One- and Two-Electron Oxidations of β-Amyloid25-35 by Carbonate Radical Anion (CO3•−) and Peroxymonocarbonate (HCO4−): Role of Sulfur in Radical Reactions and Peptide Aggregation
Abstract
:1. Introduction
2. Results
2.1. Oxidation of Aβ25-35 Fragment by PMC (HCO4−)
2.2. Oxidation of Free Methionine and Aβ25-35 by CO3•− (SOD/H2O2/Bicarbonate System)
2.3. Effect of One-Electron and Two-Electron Oxidation on Aβ25-35 Aggregation
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Synthesis of PMC (HCO4−)
4.3. Two-Electron Oxidation of Aβ25-35 Fragment and L-Methionine by PMC
4.4. One-Electron Oxidation of Aβ25-35 Fragment and L-Methionine by SOD/H2O2 System
4.5. HPLC Analysis
4.6. Purification of the Product of Two-Electron Oxidation of Aβ25-35 Fragment by PMC
4.7. Mass Spectrometry
4.8. Effect of L-Methionine and Aβ25-35 Fragment on Dihydrorhodamine-123 (DHR)
4.9. Thioflavin-T (ThT), Atomic Force Microscopy (AFM), and Dynamic Light Scattering Analyses (DLS)
4.10. Statistics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Aβ | β-amyloid |
AD | Alzheimer’s disease |
DTPA | diethylenetriaminepentaacetic acid |
DHR | dihydrorodhamine-123 |
MetSO | methionine sulfoxide |
MetS•+ | methionine sulfur radical cation |
PMC | peroxymonocarbonate (HCO4−) |
References
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Selkoe, D.J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 2008, 192, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Hartley, D.M.; Walsh, D.M.; Ye, C.P.; Diehl, T.; Vasquez, S.; Vassilev, P.M.; Teplow, D.B.; Selkoe, D.J. Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. J. Neurosci. 1999, 19, 8876–8884. [Google Scholar] [CrossRef] [Green Version]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yankner, B.A.; Lu, T. Amyloid β-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 2009, 284, 4755–4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, C.J.; Walencewicz-Wasserman, A.J.; Kosmoski, J.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Structure-Activity Analyses of β-Amyloid Peptides: Contributions of the β25-35 Region to Aggregation and Neurotoxicity. J. Neurochem. 2002, 64, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Harkany, T.; Hortobágyi, T.; Sasvári, M.; Kónya, C.; Penke, B.; Luiten, P.G.M.; Csaba, N. Neuroprotective approaches in experimental models of β-Amyloid neurotoxicity: Relevance to Alzheimer’s disease. Prog. Neuro Psychopharmacol. Biol. Psychiatry 1999, 23, 963–1008. [Google Scholar] [CrossRef]
- Harkany, T.; Ábrahám, I.; Kónya, C.; Nyakas, C.; Zarándi, M.; Penke, B.; Luiten, P.G.M. Mechanisms of ß-Amyloid Neurotoxicity: Perspectives of Pharmacotherapy. Rev. Neurosci. 2000, 11, 329–382. [Google Scholar] [CrossRef]
- Markesbery, W.R.; Carney, J.M. Oxidative Alterations in Alzheimer’s Disease. Brain Pathol. 2006, 9, 133–146. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Yatin, S.M.; Varadarajan, S.; Koppal, T. [48] Amyloid β-peptide-associated free radical oxidative stress, neurotoxicity, and Alzheimer’s disease. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 746–768. [Google Scholar]
- Hensley, K.; Hall, N.; Subramaniam, R.; Cole, P.; Harris, M.; Aksenov, M.; Aksenova, M.; Gabbita, S.P.; Wu, J.F.; Carney, J.M.; et al. Brain Regional Correspondence Between Alzheimer’s Disease Histopathology and Biomarkers of Protein Oxidation. J. Neurochem. 2002, 65, 2146–2156. [Google Scholar] [CrossRef]
- Allan Butterfield, D. Amyloid β-peptide (1-42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer’s Disease Brain. A Review. Free Radic. Res. 2002, 36, 1307–1313. [Google Scholar] [CrossRef]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Cappai, R.; Barnham, K.J. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim. Biophys. Acta Biomembr. 2007, 1768, 1976–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanski, J.; Aksenova, M.; Butterfield, D.A. The hydrophobic environment of Met35 of Alzheimer’s Aβ(1–42) is important for the neurotoxic and oxidative properties of the peptide. Neurotox. Res. 2002, 4, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Yatin, S.; Aksenova, M.; Butterfield, D.A. Review: Alzheimer’s Amyloid β-Peptide-Associated Free Radical Oxidative Stress and Neurotoxicity. J. Struct. Biol. 2000, 130, 184–208. [Google Scholar] [CrossRef] [PubMed]
- Enache, T.A.; Oliveira-Brett, A.M. Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry 2017. [Google Scholar] [CrossRef] [PubMed]
- Vogt, W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 1995, 18, 93–105. [Google Scholar] [CrossRef]
- Varadarajan, S.; Yatin, S.; Kanski, J.; Jahanshahi, F.; Butterfield, D.A. Methionine residue 35 is important in amyloid β-peptide-associated free radical oxidative stress. Brain Res. Bull. 1999, 50, 133–141. [Google Scholar] [CrossRef]
- Yatin, S.M.; Varadarajan, S.; Link, C.D.; Butterfield, D.A. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid ß-peptide (1–42). Neurobiol. Aging 1999, 20, 325–330. [Google Scholar]
- Curtain, C.C.; Ali, F.; Volitakis, I.; Cherny, R.A.; Norton, R.S.; Beyreuther, K.; Barrow, C.J.; Masters, C.L.; Bush, A.I.; Barnham, K.J. Alzheimer’s Disease Amyloid-β Binds Copper and Zinc to Generate an Allosterically Ordered Membrane-penetrating Structure Containing Superoxide Dismutase-like Subunits. J. Biol. Chem. 2001, 276, 20466–20473. [Google Scholar] [CrossRef] [Green Version]
- Butterfield, D.A.; Boyd-Kimball, D. The critical role of methionine 35 in Alzheimer’s amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim. Biophys. Acta Proteins Proteom. 2005, 1703, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Gabbita, S.P.; Aksenov, M.Y.; Lovell, M.A.; Markesbery, W.R. Decrease in Peptide Methionine Sulfoxide Reductase in Alzheimer’s Disease Brain. J. Neurochem. 2002, 73, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield, D.A.; Reed, T.; Newman, S.F.; Sultana, R. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 2007, 43, 658–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varadarajan, S.; Kanski, J.; Aksenova, M.; Lauderback, C.; Butterfield, D.A. Different Mechanisms of Oxidative Stress and Neurotoxicity for Alzheimer’s Aβ(1−42) and Aβ(25−35). J. Am. Chem. Soc. 2001, 123, 5625–5631. [Google Scholar] [CrossRef] [PubMed]
- Bakhmutova-Albert, E.V.; Yao, H.; Denevan, D.E.; Richardson, D.E. Kinetics and Mechanism of Peroxymonocarbonate Formation. Inorg. Chem. 2010, 49, 11287–11296. [Google Scholar] [CrossRef]
- Liochev, S.I.; Fridovich, I. Copper, Zinc Superoxide Dismutase and H2O2. J. Biol. Chem. 2002, 277, 34674–34678. [Google Scholar] [CrossRef] [Green Version]
- Conrado, A.B.; D’Angelantonio, M.; Torreggiani, A.; Pecci, L.; Fontana, M. Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu, Zn superoxide dismutase and by pulse radiolysis. Free Radic. Res. 2014, 48, 1300–1310. [Google Scholar] [CrossRef]
- Perrin, D.; Koppenol, W.H. The Quantitative Oxidation of Methionine to Methionine Sulfoxide by Peroxynitrite. Arch. Biochem. Biophys. 2000, 377, 266–272. [Google Scholar] [CrossRef]
- Spasojević, I.; Bogdanović Pristov, J.; Vujisić, L.; Spasić, M. The reaction of methionine with hydroxyl radical: Reactive intermediates and methanethiol production. Amino Acids 2012, 42, 2439–2445. [Google Scholar] [CrossRef]
- Pryor, W.A.; Jin, X.; Squadrito, G.L. One- and two-electron oxidations of methionine by peroxynitrite. Proc. Natl. Acad. Sci. USA 1994, 91, 11173–11177. [Google Scholar] [CrossRef] [Green Version]
- Yim, M.B.; Chock, P.B.; Stadtman, E.R. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc. Natl. Acad. Sci. USA 1990, 87, 5006–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stellato, F.; Fusco, Z.; Chiaraluce, R.; Consalvi, V.; Dinarelli, S.; Placidi, E.; Petrosino, M.; Rossi, G.C.; Minicozzi, V.; Morante, S. The effect of β-sheet breaker peptides on metal associated Amyloid-β peptide aggregation process. Biophys. Chem. 2017, 229, 110–114. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Boyd-Kimball, D. Amyloid β-Peptide(1-42) Contributes to the Oxidative Stress and Neurodegeneration Found in Alzheimer Disease Brain. Brain Pathol. 2006, 14, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Aliev, G. Editorial [Hot Topic: Oxidative Stress Induced-Metabolic Imbalance, Mitochondrial Failure, and Cellular Hypoperfusion as Primary Pathogenetic Factors for the Development of Alzheimer Disease Which Can Be Used as an Alternate and Successful Drug Treatment Strategy: Past, Present and Future (Guest Editor: Gjumrakch Aliev)]. CNS Neurol. Disord. Drug Targets 2011, 10, 147–148. [Google Scholar] [PubMed]
- França, M.B.; Lima, K.C.; Eleutherio, E.C.A. Oxidative Stress and Amyloid Toxicity: Insights from Yeast. J. Cell. Biochem. 2017, 118, 1442–1452. [Google Scholar] [CrossRef]
- Zhang, H.; Joseph, J.; Gurney, M.; Becker, D.; Kalyanaraman, B. Bicarbonate Enhances Peroxidase Activity of Cu, Zn-Superoxide Dismutase. J. Biol. Chem. 2002, 277, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medinas, D.B.; Cerchiaro, G.; Trindade, D.F.; Augusto, O. The carbonate radical and related oxidants derived from bicarbonate buffer. IUBMB Life 2007, 59, 255–262. [Google Scholar] [CrossRef]
- Medinas, D.B.; Toledo, J.C., Jr.; Cerchiaro, G.; Do-Amaral, A.T.; De-Rezende, L.; Malvezzi, A.; Augusto, O. Peroxymonocarbonate and Carbonate Radical Displace the Hydroxyl-like Oxidant in the Sod1 Peroxidase Activity under Physiological Conditions. Chem. Res. Toxicol. 2009, 22, 639–648. [Google Scholar] [CrossRef]
- Trindade, D.F.; Cerchiaro, G.; Augusto, O. A Role for Peroxymonocarbonate in the Stimulation of Biothiol Peroxidation by the Bicarbonate/Carbon Dioxide Pair. Chem. Res. Toxicol. 2006, 19, 1475–1482. [Google Scholar] [CrossRef]
- Petrat, F.; de Groot, H.; Rauen, U. Subcellular distribution of chelatable iron: A laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem. J. 2001, 356, 61. [Google Scholar] [CrossRef]
- Swaim, M.W.; Pizzo, S.V. Methionine Sulfoxide and the Oxidative Regulation of Plasma Proteinase Inhibitors. J. Leukoc. Biol. 1988, 43, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Brot, N.; Weissbach, H. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 1983, 223, 271–281. [Google Scholar] [CrossRef]
- Richardson, D.E.; Yao, H.; Frank, K.M.; Bennett, D.A. Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate. J. Am. Chem. Soc. 2000, 122, 1729–1739. [Google Scholar] [CrossRef]
- Richardson, D.E.; Regino, C.A.S.; Yao, H.; Johnson, J.V. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic. Biol. Med. 2003, 35, 1538–1550. [Google Scholar] [CrossRef]
- Liochev, S.I.; Fridovich, I. Copper, Zinc Superoxide Dismutase as a Univalent NO−Oxidoreductase and as a Dichlorofluorescin Peroxidase. J. Biol. Chem. 2001, 276, 35253–35257. [Google Scholar] [CrossRef] [Green Version]
- Palmblad, M.; Westlind-Danielsson, A.; Bergquist, J. Oxidation of Methionine 35 Attenuates Formation of Amyloid β-Peptide 1–40 Oligomers. J. Biol. Chem. 2002, 277, 19506–19510. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Kang, I.; Marchant, R.E.; Zagorski, M.G. Methionine 35 Oxidation Reduces Fibril Assembly of the Amyloid Aβ-(1–42) Peptide of Alzheimer’s Disease. J. Biol. Chem. 2002, 277, 40173–40176. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.M.; Lemkul, J.A.; Schaum, N.; Bevan, D.R. Simulations of monomeric amyloid β-peptide (1–40) with varying solution conditions and oxidation state of Met35: Implications for aggregation. Arch. Biochem. Biophys. 2014, 545, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Viles, J.H. Methionine oxidation reduces lag-times for amyloid-β(1–40) fiber formation but generates highly fragmented fibers. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Ponzini, E.; De Palma, A.; Cerboni, L.; Natalello, A.; Rossi, R.; Moons, R.; Konijnenberg, A.; Narkiewicz, J.; Legname, G.; Sobott, F.; et al. Methionine oxidation in -synuclein inhibits its propensity for ordered secondary structure. J. Biol. Chem. 2019, 294, 5657–5665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Hoffman, M.Z. Rate Constants for the Reaction of the Carbonate Radical with Compounds of Biochemical Interest in Neutral Aqueous Solution. Radiat. Res. 1973, 56, 40. [Google Scholar] [CrossRef]
- Augusto, O.; Bonini, M.G.; Amanso, A.M.; Linares, E.; Santos, C.C.X.; De Menezes, S.L. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic. Biol. Med. 2002, 32, 841–859. [Google Scholar] [CrossRef]
- Huie, R.E.; Shoute, L.C.T.; Neta, P. Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants. Int. J. Chem. Kinet. 1991, 23, 541–552. [Google Scholar] [CrossRef]
- Yang, X.-H.; Huang, H.-C.; Chen, L.; Xu, W.; Jiang, Z.-F. Coordinating to Three Histidine Residues: Cu(II) Promotes Oligomeric and Fibrillar Amyloid-β Peptide to Precipitate in a Non-β Aggregation Manner. J. Alzheimer’s Dis. 2009, 18, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.G.; Perry, G.; Smith, M.A.; Reddy, V.P. NMR Studies of Zinc, Copper, and Iron Binding to Histidine, the Principal Metal Ion Complexing Site of Amyloid-β Peptide. J. Alzheimer’s Dis. 2010, 20, 57–66. [Google Scholar] [CrossRef]
- Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s Diseases. Curr. Opin. Chem. Biol. 2008, 12, 222–228. [Google Scholar] [CrossRef]
- Rauk, A.; Yu, D.; Taylor, J.; Shustov, G.V.; Block, D.A.; Armstrong, D.A. Effects of Structure on α C−H Bond Enthalpies of Amino Acid Residues: Relevance to H Transfers in Enzyme Mechanisms and in Protein Oxidation †. Biochemistry 1999, 38, 9089–9096. [Google Scholar] [CrossRef]
- Schöneich, C.; Pogocki, D.; Hug, G.L.; Bobrowski, K. Free Radical Reactions of Methionine in Peptides: Mechanisms Relevant to β-Amyloid Oxidation and Alzheimer’s Disease. J. Am. Chem. Soc. 2003, 125, 13700–13713. [Google Scholar] [CrossRef]
- Hildebrandt, A.G.; Roots, I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch. Biochem. Biophys. 1975, 171, 385–397. [Google Scholar] [CrossRef]
- Hirschberger, L.L.; de la Rosa, J.; Stipanuk, M.H. Determination of cysteinesulfinate, hypotaurine and taurine in physiological samples by reversed-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1985, 343, 303–313. [Google Scholar] [CrossRef]
- Perluigi, M.; Di Domenico, F.; Blarzino, C.; Foppoli, C.; Cini, C.; Giorgi, A.; Grillo, C.; De Marco, F.; Butterfield, D.A.; Schininà, M.E.; et al. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: A proteomic approach. Proteome Sci. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, M.; Giovannitti, F.; Pecci, L. The protective effect of hypotaurine and cysteine sulphinic acid on peroxynitrite-mediated oxidative reactions. Free Radic. Res. 2008, 42, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Kanski, J.; Varadarajan, S.; Aksenova, M.; Butterfield, D.A. Role of glycine-33 and methionine-35 in Alzheimer’s amyloid β-peptide 1–42-associated oxidative stress and neurotoxicity. Biochim. Biophys. Acta Mol. Basis Dis. 2002, 1586, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Cricenti, A.; Colonna, S.; Girasole, M.; Gori, P.; Ronci, F.; Longo, G.; Dinarelli, S.; Luce, M.; Rinaldi, M.; Ortenzi, M. Scanning probe microscopy in material science and biology. J. Phys. D Appl. Phys. 2011, 44, 464008. [Google Scholar] [CrossRef]
- Giles, G.I.; Jacob, C. Reactive Sulfur Species: An Emerging Concept in Oxidative Stress. Biol. Chem. 2002, 383, 375–388. [Google Scholar] [CrossRef]
- Jacob, C. A scent of therapy: Pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep. 2006, 23, 851. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francioso, A.; Baseggio Conrado, A.; Blarzino, C.; Foppoli, C.; Montanari, E.; Dinarelli, S.; Giorgi, A.; Mosca, L.; Fontana, M. One- and Two-Electron Oxidations of β-Amyloid25-35 by Carbonate Radical Anion (CO3•−) and Peroxymonocarbonate (HCO4−): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules 2020, 25, 961. https://doi.org/10.3390/molecules25040961
Francioso A, Baseggio Conrado A, Blarzino C, Foppoli C, Montanari E, Dinarelli S, Giorgi A, Mosca L, Fontana M. One- and Two-Electron Oxidations of β-Amyloid25-35 by Carbonate Radical Anion (CO3•−) and Peroxymonocarbonate (HCO4−): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules. 2020; 25(4):961. https://doi.org/10.3390/molecules25040961
Chicago/Turabian StyleFrancioso, Antonio, Alessia Baseggio Conrado, Carla Blarzino, Cesira Foppoli, Elita Montanari, Simone Dinarelli, Alessandra Giorgi, Luciana Mosca, and Mario Fontana. 2020. "One- and Two-Electron Oxidations of β-Amyloid25-35 by Carbonate Radical Anion (CO3•−) and Peroxymonocarbonate (HCO4−): Role of Sulfur in Radical Reactions and Peptide Aggregation" Molecules 25, no. 4: 961. https://doi.org/10.3390/molecules25040961
APA StyleFrancioso, A., Baseggio Conrado, A., Blarzino, C., Foppoli, C., Montanari, E., Dinarelli, S., Giorgi, A., Mosca, L., & Fontana, M. (2020). One- and Two-Electron Oxidations of β-Amyloid25-35 by Carbonate Radical Anion (CO3•−) and Peroxymonocarbonate (HCO4−): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules, 25(4), 961. https://doi.org/10.3390/molecules25040961