Supramolecular Sandwiches: Halogen-Bonded Coformers Direct [2+2] Photoreactivity in Two-Component Cocrystals
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Structure of 2(1,3-di-I-tFb)·2(2,2′-bpe)
2.2. X-ray Structure of 2(1,3-di-I-tFb)·(2,2′-tpcb)
2.3. X-ray Structure of (1,4-di-I-tFb)·(2,2′-bpe)
2.4. X-ray Structure of (1,4-di-I-tFb)·(2,2′-tpcb)
2.5. Photoreactivity
3. Materials and Methods
3.1. General Experimental
3.2. Synthetic Procedures
3.3. 1H NMR Spectroscopy
3.4. Powder X-ray Diffraction (pXRD)
3.5. Single-Crystal X-ray Diffraction (scXRD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, F.H.; Goud, B.S.; Hoy, V.J.; Howard, J.A.K.; Desiraju, G.R. Molecular Recognition via Iodo·Nitro and Iodo·Cyano Interactions: Crystal Structures of the 1:1 Complexes of 1, 4-Diiodobenzene with 1, 4-Dinitrobenzene and 7, 7, 8, 8-Tetracyanoquinodimethane (TCNQ). J. Chem. Soc. Chem. Commun. 1994, 23, 2729–2730. [Google Scholar] [CrossRef]
- Reddy, D.S.; Craig, D.C.; Rae, A.D.; Desiraju, G.R. N···Br Mediated Diamondoid Network in the Crystalline Complex Carbon Tetrabromide: Hexamethylenetetramine. J. Chem. Soc. Chem. Commun. 1993, 23, 1737–1739. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Marras, G.; Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Vij, A. Solid State Synthesis Under Supramolecular Control of a 2D Heterotetratopic Self-Complementary Tecton Tailored to Halogen Bonding. New J. Chem. 2006, 30, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.; Lauher, J.W.; Goroff, N.S. Preparation of Poly(diiododiacetylene), an Ordered Conjugated Polymer of Carbon and Iodine. Science 2006, 312, 1030–1034. [Google Scholar] [CrossRef] [Green Version]
- Sinnwell, M.A.; MacGillivray, L.R. Halogen-Bond-Templated [2+2] Photodimerization in the Solid State: Directed Synthesis and Rare Self-Inclusion of a Halogenated Product. Angew. Chem. Int. Ed. 2016, 55, 3477–3480. [Google Scholar] [CrossRef] [PubMed]
- Caronna, T.; Liantonio, R.; Logothetis, T.A.; Metrangolo, P.; Pilati, T.; Resnati, G. Halogen Bonding and π···π Stacking Control Reactivity in the Solid State. J. Am. Chem. Soc. 2004, 126, 4500–4501. [Google Scholar] [CrossRef]
- Guido, E.; Metrangolo, P.; Panzeri, W.; Pilati, T.; Resnati, G.; Ursini, M.; Logothetis, T.A. Pentaerythritol tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl) ether: A Tecton for the Self-Assembly of Double Strand 1D Infinite Chains. J. Fluorine Chem. 2005, 126, 197–207. [Google Scholar] [CrossRef]
- Walsh, R.B.; Padgett, C.W.; Metrangolo, P.; Resnati, G.; Hanks, T.W.; Pennington, W.T. Crystal Engineering through Halogen Bonding: Complexes of Nitrogen Heterocycles with Organic Iodides. Cryst. Growth Des. 2001, 1, 165–175. [Google Scholar] [CrossRef]
- Quentin, J.; MacGillivray, L.R. Halogen- versus Hydrogen-Bonding in Binary Cocrystals: Novel Conformation a Coformer with [2+2] Photoreactivity of Criss-Crossed C=C Bonds. Chem. Phys. Chem. 2019, 21, 154–163. [Google Scholar] [CrossRef]
- Görbitz, C.H. The Development and Use of a Crystallographic Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Peedikakkal, A.M.P.; Vittal, J.J. Solid-State Photochemical [2+2] Cycloaddition in a Hydrogen-Bonded Metal Complex Containing Several Parallel and Crisscross C=C Bonds. Chem. Eur. J. 2008, 14, 5329–5334. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K. Topics in Stereochemistry, Vol. 25; Denmark, S.E., Siegel, J.S., Eds.; Wiley: Chichester, UK, 2006; pp. 31–47. [Google Scholar]
- Harada, J.; Ogawa, K. Invisible but Common Motion in Organic Crystals: A Pedal Motion in Stilbenes and Azobenzenes. J. Am. Chem. Soc. 2001, 123, 10884–10888. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K.; Tomoda, S. The Central Bond Length in 1, 2- Diphenylethanes. J. Am. Chem. Soc. 1995, 117, 4476–4478. [Google Scholar] [CrossRef]
- Ogawa, K.; Sano, T.; Yoshimura, S.; Takeuchi, Y.; Toriumi, K. Molecular Structure and Intramolecular Motion of (E)—Stilbenes in Crystals. An Interpretation of the Unusually Short Ethylene Bond. J. Am. Chem. Soc. 1992, 114, 1041–1051. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K.; Tamoda, S. Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X-ray Diffraction. Acta Cryst. 1997, B53, 662–672. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K. Ethane Bond Length in 1, 2-Ddiphenylethanes. Struct. Chem. 2001, 12, 243–250. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K. X- ray Diffraction Analysis of Nonequilibrium States in Crystals: Observation of an Unstable Conformer in Flash- Cooled Crystals. J. Am. Chem. Soc. 2004, 126, 3539–3544. [Google Scholar] [CrossRef]
- Harada, J.; Harakawa, M.; Ogawa, K. Conformational Change of N-Bbenzylideneanilines in Crystals. Acta Cryst. 2004, B60, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Ohba, S.; Hosomi, H.; Ito, Y. In Situ X- ray Observation of Pedal- like Conformational Change and Dimerization of trans- Cinnamamide in Cocrystals with Phthalic Acid. J. Am. Chem. Soc. 2001, 123, 6349–6352. [Google Scholar] [CrossRef] [PubMed]
- Ben-Efraim, D.A.; Green, B.S. Use of Mid- Points or Average NMR Chemical Shifts in Stereochemical Assignments. Tetrahedron 1974, 30, 2357–2364. [Google Scholar] [CrossRef]
- Vansant, J.; Toppet, S.; Smets, G. Azastilbenes. 2. Photodimerization. J. Org. Chem. 1980, 45, 1565–1573. [Google Scholar] [CrossRef]
- Venkataraman, D.; Lee, S.; Moore, J.S.; Zhang, P.; Hirsch, K.A.; Gardner, G.B.; Covey, A.C.; Prentice, C.L. Coordination Networks Based on Multitopic Ligands and Silver(I) Salts: A Study of Network Connectivity and Topology as a Function of Counterion. Chem. Mater. 1996, 8, 2030–2040. [Google Scholar] [CrossRef]
- Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., III; et al. Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0-New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 2(1,3-di-I-tFb)·2(2,2′-bpe), (1,4-di-I-tFb)·(2,2′-bpe), 2(1,3-di-I-tFb)·(2,2′-tpcb), and (1,4-di-I-tFb)·(2,2′-tpcb) are available from the authors. |
Cocrystal | 2(1,3-di-I-tFb)·2(2,2′-bpe) | 2(1,3-di-I-tFb)·(2,2′-tpcb) | (1,4-di-I-tFb)·(2,2′-bpe) | (1,4-di-I-tFb)·(2,2′-tpcb) |
---|---|---|---|---|
CCDC deposition number | 1940759 | 1967637 | 1940762 | 1967634 |
Empirical formula | C18H10F4I2N2 | C36H20F8I4N4 | C18H10F4I2N2 | C30H20F4I2N4 |
Formula weight/g·mol−1 | 584.08 | 1168.16 | 584.08 | 766.3 |
Temperature/K | 296.15 | 150.15 | 296.15 | 296.15 |
Crystal system | orthorhombic | monoclinic | tetragonal | monoclinic |
Space group | Pna21 | P21/c | I41cd | C2/c |
a/Å | 21.975(2) | 9.3925(9) | 14.1404(14) | 25.422(3) |
b/Å | 19.2247(19) | 18.8849(19) | 14.1404(14) | 5.4525(5) |
c/Å | 9.0190(9) | 20.596(2) | 38.138(4) | 21.183(2) |
α/° | 90 | 90 | 90 | 90 |
β/° | 90 | 90.337(5) | 90 | 112.099(5) |
γ/° | 90 | 90 | 90 | 90 |
Volume/Å3 | 3810.2(6) | 3653.2(6) | 7625.7(17) | 2720.5(5) |
Z | 8 | 4 | 16 | 4 |
ρcalc/g·cm−3 | 2.036 | 2.124 | 2.035 | 1.871 |
μ/mm−1 | 3.342 | 3.486 | 3.34 | 2.367 |
F(000) | 2192 | 2192 | 4384 | 1480 |
Crystal size/mm3 | 0.32 × 0.23 × 0.22 | 0.205 × 0.145 × 0.03 | 0.23 × 0.19 × 0.045 | 0.16 × 0.16 × 0.05 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 3.706 to 53.308 | 4.844 to 52.798 | 5.762 to 53.438 | 6.326 to 53.426 |
Index ranges | −27 ≤ h ≤ 27, −24 ≤ k ≤ 23, −11 ≤ l ≤ 11 | −11 ≤ h ≤ 11, −23 ≤ k ≤ 23, −25 ≤ l ≤ 25 | −17 ≤ h ≤ 17, −17 ≤ k ≤ 17, −48 ≤ l ≤ 41 | −32 ≤ h ≤ 32, −6 ≤ k ≤ 6, −26 ≤ l ≤ 21 |
Reflections collected | 24085 | 41568 | 21996 | 7854 |
Independent reflections | 7967 [Rint = 0.0302, Rsigma = 0.0287] | 7413 [Rint = 0.0373, Rsigma = 0.0299] | 3771 [Rint = 0.0374, Rsigma = 0.0225] | 2870 [Rint = 0.0338, Rsigma = 0.0413] |
Data/restraints/parameters | 7967/1/482 | 7413/4/498 | 3771/1/242 | 2870/1/196 |
Goodness-of-fit on F2 | 1.091 | 1.153 | 1.062 | 1.077 |
Final R indices [I ≥ 2σ (I)] | R1 = 0.0537 | R1 = 0.0463 | R1 = 0.0260 | R1 = 0.0352 |
wR2 = 0.1355 | wR2 = 0.0864 | wR2 = 0.0552 | wR2 = 0.0745 | |
R indices (all data) | R1 = 0.0685 | R1 = 0.0613 | R1 = 0.0394 | R1 = 0.0641 |
wR2 = 0.1522 | wR2 = 0.0926 | wR2 = 0.0603 | wR2 = 0.0838 | |
Largest diff. peak/hole/e·Å−3 | 3.50/−1.09 | 3.41/−3.00 | 0.24/−0.34 | 0.441/−0.676 |
Flack parameter | 0.284(14) | - | 0.254(13) | - |
Cocrystal | X-Bond | d(N···I)/Å | Θ(C-I···N)/° | X-Bond Type | Prs * |
---|---|---|---|---|---|
2(1,3-di-I-tFb)·(2,2′-bpe) | I1···N1 | 2.96(2) | 172.64 | I | 16 |
I2···N2 | 3.00(1) | 174.16 | I | 15 | |
I3···N3 | 2.99(1) | 172.24 | I | 15 | |
I4···N4 | 3.04(1) | 174.42 | I | 14 | |
2(1,3-di-I-tFb)·(2,2′-tpcb) | I1···N1 | 2.949(6) | 174.39 | I | 16 |
I2···N4 | 3.009(6) | 167.06 | I | 15 | |
I3···N3 | 2.947(6) | 177.44 | I | 17 | |
I4···N2 | 3.131(6) | 169.48 | I | 11 | |
(1,4-di-I-tFb)·(2,2′-bpe) | I1···N1 | 2.967(8) | 177.09 | I | 16 |
I2···N2 | 2.982(8) | 177.16 | I | 16 | |
(1,4-di-I-tFb)·(2,2′-tpcb) | I1···N1A | 3.064(4) | 174.36 | I | 13 |
I1···N1B | 2.942(4) | 171.42 | I | 17 |
Cocrystal | Primary Assembly | Secondary Assembly | Photoreactivity |
---|---|---|---|
2(1,3-di-I-tFb)·2(2,2′-bpe) | two unique, infinite 1D chains based on N···I | face-to-face ABB’A’ π-stacked sandwiches | active |
2(1,3-di-I-tFb)·(2,2′-tpcb) | infinite 1D chain based on N···I and face-to-face π-stacks | - | - |
(1,4-di-I-tFb)·(2,2′-bpe) | infinite 1D chain based on N···I and edge-to-edge C-H···I | face-to-face ABBA π-stacked sandwiches | active |
(1,4-di-I-tFb)·(2,2′-tpcb) | infinite zig-zag chains based on N···I | herringbone pattern based on C-H···N | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quentin, J.; C. Swenson, D.; R. MacGillivray, L. Supramolecular Sandwiches: Halogen-Bonded Coformers Direct [2+2] Photoreactivity in Two-Component Cocrystals. Molecules 2020, 25, 907. https://doi.org/10.3390/molecules25040907
Quentin J, C. Swenson D, R. MacGillivray L. Supramolecular Sandwiches: Halogen-Bonded Coformers Direct [2+2] Photoreactivity in Two-Component Cocrystals. Molecules. 2020; 25(4):907. https://doi.org/10.3390/molecules25040907
Chicago/Turabian StyleQuentin, Jay, Dale C. Swenson, and Leonard R. MacGillivray. 2020. "Supramolecular Sandwiches: Halogen-Bonded Coformers Direct [2+2] Photoreactivity in Two-Component Cocrystals" Molecules 25, no. 4: 907. https://doi.org/10.3390/molecules25040907
APA StyleQuentin, J., C. Swenson, D., & R. MacGillivray, L. (2020). Supramolecular Sandwiches: Halogen-Bonded Coformers Direct [2+2] Photoreactivity in Two-Component Cocrystals. Molecules, 25(4), 907. https://doi.org/10.3390/molecules25040907