalkyltriazole molecules to be related to the shape and position of
the isosurface of the HOMO orbitals. Nagar et al., 2010 [23], identified the different regions for
hydrophobic, electrostatic, and steric interactions in azole compounds with CYP19A1 for inhibition
using the CoFMA technique. It must be noted that QSAR models based on the diazole, triazole, and
thiazole chemical classes have never been realized for the inhibition (antagonist) activity and, moreover,
the agonist activity of azoles has not been reported for CYP19A1, as is indicated in our literature
survey. The different robust QSAR models based on the chemical classes can be used to deduce the
driving forces for antagonist or agonist activity by comparing the information of the descriptors in the
different models.

In this study, two main strategies, namely binary classification (agonist and antagonist activities)
and regression modeling, were employed to model the agonist (pEC50) and antagonist (pIC50) properties
of azoles on CYP19A1. The proposed classification strategy was utilized to extract structural alerts
(SAs) for both agonism and antagonism from a subset of active azoles (listed in Table SA1) [24].
The behavior of the fragments extracted, with regard to activity, was correlated to descriptors obtained
from MLR, and the dual mode of the action (agonistic/antagonistic) of azole, while interacting with
CYP19A1, was explored. Therefore, combining classes of azoles, namely monazoles (thiazole/oxazole),
diazoles (imidazole and benzimidazoles), and triazoles, having either agonist or antagonist activity,
we attempted to extract SAs (fragments) and four classes of azoles, namely agonist monazoles
(thiazole/oxazole), agonist diazoles (1,3-diazoles including imidazoles and benzimidazole), antagonist
diazoles (1,3-diazoles, including imidazoles and benzimidazole), and antagonist triazoles (1,2,4-triazole)
to be employed for regression analysis. The model building, validation methods, definition of
descriptors, and statistical parameters are described in Section 3.

2. Results and Discussion

2.1. Classification Modeling

The classification model derived for two activity cases (agonist and antagonist) consisted of the
structural alerts and fragments (see Table 1). A total of 11 SAs were extracted by employing the dataset



Molecules 2020, 25, 739 4 of 20

described in Section 3 and Table SA1; four of these were associated with agonists and seven with
antagonists. The SMARTS of the SAs, their structure, the associated activity, likelihood ratio (LR),
accuracy, and other relevant information are reported in Table 1. The fragment with high (0.9 < acc
< 1) and medium (0.8 < acc < 0.9) accuracy, and high LR values were considered as privileged SAs
(for detail see Section 3.6). In addition, other statistical (accuracy) parameters were calculated for
the classification problem starting from the numbers of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) such as the real accuracy (Q2), the random accuracy (Q2, rand),
and delta accuracy (∆Q2 = Q2 −Q2, rand) of the complete model, and also for each fragment, as reported
in Table SA2 of Supplementary Information. The real accuracy of the final classification model based
on 11 SAs for all 78 compounds was 92.3%, the most probable random accuracy was 50.3%, giving the
difference (delta accuracy ∆Q2) of 42% (see Section 3.6, and Table SA2 of Supplementary Information).
This delta accuracy (maximum value = 50%) of 42% is considered as the real contribution of the model
which was significantly above the most probable level of random accuracy, indicating a good quality
classification model.

The LR value was “inf” for most of the fragments; for the SA1 (monazole) and SA3 (triazole)
fragments all compounds in these classes in our dataset were agonists or antagonist, respectively. This
was regardless of the presence of other structural feature within the monazole and triazole classes
contributing to opposing activity, although these classes have been classified with high accuracy for
respective activities in literature studies [25–31]. An ideal value of accuracy was one, which means all
predictions by the fragment or model were accurate (for detail see Section 3.6). The diazole class in
our dataset was reasonably balanced for both activities (27 antagonist and 18 agonist), however, the
1,3-diazole derivative antagonists SA6 (benzylimidazole) and SA7 (1-phenyl-1H-imidazole) had a LR
value of “inf”. The fragments, SA6 and SA7, were differentiated by the chain length as one carbon atom
was present between the diazole ring and the benzene ring in SA6, whereas, in SA7, the diazole and
benzene rings were directly connecting. The SA6 was more branched than SA7, however, the average
activity of SA6 (average pIC50 = 9.79) was significantly greater than SA7 (average pIC50 = 7.87), thus,
the branched benzyl group in SA6 imparted more inhibitory properties in diazoles to CYP19A1 than
the phenyl group in SA7 (Table 1). It must be noted that both SA6 and SA7 fragments were present in
only six diazoles (three for each).
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Table 1. Structural fragments for agonist and antagonist activity on CYP19A1 obtained from classification modeling along with their statistical parameters.

SA_ID Name SMARTS 1 Structure Activity
Related

LR Value
Using Eq. 7

Accuracy
(Acc) of SA
Using Eq. 6

Statistical
Reliability

Literature
Reliability
[17,32–38]

Relevant Information of
Selected SA and Distributions

SA1 1,3-thiazoles c2cscn2
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Table 1. Cont.

SA_ID Name SMARTS 1 Structure Activity
Related

LR Value
Using Eq. 7

Accuracy
(Acc) of SA
Using Eq. 6

Statistical
Reliability

Literature
Reliability
[17,32–38]

Relevant Information of
Selected SA and Distributions

SA9 chlorobenzenes Clc1cccc(c1)
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The other antagonist fragments extracted were SA2 and SA9 with LR values “inf” and 11.3,
respectively, and high accuracy (Acc) (Table 1). The fragments SA2 and SA9 were likely to be unique to
provide the information, as these fragments were present in a large number of antagonists, including
the molecules that belonged to triazole and diazoles classes (Table 1). However, fragment SA9 was
associated with two incorrect predictions for diazole molecules, namely selumetinib and pifexole,
where the pifexole contained only SA9 fragment and selumetinib contained agonist fragment SA8
along with SA9 (see Table 1 and the Supplementary Information Tables SA2 and SA1.8). There were
only two common chemicals contained in the groups of compounds, i.e., (SA2, SA9) and (SA6, SA7),
namely imazodan and liarazole, and two chemicals were common in SA2 and SA9 (see Table 1 and
Supplementary Information Tables SA2, SA1.2, SA1.6, SA1.7, and SA1.9). Chemically, the SA2 and
SA9 group is chlorobenzene and p-alkyl (ethyl) substituted chlorobenzene. However, for the diazoles,
their contribution to inhibitory activity was not the same as for SA6 and SA7. The branched SA2
(p-alkyl substituted chlorobenzene) (average pIC50 = 8.40, more branched) imparted less inhibitory
properties than SA9 (chlorobenzene) (pIC50 = 8.45, less branched) in diazoles, which was contrary to
the behavior of SA6 (more branched) and SA7 (less branched). These observations showed that the
position of branching in the diazoles has a role in the inhibition of diazoles in CYP19A1. This is in
agreement with the observation by Ghodsi et al., 2016 [22], that an aromatic ring near the heterocyclic
ring causes delocalization of HOMO electrons over the two rings and makes them less available to
interact with the heme group and, as a consequence, SA7 (less branched) induced less inhibition as
compared with SA6 (more branched) in diazoles. We concluded that the diazole molecules favor the
inhibition of CYP19A1 by including the chlorobenzene fragment and not the branched p-alkyl (ethyl)
substituted chlorobenzene.

However, SA2 and SA9 fragments present in triazoles had the opposite effects with respect to
branching increasing inhibition. All 15 antagonist molecules contained either SA2 or SA9 fragments
and two molecules, ipconazole and fenbuconazole, contained both SA2 and SA9 fragments (see Table 1
and Supplementary Information Tables SA1.2 and SA1.9). The inhibitory properties of triazoles were
more favored by the branched p-alkyl (ethyl) substituted chlorobenzene (average pIC50 = 7.89) than
chlorobenzene (average pIC50 = 7.72) which was contrary to that in diazoles (Table 1). In conclusion,
the inhibition properties changed with substitution of the same substituents in the different heterocyclic
rings (diazole and triazole).

For the agonist activity, only two relevant fragments, SA4 and SA8, were identified. SA4 was a
carboxylic functional group; the LR value was “inf” and Acc. high (0.93) (Table 1). The fragment SA8
was an amide functional group having a LR value of 4.96 and its statistical reliability was medium to
high (0.81). Chemically, both groups offer conjugation over a short range which can cause the separation
of electrostatic charges on the azole compounds. In conclusion, for the classical classification modeling,
fragments in azoles having aromatic resonance (e.g., in benzene) were found to be antagonists, whereas
small groups which separate the charges were found to control their agonistic activity. The fragments
SA5, SA10, and SA11 had low LR, accuracy, and therefore poor reliability.

2.2. Regression Modeling

2.2.1. Modeling of the Aromatase Antagonist Activity of Triazoles

The basis set employed for quantum-mechanical HF method was def2-SV(P), which employs
split valence and polarization functions to atomic orbitals. The most robust and reliable QSAR model
obtained is described in Equation (1),

pIC50 = 1.4676 + 488.5007ωHF + 4.3535ELUMO
PM7 + 5.6602Eta_shape_Y (1)

Equation (1) is dependent on three descriptors, namely electrophilicity index (ω), energy of
lowest unoccupied molecular orbital (LUMO energy), and extended topological descriptor for shape of
molecule (ETA shape index), which contribute positively to the aromatase antagonist activity. The R2
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and Q2
LOO values were 0.87 and 0.79, respectively. The Q under influence of K (QUIK rule) (∆K)

value was 0.06, which suggested that the descriptors were not collinear (for detail see Section 3.5).
The Q2

LMO value, 0.74, demonstrated the robustness of the model. Furthermore, the robustness of
the model is visualized by the scatter plot (Figure 1). The standard residual errors in predictions and
applicability domain of the model can be seen in the Williams plot (Supplementary Information Figure
S4). Letrozole, which has the highest activity, lies at the threshold leverage value but it is well predicted.
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Figure 1. Scatter plots of the experimentally measured property and predicted activity obtained for four
regression relations Equations (1), (2), (4), and (5) along with the statistical parameters for (a) agonist
monazoles (thiazole/oxazole); (b) agonist diazoles (imidazoles and benzimidazole); (c) antagonist
diazoles (imidazoles and benzimidazole); and (d) antagonist triazoles.

The descriptors influencing activity were electrophilicity calculated by the HF method.
The electrophilicity index (ω) is the maximum flow of the electrons toward a molecule when it
is immersed in an electron sea, which infers that triazole molecules were weakly attracting the
electronic environment of the enzyme cavity. Interestingly, the interelectronic exchange interactions
originated electrophilicity (ωHF) of the triazole molecules appeared in Equation (1) rather than
interelectronic columbic interactions (ωCORR) or approximated full absolute electrophilicity (ωPM7
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and ωB3LYP), despite all electrophilicity (ωHF, ωCORR, ωPM7, and ωB3LYP) were employed for model
building. The exchange interactions originate from the parallel spin of the electron, therefore, triazole
molecules could also be interacting with the magnetic environment in the enzyme cavity due to the
oxidation state of the iron (Fe+3 has odd electron) during inhibition. Conversely, chemical bond
formation is predominantly initiated by the interelectronic columbic interactions [26,27]. In addition to
the weak interactions, the strong noncovalent interactions also appear to be significant as indicated by
the positive correlation of the LUMO with pIC50. During the chemical reactions or interactions, the
LUMO was generally utilized to accept electrons, therefore, the LUMO of the triazoles was involved
in π–π interactions, nucleophilic attack, and hard soft acid–base (HSAB) interactions. Therefore, the
contour LUMO isosurface diagrams of the compounds were analyzed. These pictures depict that the
contribution of the LUMO either lays on the phenyl and aromatic rings or atoms near the functional
group (Supplementary Information Figure S2). For example, the letrozole and anastrazole (the most
active compounds) contour maps of the LUMOs were laid over the phenyl rings. Conversely, for
triademefon (least active compound), the LUMO contribution was near a nucleophilic site on the
carbonyl functional group and for the israpafant (a compound having mean pIC50 and also the most
structurally diverse triazole, see Supplementary Information Table SB2), it was on the thiazole aromatic
ring (Supplementary Information Figure S2). Therefore, the π–π interactions originating due to the
HSAB principle (LUMO of highest and medium active antagonists) have more impact than nucleophilic
interactions (least active antagonist) on pIC50. It must be noted that the LUMO is a negative quantity
but the positive sign of the LUMO coefficient (in terms of electron gain enthalpy it is negative, according
to the Koopmans theorem) in Equation (1) indicates that the greater the electron accepting ability of
triazoles, the greater the reversible inhibition for aromatase CYP19A1.

The third descriptor (ETA) defines shape and gives the information about molecular bulk when
an atom is connected to the three other non-hydrogen atom; consequently, it is a quantification of

the tertiary atoms present in the molecules [28]. Mathematically, it can be defined as
∑
(α)Y∑
α , where

α is the vertex index for core count (size of atom) and αY is the core count of tertiary atoms in the
extended topological scheme. The positive contribution of the shape index (tertiary carbon atom) to the
antagonist activity revealed that compact molecules, with less surface area such as the spherical shape
of antagonists, increase pIC50 value for enzyme CYP19A1 inhibition. These stereochemical aspects for
triazoles are consistent with the QSAR study by Song et al., 2016 [17], which found that the descriptor
“molecular volume” has a negative contribution to antagonist activity.

2.2.2. Modeling of Aromatase Antagonist Activity of Diazoles

The dataset for the diazole molecules contained 27 data points, however, trifumizole had to be
excluded as it was observed to be both a structural and response outlier. The final dataset contained 26
molecules with imidazole and benzimidazole skeletons. The final model obtained from the genetic
algorithm was:

pIC50 = 3.5936− 22.4173EHOMONL
PM7 − 103.9622ETA_etaP_B− 0.6724NRS (2)

The regression and linear QSAR parameters are presented in Table SB3. The R2 value is 0.75 and
the cross-validated Q2

LOO is 0.62. The leave-many-out validation (Q2
LMO) value for Equation (2) was

0.58. The triparametric equation was found to have independent variables as evident by the ∆K value
of 0.11. The scattering of the activity points around the regression line and the graphical presentation
of the residuals are reported in scatter and Williams plots in Figure 1 and Supplementary Information
Figure S4.
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The ETA branching index (η′B) is the non-hydrogen vertex count of the molecule and is calculated
with respect to the reference alkane for estimation of branching in the molecule. Mathematically, it can
be represented as Equation (3) [28]:

η′B =
ηlocal

N − ηlocal
R + 0.086×NR

Nv
(3)

where ηlocal
N = 1.414 + (Nv − 3) × 0.05, ηlocal

R =

∑
i< j

(
γiγ j

)0.5
, and NR is the number of rings in the

reference alkane, ηlocal
R refers to the local composite index for the reference alkane, Nv refers to the

number of non-hydrogen vertices, and γi is the ratio of core count (αi) to valence electron count (βi)
for ith non-hydrogen vertex. Here, the symbol η should not be confused with quantum-mechanical
hardness (Section 3.4). For aromatase CYP19A1 the branching index relative to the molecular size
(ETA_etaP_B) was negatively correlated with the antagonist activity (Equation (2)) which means that
branching was not favourable to antagonist activity. The other factor influencing the antagonist activity
of diazoles was the number of ring systems (NRS). NRS was calculated as NRS = (Et − Er) − (Vt − Vr)
+ 1, where Et and Vt represent the total number of bonds (edges) and atoms (vertices) in the whole
molecule, respectively, and Er and Vr are the total number of bond and atoms in rings present in the
molecule [29].

Whilst being positively related to inhibition activity values (pIC50), in Equation (2), both the
branching index (ETA_etaP_B) and the number of ring system (NRS) are negatively correlated to
antagonist activity. These two descriptors refer to the stereochemistry of diazoles while interacting
with CYP19A1 and their role has been explored as follows. For example, if we compare fadrozole (the
highest active) and surinabant (the least active), fadrozole contains two NRS with branching index
(0.0019) while surinabant has four ring systems (NRS = 4) with branching index (0.014). Surinabant has
an alkyl side chain and substituents such as chlorine and bromine on all phenyl rings (Supplementary
Information Figure S3 and Table SB3). On the other hand, the role of the branching index can be
observed when NRS is the same (three) for liarozole (the highest active, branching index = 0.004) and
zaldaride (the least active, branching index = 0.009), liarozole has only one tertiary carbon atom and
one chlorine substituent on the phenyl ring, while zaldaride has two alkyl cyclic rings, inner, and alkyl
side chains. Similarly, the NRS values of bificonazole and medetomidine are four and two, respectively.
However, bificonazole (highest active compound with the highest NRS = 4) has the lowest branching
index (−0.007) and medetomidine (the least active with least NRS = 2) has a high branching index
(0.014). The structure of bificonazole has no substituents on phenyl rings, while medetomidine has an
inner tertiary carbon and two methyl substitutions on the phenyl ring (see Supplementary Information
Figure S3). Another case where the branching index of two molecules was nearly equal, for example,
imazalil (more active, branching index = 0.01112, NRS = 2) and sertaconazole (less active, branching
index = 0.01111, NRS = 3), the compound with the lower NRS was more active. Considering two
compounds with approximately the same branching index and NRS (liarazole, branching index =

0.00474, NRS = 3 and imazodan, branching index = 0.00486, NRS = 3) they show similar stereochemistry
properties but have different inhibitory activities indicating the role of electronic interactions between
diazoles and aromatase enzyme. The structural alerts (SA6, SA7 and SA2, SA9) obtained from classical
modeling suggested the role of branching in different positions for the stereochemistry aspect of
inhibition. These results suggested the proportion of branching and numbers of aromatic ring systems
in the diazoles were relevant factors for antagonist activity of diazoles.

The descriptor EHOMONL
PM7 (energy of HOMO-1) refers to the second ionization enthalpy (Koopmans

theorem) [26]. The energy of penultimate orbital (EHOMONL
PM7 ) was negative for the diazoles and its

negative coefficient in Equation (2) suggests that the tightly bound electrons at the second energy level of
diazoles increase inhibition. A literature study by Nantasenamat et al., 2013 [14], also found that HOMO
(calculated using higher level DFT) was negatively correlated to aromatase (CYP19A1) activity, however,
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for 1,2,3-triazole molecules. These observations showed that the electronic environment of the enzyme
cavity interact with the HOMO, as well as HOMONL depending on the class of azole. The negative
correlation between HOMONL and pIC50 for diazoles infers that the repulsive interelectronic interaction
could play a role through the symmetry and energy of the diazole molecular orbital while interacting
with the CYP19A1 for inhibition. Therefore, the HOMO, LUMO, and HOMONL contour graphs have
been analyzed for the diazoles presented in Supplementary Information Figure S3.

The HOMO contour graph of the diazole was concentrated on the 1,3 diazole ring alone (except
sertaconazole). Conversely, the HOMONL contour graphs showed the isosurface was mainly occupied
over aromatic system such as phenyl rings and other hetero aromatic ring (thiazole) and hetero atoms
sulphur or nitrogen present in diazoles, as shown in Figure S2. However, the LUMO was located
randomly on different groups of atoms in diazole molecules with respect to the HOMO contour
graph, but it has the common overlapping regions with opposite sign of wavefunction in the contour
graphs (LUMO and HOMONL) with respect to the HOMONL except for fadrozole, sertaconazole,
1-[2-(trifluoromethyl)phenyl]-1H-imidazole, timiperone, and zaldaride. With the exceptions of the
overlapping of LUMO-HOMONL, the HOMONL was concentrated over a very small region (small
fragment or one atom). For example, fadrozole, 1-[2-(trifluoromethyl)phenyl]-1H-imidazole, and
timiperone have HOMONL contour graphs over one atom only and zaldaride, and sertaconazol have
it over a small aromatic fragments. Interestingly, the docking calculations performed by Suvannang et
al., 2011 [11], also showed that the nitrogen of fadrozole (HOMONL region) was near to the haem
group of CYP19A1. These observations predict that the interactions between the haem group and
HOMONL of the diazole are manifested either through the approach of electron densities of each other
directly or indirectly through the LUMO.

2.2.3. Electronic Interaction Aspects for Antagonist Activity of Diazoles and Triazoles

As discussed in Sections 2.2.1 and 2.2.2, electronic interactions between inhibitor (triazoles and
diazoles) and the aromatase enzyme CYP19A1 described through the positive coefficient of ELUMO

PM7 and
negative coefficient of EHOMONL

PM7 (HOMOPM7-1) represented the flow of electrons toward inhibitors
from the enzyme cavity. The inhibitors were interacting in the enzyme cavity having a negative
potential environment with respect to the inhibitor electronic environment which depicts the role
of electron withdrawing group (-R effect) in inhibitors. However, the manifestation of the azoles as
an inhibitor for aromatase CYP19A1 has always been associated to coordinate (dative) interactions
between the Fe3+ of haem group and the HOMO of the azole inhibitors [6,22]. It must be noted that
the HOMO of triazole and diazole (triadimenol, fenbuconazole, triadimefon, and sertaconazol are
exceptions) were laid over the 1,2,4-triazole and 1,3-diazole rings, respectively. In particular, for the
molecules having the HOMO laid over the hetero ring (triazole, diazole), the polarizability of the hetero
ring should be the determining factor for the coordinate bond length and, consequently, determine the
stereochemistry involved and the noncovalent interactions between inhibitor and the enzyme’s amino
acid residues. Kassimi et al. [30] showed that the 1,3-diazole ring is more polarizable than triazole rings
(1,2,4- and 1,2,3-traizoles), therefore, the penetration of electrons for coordinate bond length in diazole
should be more than in triazoles. The HOMONL of diazole molecules occupied over a small fragment
or one atom only can be easily repelled by the negative potential of enzyme cavity through columbic
forces and close proximity. However, the role of polarizability for dative bond formation and, as a
consequence, the balance of the electrostatic environment through back bonding phenomena needed
to be explored for the molecules having common regions in the HOMONL and LUMO contour graphs
(see Supplementary Information Figure S3) [21,31]. Theoretically, back bonding and electrostatic
balance phenomena have been studied for isolated haem groups with ligands [31], however, these
have been overlooked for enzyme activities due to the computational complexity [30,31]. Conceptually,
dative bonding and its resulting back bonding or electrostatic balance is a concerted process which is
mediated through the HOMO and LUMO orbitals, respectively [31]. Among triazoles compounds,
the 1,2,4-triazole ring has less polarizability (39.99 to 43.75 a3 units) [30], (region where the HOMO of
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the 1,2,4 triazoles resides, Figure S2) and it allows a lower flow of electrons toward the haem group,
therefore, the electrostatic balance is maintained by the low energy LUMOs (−0.344 eV) to (−1.65 eV)
of triazoles (see Supplementary Information Table SB2). For the diazoles, the 1,3-diazole ring has
more polarizability (45.05 to 49.15 a3 units) [30] (region where the HOMO of 1,3-diazoles resides,
Figure S2), therefore, it has greater penetrating electrons toward the haem group, which induces
interactions with HOMONL to maintain the electrostatic balance in enzyme cavity. It must be noted
that, the higher LUMO energy (−0.353 eV) to (−1.372 eV) (Supplementary Information Table SB3) of
diazoles as compared with triazoles, and the common spatial region of the HOMONL and LUMO
orbitals of diazoles, should be promoting factors for such interaction. In conclusion, the electronic
interactions in the enzyme cavity were determining factors for the stereochemistry requirement of
azoles for antagonist activity, which has also been reflected through the QSAR Equations (1) and (2)
and classification modeling, where the spherical shape was required for triazoles and the proportion of
number of ring system and branching index were determining factors for diazoles.

2.2.4. Modelling of Aromatase Agonist Activity for Diazole

To model diazole agonist activity, the dataset contained 18 molecules. Ataluren was excluded
because it was identified to be a structural and response outlier in the initial QSAR modeling trials,
thus, 17 molecules were modeled. The best descriptors-based model was:

pEC50 = 8.6983− 0.7252Qmax(+)PM7 − 19.4372Eta_dAlpha_B + 1.1130Eta_betans_d (4)

R2, Q2
LOO, Q2

LMO, and ∆K were 0.85, 0.80, 0.78, and 0.21 respectively, as also presented in Figure 1.
The scatter plot and Williams plot are depicted in Figure 1 and Figure S4, respectively.

The triparametric Equation (4) contained two parameters, (Qmax+PM7) and ETA_dAlpha_B, with
negative coefficients for agonist activity. (Qmax+PM7) represents the maximum positive charge holding

non-hydrogen atom in diazole agonist molecules. ETA_dAlpha_B is calculated as 〈
∑

αR−
∑
α

Nv
〉, where α

is the core count, αR is core count for the reference alkane, and Nv is the number of non-hydrogen
vertices, which measures the number of hydrogen bond acceptors [28]. Both negatively correlated
terms represent the absolute localization of the charges (positive charges and negative charges), and
therefore, these factors can be regarded as the limiting factors for agonist activity. The third parameter
(Eta_βns_d) [28] refers to “number of lone pairs entering in the conjugation” which was positively
related to activity and depicted that the delocalized partial negative charges in diazoles were increased
the enzyme efficiency for natural substrate. The delocalized partial negative charge on the agonist
diazole creates a more negative potential area around the enzyme than localized charges, and interacts
with the polar regions in CYP19A1 enzyme to enhance the enzymatic action [7]. The electrostatic forces
generated by Qmax+PM7 and Eta_dAlpha_B are strong forces which have more tendency to form strong
bonds with opposite charge than delocalized charges, therefore, they do not favour agonist activity.

2.2.5. Modeling of Agonist Activity for Thiazole/Oxazole

The thiazole/oxazole compounds contain a sulphur/oxygen atom along with the nitrogen atom in
the azole ring. There are 18 compounds and most of the compounds contain the amino (-NH2) and
alkyl ether (-OR) groups. The following (5) was obtained:

pEC50 = 7.3704− 8.0767GGI9 + 0.1177F03(C−C) + 0.5873F04(N−O) (5)

R2
, Q2

LOO, and Q2
LMO were 0.87, 0.79, and 0.74, respectively, for Equation (5). All three descriptors

were topological, GGI9 was negatively correlated, whereas F03(C-C) and F04 (N-O) were positively
correlated with activity. The descriptor F04 (N-O) is the “frequency of occurrence of nitrogen and
oxygen (N and O) after four connected atomic positions” and similarly F03(C-C) is the “frequency of
occurrence of carbon after every three connected atomic positions” [39].
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F04[N-O] suggests that nitrogen (N) and oxygen (O) should be appropriately distant from
each other, which probably enables the lone pair of electrons to be conjugated (delocalisation of
charge). F03[C-C] represents the abundance of the carbons in the molecules and controlling factor for
hydrophobicity/hydrophilicity and channels for the electron delocalisation of electrons.

The charge transfer index has been found to correlate with the dipole moment which could
represent the presence of the absolute charges on atoms the molecule [40]. The long order charge
transfer, namely GGI9 was negatively correlated with agonist activity. Comparing with diazole
agonists, the maximum positive charge on the atom was negatively correlated. The QSAR models for
the thiazole and diazole agonists have different descriptors, however, Equations (4) and (5) reflected
similar information through different descriptors. For the agonist activity, the delocalization of the
electrons and formation of mild absolute charges during delocalization of agonist molecule were the
main characteristics.

3. Materials and Methods

3.1. Data Collection

The starting dataset was collected from the Tox21 library considering only
Tox21_Aromatase_Inhibition (activity test). This contained 20,992 compounds encoded as
SMILES, name, and CAS number [41]. The assay was performed using aromatase breast cancer cell
line (MCF-7 aro) (cell-based assay) and the concentrations of testosterone (an androgen and estradiol
(an oestrogen)) were measured before and after exposure to azole compounds tested. The qualitative
outcome was recorded as active agonist, active antagonist, and inactive, where quantitative agonist
and antagonist activities were expressed in nanomolar (nM) units represented by AC50 in the original
database [41].

3.2. Data Curation

The curation procedure of the data involved the retrieval of SMILES following the workflow
developed by Gadaleta et al., 2018 [42]. The maximum purity was labelled “A” and only compounds
with this label were considered. The detection of inorganic compounds, organometallic compounds,
mixtures, neutralization of salts, tautomeric forms, and chemotype normalization were performed
using the KNIME platform [43]. The compounds with inconclusive assay outcomes were discarded
and duplicate structures were classified into two cases as follows: (i) activity range lower or equal to
1:3, and (ii) activity range higher than 1:3. In the first case, the mean of the activity was calculated, and
in the second case, the structures were rejected. There were 3459 compounds that were kept from the
original dataset which had the purity “A” label. Furthermore, 67 compounds with ambiguous values,
10 compounds with trace element or inorganic compounds, 3 mixtures, 6 duplicates, and 6 ionic liquid
compounds were removed. After this, the dataset was subjected to a manual inspection process and
119 compounds were found to have incorrect structures, and therefore removed. At this point, the
dataset was comprised of 3248 compounds, and was filtered to extract azoles only. The total number of
azoles was 351 and the distribution of compounds in the dataset considering the numbers of nitrogen
in the azole ring. Activity is shown in Supplementary Information, Tables SB2–SB5. The quantitative
outcome in nanomolar (nM) units was converted to molar (mole/litre) using the formulae (−logAC50 +

9).

3.3. Dataset

The 351 azoles contained substances with different numbers of nitrogen in the heterocyclic ring.
There were 82 monoazoles (including oxazoles and thiazoles) present out of which 61 were inactive
compounds and 21 were active compounds (18 agonist and 3 antagonist). For the diazoles, the total
was 198 out of which 151 were inactive and 45 were active compounds (18 agonist and 27 antagonist).
Similarly, for triazoles, the total was 47 which contained 26 inactive and 21 active compounds (6 agonist
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and 15 antagonist). Furthermore, 3 antagonist monoazoles and 6 agonist triazoles were removed from
the curated dataset because there were too few for modeling purposes. Finally, through the multilinear
regression analysis, four chemical sets, namely 15 antagonist triazoles, 27 antagonist diazoles, 18
agonist diazoles, and 18 agonist thiazoles were employed to derive four regression models. In addition,
union of agonist and antagonist molecules (agonist ∪ antagonist) of this set was employed to extract
the SAs, where antagonist and agonist was codified as 0 and 1, respectively (see Supplementary
Information Tables SB2–SB5 and SA1).

To explore the diversity of the chemical space, the Tanimoto index [44] employing PubChem
fingerprints was used as similarity measure. The distance matrix was computed using KNIME [43] and
visualized through heat maps for the final full active dataset and classes of azoles, as stated above for
MLR modeling. The heat maps are shown in Figure S1a (Supplementary Information Figure S1a,b) for
full active dataset and classes of azoles, respectively, where green points indicate the highest similarity
between two chemicals and blue points correlate to lower similarity.

3.4. Descriptor Calculation

For the quantum-mechanical descriptor calculations, the SMILES of the chemicals were
transformed to three-dimensional (3D) structures using MarvinSketch 18.10.0 and molecular coordinates
were retrieved [45]. These coordinates were employed for the structure optimization using parametric
model (PM7) semi-empirical method on Gabedit platform [46–48]. To find the true minima of
every geometry, optimizations were repeated until no imaginary frequency was found in frequency
calculations at the same level of theory. The geometry obtained using the PM7 method was further
employed for single point calculations at Hartree–Fock (HF) [49] and Beke three parameters Lee Yang
Parr (B3LYP) [50,51] method using def2-SV (for antagonist triazole) and def2-TZVP (for antagonist
diazoles for heavy sulfur atom) basis sets [52] with the ORCA 3.0.3 program [53]. The semi-empirical
PM7 and B3LYP methods take care of the dynamic electron correlation through the empirical parameters
and exchange correlation functional, respectively, while the HF ignores the dynamic electron correlation
but accurately estimates the exchange interaction within the complete basis set limit. The HF calculated
descriptor is helpful to deduce the spin originated interactions originating in the enzyme substrate
(Fe3+, have unpaired of electron) and ligand molecules, during binding. Additionally, the PM7 and
B3LYP derived descriptors were calculated and employed for models to compare their descriptors
performance, and therefore have a robust and economical model. The calculated quantum chemical
descriptors include the energy of the molecule (EQM), energy of the highest molecular orbital energy
(EHOMO

QM ), energy of the lowest unoccupied molecular energy (ELUMO
QM ), energy of the next level to the

HOMO and LUMO (EHOMONL/HOMO−1
QM and ELUMONL/LUMO−1

QM ), and density functional descriptors [54],

namely electronegativity (χQM =


(
−EHOMO

QM

)
+

(
−ELUMO

QM

)
2

), hardness (ηQM =
(
ELUMO

QM − EHOMO
QM

)
, and

electrophilicity index (ωQM =
χ2

QM
2ηQM

), where subscript (QM) refers to the quantum-mechanical method
(HF, B3LYP, and PM7) employed. To calculate electron correlation based descriptors (DCORR = DB3LYP

− DHF), the frontier orbitals obtained in single point calculations at the HF and B3LYP levels were
employed [55]. The electrostatic charges on azole molecules were extracted from the optimized
geometry of PM7 output files. Besides these, various 2D descriptors have been used encompassing,
extended topological atoms (ETA) indices, constitutional indices, ring descriptors, connectivity indices,
functional group counts, atom centered fragments, atom type E-state, 2D- atom pairs, and molecular
properties computed from PaDEL-Descriptor and Dragon software tools [52,56], in order to explore
the lipophilicity and steric aspects of the interactions of molecules with the enzyme. All computed
descriptors are listed in Supplementary Information Tables SB2–SB5.
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3.5. Regression Model Development and Validation

The linear regression method implemented within the QSARINS toolbox [57] was employed to
model the experimental pIC50 and pEC50 using the calculated descriptors. A genetic algorithm was
applied for variable selection for each model to obtain the optimal combination of descriptors and their
regression parameters. For the GA, the population size was set to 10,000 generations, crossover and
mutation rate were established at 0.8 and 0.2, respectively, with leave-one-out (Q2

LOO) as the fitness
function. Furthermore, the Williams plot, which is a plot between the standardized residual versus
leverage (h), was analyzed to detect the structure and response outliers for all models. The compounds
having standardized residuals of more than 3.0 standard deviation units were considered as response
outliers and compounds with leverage greater than warning leverage h* (h > h*) were considered
structural outliers. The robustness of all four models developed was checked using different metrics
including determination coefficient (R2) (optimally greater than 0.7) and cross-validated (CV) R2

(Q2
LOO or Q2

CV) using leave-one-out (LOO) method (optimally, greater than 0.55). The mean absolute
error (MAE) and root mean square error (RMSE) for training and cross-validation runs were analyzed.
Furthermore, model validation was performed using cross-validated leave-many-out (R2) (Q2

LMO)
taking 30% of the compounds in the prediction set in 2000 iterations (values optimally greater than
0.50) and Y scrambling (Q2

Yscr) procedures. The Y scrambling procedure was employed by rearranging
the activity values among all the compounds keeping their descriptor values the same and models
were built in 2000 iterations. The performance of scrambling was measured by Q2

Yscr which must
be as low as possible from the actual Q2

LOO value. The descriptor collinearity was verified using the
QUIK rule (Q under influence of K) [58] with ∆K greater than 0.05. The QUIK rule is defined by the
delta K (∆K) which is the difference between K correlation of descriptors and activity (Kxy) and K
correlation between the descriptors (Kxx). A greater value of ∆K represents less collinearity between
the descriptors in model. The threshold value of ∆K is 0.05 [50]. The minimum ratio between the
number of compounds and the number of the descriptors was five.

3.6. Structure Activity Relationship Modeling and Evaluation

To build the classification model, the SARpy software (version 1.0) was used. SARpy is a
knowledge extractor tool to obtain relevant substructures and generate new knowledge analyzing a
dataset of binary activity classes [24]. The precision was defined as “min” in order to obtain robust
structural alerts. A substructure filter was applied to identify the compounds containing the extracted
fragments and their distribution within the classes, using RDKit node of KNIME [43] (see Supporting
Information Tables SA1.1 and SA1.11). The performance measuring parameter for each structural alert,
the accuracy (Acc) (Equation (6) and likelihood ratio (Equation (7)) value were calculated through
predictions made by fragments using the KNIME platform and SARpy software (cross-validation),
respectively [24,59]. In the case of Equation (7), it is important to highlight that the format of the
right member depends on the type of fragment under consideration, for example if the fragment
corresponds to an agonist SA, Equation (7) remain with the same format as presented below, but if the
fragment is an antagonist SA, the multiplication factor on the right is inverted (i.e., Total Agonist/Total
Antagonist). In the cases where more than one SA was identified within a structure, the prediction was
based on the SA with the highest LR value.

Accuracy (Acc) =
Total number of True prediction by SA

Total number of prediction by SA
(6)

LR =
True Prediction by SA

Wrong Prediction by SA
×

Total Antagonists
Total Agonists

(7)

The accuracy calculated using Equation (6) refers to the ability of SA to yield the correct predictions.
The accuracy can take values in a range of 0–1, in this sense, values close to one were desired, and
were interpretated as a better performance during the classification [59]. All predictions by certain
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fragment are true if Acc = 1 and LR = infinite (inf). However, incorrect predictions are influenced by
the accuracy of the given SA, the presence of other SAs with a similar accuracy value for opposite cases
and also by the stereo-chemical environment of the SAs in the azole compounds. Therefore, levels of
accuracy (Acc), low (Acc ≤ 0.6), low to medium (0.6 < Acc ≤ 0.7), medium (0.7 < Acc ≤ 0.8), and high
(0.9 < Acc ≤ 1) were assigned to each SA. The assignation of qualitative levels of accuracy facilitated
the interpretation of results and the evaluation and levels of accuracy (Acc) of SAs were also compared
with the literature with respect to their consistency. The accuracies of SAs calculated using Equation
(6) were found to be similar when cross checked with literature studies [25–31] (see Table 1). The LR
values calculated using Equation (7) gave a measure of the degree of accurate predictions using the
distribution of the SA between the activities (agonist and antagonist compounds) and the ratio of true
and wrong predictions. The high LR values mean that a SA was predominantly found to contribute to
one of the two activities, and the value "inf" means the alert was a perfect classifier. The value “inf” is
the ideal value of LR, which means that the number of wrong predictions was zero, and accordingly,
the division by zero (the denominator of Equation (7)) tends to infinity. The largest values of LR are
interpreted as the highest relevance of the SA; however, unlike the accuracy where the numerical
range is well defined, the wide numerical range of LR values could be difficult for interpretation.
Additionally, the real accuracy, the random accuracy, and the difference between these two parameters,
for the classification model and for each SA, were calculated using the methodology proposed by
Lučić et al., 2019 [60], and Batista, et al., 2016 [61]. The outcome is presented in the Supplementary
Information Table SA2. The difference of the real accuracy of SA and the random accuracy is called
delta accuracy which can have an ideal value of 0.5. The structural alert with a high value of delta
accuracy is regarded as privileged structural fragments (SAs).

4. Conclusions

Human aromatase activity has been studied for azole classes comprising of triazoles, diazoles,
and thiazoles for their reversible inhibition and agonist activity. The classification modeling suggested
that the chemical nature and position of substituents (chemical groups) on diazoles and triazole
ring had different contributions to inhibition, while functional groups having resonating charges
have a significant role for agonist activity. The regression model of triazoles for antagonist activity
suggested that the electrophilicity originated from the interelectronic exchange interaction (ωHF), the
LUMO energy and spherical shape were the key factors. The antagonist activity of diazoles was
electronically a function of HOMONL energy and stereochemically a function of branching index
and number of ring system (NRS). The literature studies [21,30,31], contour map of frontier orbitals
(Figures S2 and S3), and regression Equations (1) and (2) suggested the significance of electrostatic
balance/back bonding during dative interactions between enzyme CYP19A1 and azole molecules
should be incorporated with the appropriate stereochemistry of azoles for effective inhibition or vice
versa. Regression Equations (4) and (5) showed that localized charges have a negative contribution
to the agonist activity, whereas the delocalized charges in diazoles and thiazoles increase the agonist
behaviour with respect to the CYP19A1 aromatase enzyme. Interestingly, such mechanistic explanatory
QSARs for CYP19A1 inhibition have never been reported in the literature and, moreover, agonist
activity has not been the subject of published QSAR models, despite its importance to identify potential
endocrine disruptors through the CYP19A1 enzyme.

Supplementary Materials: The following are available online, Excel file SA SA1: Aromatase database used for
classification modeling, SA2: Output of the classification modeling, SA1.1–SA1.11: Compounds containg each
fragment and the description of the fragment. Excel file SB: SB1: Full curated dataset, SB2–SB5: Activity data of
compounds extracted from SB1 along with their calculated descriptors, Supporting Figures: Heat maps, quantum
mechanical interactions. Figure S1: The heat maps showing the diversity of the data set; Figure S2: Representations
of HOMO and LUMO isosurfaces for the antagonist triazoles; Figure S3: Representation of HOMO-1 (HOMONL),
HOMO and LUMO isosurfaces of antagonist diazoles; Figure S4: Williams plots of leverage vs standardised
residuals for equations (1,2,4,5).
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