Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
2.2.1. Antibacterial and Antifungal Activities
2.2.2. Antioxidant Activity
2.2.3. Anticancer Activity
3. Materials and Methods
3.1. Biological Activity Studies
3.1.1. Antibacterial and Antifungal Activities
3.1.2. Antioxidant Activity
3.1.3. Anticancer Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, M.Z.; Nguyen, M.A.; Zingales, S.K. Design, synthesis and evaluation of (2-(Pyridinyl)methylene)-1-tetralone chalcones for Anticancer and Antimicrobial Activity. Med. Chem. 2018, 14, 333–343. [Google Scholar] [CrossRef]
- Gao, Z.; Hurst, W.J.; Czechtizky, W.; Hall, D.; Moindrot, N.; Nagorny, R.; Pichat, P.; Stefany, D.; Hendrix, J.A.; George, P.G. Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid [2-methyl-4-((2S,3′S)-2-methyl-[1,3′]bipyrrolidinyl-1′-yl)phenyl] amide as histamine H(3) receptor antagonist for the treatment of depression. Bioorg. Med. Chem. Lett. 2013, 23, 6269–6273. [Google Scholar] [CrossRef]
- Afzal, B.S.; Lohitha, S.V.K.; Puttagunta, S.B.; Shaik, A.; Supraja, K.; Sai, H.K. Synthesis and screening of novel lipophilic diarylpropeones as prospective antitubercular, antibacterial and antifungal agents. Biointerface Res. Appl. Chem. 2019, 9, 3912–3918. [Google Scholar]
- RamirezPrada, J.; Robledo, S.M.; Velez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1-H-pyrazoles as potential anticancer, antifungal, antibacterial, antiprotozoal agents. Med. Chem. 2017, 131, 237–254. [Google Scholar]
- Sowmya, D.V.; Lakshmi Teja, A.; Padmaja, A.; Kamala Prasad, V.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem. 2018, 143, 891–898. [Google Scholar] [CrossRef]
- Chunlin, Z.; Wen, Z.; Chunquan, S.; Wannian, Z.; Chengguo, X.; Zhenyuan, M. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar]
- Puja, J.; Dharam, P.P.; Himangini, B.; Uma, A. Chalcone and their Heterocyclic Analogue: A Review Article. J. Chem. Pharm. Res. 2018, 10, 160–173. [Google Scholar]
- Ahmet, Ö.; Mehlika, D.A.; Belgin, S.; Hülya, K.G.; Handan, A.K.; Özlem, A.; Merve, B. A New Series of Pyrrole-Based Chalcones: Synthesis and Evaluation of Antimicrobial Activity, Cytotoxicity, and Genotoxicity. Molecules 2017, 22, 2112. [Google Scholar] [CrossRef] [Green Version]
- Pallepati, K.; Venkata, R.K.; Afzal, B.S. Antitubercular evaluation of isoxazole appended 1-carboxamido-4,5-dihydro-1H-pyrazoles. J. Res. Pharm. 2019, 23, 156–163. [Google Scholar]
- Afzal, B.S.; Yejella, R.P.; Shaik, S. Design, Facile Synthesis, Characterization and Computational Evaluation of Novel Isobutylchalcones as Cytotoxic Agents: Part-A. FABAD J. Pharm. Sci. 2015, 40, 7–22. [Google Scholar]
- Kishor, P.; Venkata, K.; Afzal, B.S. Antitubercular Evaluation of Isoxazolyl Chalcones. RJPBCS 2017, 8, 730–735. [Google Scholar]
- Lokesh, B.V.S.; Prasad, Y.R.; Shaik, A.B. Novel pyrimidine derivatives from 2,5-dichloro-3-acetylthienyl chalcones as antifungal, antitubercular and cytotoxic agents: Design, synthesis, biological activity and docking study. Asian J. Chem. 2019, 19, 310–321. [Google Scholar]
- Afzal, B.S.; Yejella, R.P.; Shaik, S. Synthesis, Antimicrobial, and Computational Evaluation of Novel Isobutylchalcones as Antimicrobial Agents. Int. J. Med. Chem. 2017, 2017, 1–14. [Google Scholar]
- Lavanya, G.; Mallikarjunareddy, L.; Padmavathi, V.; Padmaja, A. Synthesis and antimicrobial activity of (1,4-phenylene)bis(arylsulfonylpyrazoles and isoxazoles). Eur. J. Med. Chem. 2014, 73, 187–194. [Google Scholar] [CrossRef]
- Abdelhamid, A.O.; EI Sayed, I.E.; Zaki, Y.H.; Hussein, A.M.; Mangoud, M.M.; Hosny, M.A. Utility of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide in the synthesis of heterocyclic compounds with antimicrobial activity. Biorg. Med. Chem. 2019, 13, 48. [Google Scholar] [CrossRef]
- Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules 2013, 18, 2683–2711. [Google Scholar] [CrossRef]
- Caliskan, B.; Sinoplu, E.; Ibis, K.; Akhan Guzelcan, E.; Cetin Ataly, R.; Banoglu, E. Synthesis and cellular bioactivities of novel isoxazole derivatives incorporating an arylpiperazine moiety as anticancer agents. J. Enzyme Inhib. Med. Chem. 2018, 33, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Filali, I.; Romdhane, A.; Znati, M.; Jannet, H.B.; Bouajila, J. Synthesis of new harmine isoxazoles and evaluation of their potential anti-alzheimer, anti-inflammatory, and anticancer activities. Med. Chem. 2016, 12, 184–190. [Google Scholar] [CrossRef]
- Jiabing, W.; Lili, H.; Chanchan, C.; Ge, L.; Jingwen, X.; Mengya, S.; Qian, C.; Wulan, L.; Wenfei, H.; Peihong, Q.; et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B 2019, 9, 335–350. [Google Scholar]
- Elfi, S.V.H.; Widiastuti, A.E.S. A green synthesis of chalcones as an antioxidant and anticancer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012077. [Google Scholar]
- Yesseny, A.V.M.; Maurico, E.O.; Diego, A.S.M.; Marcela, A.C.; Alejandra, P.V.; Elizabeth, S.; Marcela, R.; Susana, A.Z.; Carolina, M.; Claudia, T.; et al. Antimicrobial, Anti-Inflammatory and Antioxidant Activities of Polyoxygenated Chalcones. J. Braz. Chem. Soc. 2019, 30, 286–304. [Google Scholar]
- Chandrabose, K.; Narayana, S.H.; Narayana, M.; Sakthivel, R.; Uma, V.; Elangovan, M.; Devarajan, K.; Piyush, T. Advances in chalcones with anticancer activities. Recent Pat Anticancer Drug Discov. 2015, 10, 97–115. [Google Scholar]
- Yong, J.P.; Lu, C.Z.; Wu, X. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer Agents Med. Chem. 2015, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Jimi, M.A.; Raj, K. 4,5-Dihydro-1H-pyrazole: An indispensable scaffold. J. Enzyme Inhib. Med. Chem. 2014, 29, 427–442. [Google Scholar]
- Hai-Chao, W.; Xiao-Qiang, Y.; Tian-Long, Y.; Hong-Xia, L.; Zhong-Chang, W.; Hai-Liang, Z. Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors. Molecules 2016, 21, 1012. [Google Scholar] [CrossRef] [Green Version]
- Ewelina, S.; Zenon, P.C.; Bogdan, M.; Andrzej, P.; Wojciech, K. Chalcones and Dihydrochalcones Augment TRAIL-Mediated Apoptosis in Prostate Cancer Cells. Molecules 2010, 15, 5336–5353. [Google Scholar] [CrossRef] [Green Version]
- Hongtian, Z.; Lei, T.; Chenghong, Z.; Baochu, W.; Pingrong, Y.; Dian, H.; Lifang, Z.; Yang, Z. Synthesis of Chalcone Derivatives: Inducing Apoptosis of HepG2 Cells via Regulating Reactive Oxygen Species and Mitochondrial Pathway. Front. Pharmacol. 2019, 10, 1–13. [Google Scholar]
- Vidhya, C.D.; Hareeshbabu, E.; Krishnakumar, K. Synthesis of hybrid molecules of isoxazole derivatives in search of new anticancer drugs—A review. IJARIIT 2019, 5, 1348–1355. [Google Scholar]
- Vanessa, G.; Sidnei, M.; Alex, F.C.F.; Darlene, C.F.; Pio, C.; Ernani, P. Antioxidant and Antimicrobial Properties of 2-(4,5-Dihydro-1H-pyrazol-1-yl)- pyrimidine and 1-Carboxamidino-1H-pyrazole Derivatives. J. Braz. Chem. Soc. 2010, 21, 1477–1483. [Google Scholar]
- Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Pharm. 2011, 344, 514–522. [Google Scholar] [CrossRef]
- Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Velez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem. 2013, 67, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Chicharro, J.; Bueno, J.M.; Lorenzo, M. Isoxazole mediated synthesis of 4-(1H)pyridones: Improved preparation of antimalarial candidate GSK932121. Chem. Commun. (camb) 2016, 52, 10190–10192. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.M.; Herreros, E.; Angulo-Barturen, I.; Ferre, S.; Fiandor, J.M.; Gamo, F.J.; Gargallo-Viola, D.; Derimanov, G. Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Fut. Med. Chem. 2012, 4, 2311–2323. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Koregaokar, S.; Shah, M.; Parekh, H. Synthesis of some novel pyrazoline and cyanopyridine derivatives as antimicrobial agents. Farmaco 1996, 51, 59–63. [Google Scholar]
- Guan, L.P.; Zhao, D.H.; Chang, Y.; Wen, Z.S.; Tang, L.M.; Huang, F.F. Synthesis of 2,4-dihydroxychalcone derivatives as potential antidepressant effect. Drug Res. (Stuttg) 2013, 63, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.F.; Tuckmantel, W.; Eaton, J.B.; Caldarone, B.; Fedolak, A.; hanania, T.; Brunner, D.; Lukas, R.J.; Kozikowski, A.P. Identification of novel α4β2-nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity. J. Med. Chem. 2012, 55, 55812–55823. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yu, L.F.; Eaton, J.B.; Caldarone, B.; Cavino, K.; Ruiz, C.; Terry, M.; Fedolak, A.; Wang, D.; Ghavami, A.; et al. Discovery of isoxazole analogues of sazetidine-A as selective α4β2-nicotinic acetylcholine receptor partial agonists for the treatment of depression. J. Med. Chem. 2011, 54, 7280–7288. [Google Scholar] [CrossRef] [Green Version]
- Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett. 2005, 15, 5030–5034. [Google Scholar] [CrossRef]
- Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem. 2001, 36, 539–543. [Google Scholar] [CrossRef]
- Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem. 2002, 10, 2795–2802. [Google Scholar] [CrossRef]
- Azzali, E.; Machado, D.; Kaushik, A.; Vacondio, F.; Flisi, S.; Cabassi, C.S.; Lamichhane, G.; Viveiros, M.; Costantino, G.; Pieroni, M. Substituted N-Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides are valuable antitubercular candidates that evade innate efflux machinery. J. Med. Chem. 2017, 60, 7108–7122. [Google Scholar] [CrossRef] [PubMed]
- Balaji, N.V.; HariBabu, B.; Rao, V.U.; Subbaraju, G.V.; Nagasree, K.P.; Kumar, M.M.K. Synthesis, screening and docking analysis of hispolon pyrazoles and isoxazoles as potential antitubercular agents. Curr. Top. Med. Chem. 2019, 19, 662–682. [Google Scholar] [CrossRef] [PubMed]
- Lokesh, B.V.S.; Prasad, Y.R.; Shaik, A.B. Synthesis, Biological evaluation and molecular docking studies of new pyrazolines as an antitubercular and cytotoxic agents. Infect. Disord. Drug Targets 2019, 19, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.R.; Joshi, S.D.; Kulkarni, V.H.; Jalalpure, S.S.; Kumbar, V.M.; Mudaraddi, T.Y.; Nadagouda, M.N.; Aminabhavi, T.M. Pyrrolyl pyrazoline carbaldehydes as Enoyl-ACP reductase inhibitors. Design, synthesis and antitubercular activity. Open. Med. Chem. J. 2017, 11, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives. Curr. Top. Med. Chem. 2017, 17, 3146–3169. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, A.; Altintop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, I.; Alataş, O.; Kaplancikli, Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem. 2015, 89, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Gawad, N.M.; Georgey, H.H.; Ibrahim, N.A.; Amin, N.H.; Abdelsalam, R.M. Synthesis of novel pyrazole and dihydropyrazoles derivatives as potential anti-inflammatory and analgesic agents. Chem. Commun. (Camb) 2016, 52, 14490–14493. [Google Scholar] [CrossRef]
- Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem. 2014, 22, 5804–5812. [Google Scholar] [CrossRef]
- Eugenio, J.G.; Tatiane, L.C.O.; Severino, M.A.; Alessandra, R.; Alessandro, D.L.; Rosa, H.M.G. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth, Braz. Dent. J. 2012, 23, 22–27. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | S aureus | P aeruginosa | A niger | C tropicalis |
---|---|---|---|---|
17 | 4 | 8 | 8 | 8 |
18 | 128 | 128 | 256 | 256 |
19 | 4 | 4 | 8 | 16 |
20 | 32 | 64 | 64 | 32 |
21 | 2 | 4 | 8 | 16 |
22 | 32 | 32 | 64 | 64 |
23 | 4 | 4 | 4 | 4 |
24 | 64 | 32 | 128 | 64 |
25 | 256 | 256 | 256 | 512 |
26 | 64 | 64 | 128 | 128 |
27 | 16 | 16 | 32 | 32 |
28 | 1 | 1 | 2 | 2 |
29 | 64 | 128 | 128 | 256 |
30 | 4 | 4 | 16 | 16 |
31 | 2 | 2 | 4 | 4 |
Ciprofloxacin | 2 | 2 | --- | --- |
Fluconazole | --- | --- | 1 | 1 |
Compound | S aureus | P aeruginosa | A niger | C tropicalis |
---|---|---|---|---|
32 | 16 | 16 | 4 | 4 |
33 | 128 | 128 | 64 | 64 |
34 | 16 | 16 | 8 | 8 |
35 | 64 | 64 | 16 | 16 |
36 | 8 | 8 | 4 | 8 |
37 | 64 | 32 | 32 | 32 |
38 | 32 | 16 | 2 | 2 |
39 | 128 | 64 | 32 | 32 |
40 | 256 | 256 | 64 | 64 |
41 | 64 | 128 | 64 | 64 |
42 | 32 | 16 | 16 | 16 |
43 | 4 | 4 | 2 | 2 |
44 | 64 | 256 | 16 | 16 |
45 | 8 | 8 | 0.5 | 1 |
46 | 8 | 8 | 0.5 | 0.5 |
Ciprofloxacin | 2 | 2 | --- | --- |
Fluconazole | --- | --- | 1 | 1 |
Compound | IC50 | Compound | IC50 |
---|---|---|---|
17 | 33 ± 1 | 32 | 44 ± 1 |
18 | 38 ± 2 | 33 | 51 ± 2 |
19 | 32 ± 2 | 34 | 38 ± 2 |
20 | 24 ± 1 | 35 | 32 ± 1 |
21 | 18 ±2 | 36 | 25 ± 2 |
22 | 26 ±2 | 37 | 39 ± 2 |
23 | 16 ±1 | 38 | 28 ± 1 |
24 | 29 ±1 | 39 | 49 ± 1 |
25 | 9 ± 1 | 40 | 12 ± 1 |
26 | 6 ± 1 | 41 | 8 ± 1 |
27 | 7 ± 2 | 42 | 10 ± 2 |
28 | 5 ± 1 | 43 | 6 ± 1 |
29 | 8 ± 2 | 44 | 12 ± 2 |
30 | 45 ± 2 | 45 | 55 ± 2 |
31 | 48 ± 1 | 46 | 62 ± 1 |
Gallic acid 5 ± 1 |
Compound | DU-145 | Human Normal Cells (L02) | Compound | DU-145 | Human Normal Cells (L02) |
---|---|---|---|---|---|
17 | 32 ± 2 | >40 | 32 | 28 ± 1 | >40 |
18 | 20 ± 1 | >40 | 33 | 18 ± 2 | >40 |
19 | 36 ± 1 | >40 | 34 | 32 ± 2 | >40 |
20 | 22 ± 1 | >40 | 35 | 16 ± 2 | >40 |
21 | 29 ± 2 | >40 | 36 | 26 ± 2 | >40 |
22 | 38 ± 1 | >40 | 37 | 31 ± 2 | >40 |
23 | 33 ± 2 | >40 | 38 | 20 ± 2 | >40 |
24 | 6 ± 2 | >40 | 39 | 4 ± 2 | >40 |
25 | 12 ± 1 | >40 | 40 | 8 ± 2 | >40 |
26 | 10 ± 2 | >40 | 41 | 9 ± 1 | >40 |
27 | 26 ± 3 | >40 | 42 | 18 ±2 | >40 |
28 | 30 ± 2 | >40 | 43 | 21 ± 2 | >40 |
29 | 8 ± 2 | >40 | 44 | 5 ± 2 | >40 |
30 | 5 ± 2 | >40 | 45 | 2 ± 1 | >40 |
31 | 16 ±2 | >40 | 46 | 12 ± 2 | >40 |
Docetaxel 5 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules 2020, 25, 1047. https://doi.org/10.3390/molecules25051047
Shaik A, Bhandare RR, Palleapati K, Nissankararao S, Kancharlapalli V, Shaik S. Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules. 2020; 25(5):1047. https://doi.org/10.3390/molecules25051047
Chicago/Turabian StyleShaik, Afzal, Richie R. Bhandare, Kishor Palleapati, Srinath Nissankararao, Venkata Kancharlapalli, and Shahanaaz Shaik. 2020. "Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives" Molecules 25, no. 5: 1047. https://doi.org/10.3390/molecules25051047
APA StyleShaik, A., Bhandare, R. R., Palleapati, K., Nissankararao, S., Kancharlapalli, V., & Shaik, S. (2020). Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules, 25(5), 1047. https://doi.org/10.3390/molecules25051047