Supplementary material

Even Visually Intact Cell Walls in Waterlogged Archaeological Wood are Chemically Deteriorated and Mechanically Fragile: A Case of a 170-year-old Shipwreck

Liuyang Han^{1,2}, Xingling Tian³, Tobias Keplinger^{4,5}, Haibin Zhou⁶, Ren Li^{1,2}, Kirsi Svedström⁷, Ingo Burgert^{4,5}, Yafang Yin^{1,2} and Juan Guo^{*1,2}

- ¹ Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
- ² Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing100091, China;
- ³ Heritage Conservation and Restoration Institute, Chinese Academy of Cultural Heritage, Beijing 100029, China;
- ⁴ Wood Materials Science, ETH Zurich, 8093 Zurich, Switzerland;
- ⁵ Laboratory for Cellulose & Wood Materials, EMPA, 8600 Dubendorf, Switzerland;
- ⁶ Pilot Base, Chinese Academy of Forestry, Beijing 102300, China;
- 7 Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
- * Correspondence: guojuanchina@126.com; (J.G.)

Figure S1. Light microscopy image of waterlogged archaeological wood. Red arrows marked the VICWs.

Figure S2. PCA scores (A) and loading plot of PC1 (B) of *Hopea* wood samples. R: RW. W: VICWs in archaeological wood.

Figure S3. The archaeological site of marine "Xiaobaijiao I" shipwreck. (map source: bzdt.ch.mnr.gov.cn)

Figure S4. Examples of load-displacement curves of nanoindentations on the cell walls in RW (the black line) and VICWs in archaeological wood (the red line).

Figure S5. Images based on CCD camera (A, D) and pseudo-colour full-spectral FTIR absorbance 3D images (B, E) and related 2D images (C, F) of wood tangential sections; RW (A, B, C) and archaeological Hopea wood (D, E, F). The intensity of the absorbance is indicated by the change in color. The black solid squares present in Fig. 2C and Fig. 2F indicated the chosen pixel positions in the S₂ layer of wood fibers in specimens. Scale bar = $50 \mu m$.

Peak position (cm ⁻¹)	Peak assignment		
3700~3100	the hydroxyl stretching region		
1720	mainly assigned to the C=O stretch in acetyl groups of		
1730	hemicellulose		
1502	the relative concentration of aromatic skeletal vibrations,		
1392	together with C=O stretch in lignin		
1502	the aromatic skeletal vibration in the lignin (mainly syringyl)		
1462	the CH ₂ symmetric bending on the xylose ring		
1424	the CH2 scissoring in cellulose		
1370	the C-H bending in polysaccharides		
1334	1334 the O-H in-plane bending of amorphous cellulose		
1218	the wagging (out of the plane) of the CH2 groups in crystalline		
1318	cellulose		
1264	the aromatic C-O stretching vibrations of methoxyl and phenyl		
1201	propane units in guaiacol rings of lignin		
1234	mainly assigned to the C-O stretching in the O=C-O group of		
1201	side chains in hemicellulose		
1220	the aromatic C-O stretching vibrations in syringol rings of lignin		
1160	the characteristic of asymmetric bridge C-O-C stretch mode in		
1100	polysaccharides		
897	β -anomers or β -linked glucose polymer		
834	the C–H out of plane deformation in position 2 and 6 of syringyl		
004	unit in lignin		
810	equatorially aligned hydrogen on the C2 atom in the mannose		
010	residue in glucomannan		

Table S1. Peak assignments for FTIR spectra of wood [16, 22, 43, 47]

Resonance	Chemical shift	Assignments	
number	(ppm)		
1	173	Carbohydrates: -COO-R, CH3-COO-	
2	152.6	Lignins: S ₃ (e), S ₅ (e)	
3	147	Lignins: S3 (ne), S5 (ne), G3, G4	
4	136	Lignins: S1 (e), S4 (e), G1 (e)	
5	134	Lignins: S1 (ne), S4 (ne), G1 (e)	
6	127-116	Lignins: G6, G5, S2, S6	
7	105	Carbohydrates: C1	
8	88.7	Carbohydrates: C4	
9	84	Lignins: C_ in β -O-4 linked side chain; Carbohydrates: C_	
10 75		Lignins: C_{α} -OH in β -O-4 linked side chain of lignins;	
10	75	Carbohydrates: C _{2,3,5}	
11	72	Carbohydrates: C2,3,5	
12	65	Carbohydrates: C ₆	
13	62	Lignins: C _Y	
14	56	Lignin: OCH ₃	
15	22	long-chain CH2 included in resin acids, residues of	
15	33	microbial biomass, or condensed tannin	
16	01	Polysaccharides: CH3-COO- [methyl carbon in	
10	Z1	hemicellulose acetyl groups]	

Table S2. Resource assignment of solid ¹³C NMR spectrum of *Hopea* wood [17, 23-25]

S: syringyl (aromatic unit with two methoxyl groups); G: guaiacyl (aromatic unit with only one methoxyl); ne: in non-etherified arylglycerol β -aryl ethers; e: in etherified arylglycerol β -aryl ethers.

No.	Retention time (min)	Name of compound Origin		Category
1	2.2	acetic acid	holocellulose	
2	2.4	2-butenal	holocellulose	
3	5.5	2-furan methanol	holocellulose	
4	9.2	phenol	p-hydroxyphenyl lignin	others
5	9.5	2-hydroxy-3-methyl-2-cyclopenten-1- one	holocellulose	
6	10.0	o-cresol	p-hydroxyphenyl lignin	others
7	10.4	m (or p)-cresol	p-hydroxyphenyl lignin	others
8	13.1	syringol	syringyl lignin	short- chain
9	14.0	E-isoeugenol	guaiacyl lignin	long-chain
10	14.6	5-tert-butyl-1,2,3-benzentriol	lignin	dem
11	15.0	4-vinylsyringol	syringyl lignin	short- chain
12	15.2	4-allylsyringol	syringyl lignin	long-chain

Table S3. Pyrolysis products of Hopea wood by Py-GC/MS [17, 28-31].

*dem: demethylated/demthoxylated lignin pyrolysis products.

Wavenumber (cm ⁻¹)	Assignment	Component	
1096	Heavy atom (C-C and C-O) stretching	Cellulose,	Glucomannan,
		Xylan	
1121	Heavy atom (C-C and C-O) stretching	Cellulose,	Glucomannan,
		Xylan	
1149	Heavy atom (C-C and C-O) stretching plus HCC and	Cellulose	
	HCO bending		
1271	Aryl-O of aryl-OH and aryl-O-CH3; guaiacyl ring	Lignin	
	(with C=O group) mode		
1333	Aliphatic O-H bending	Lignin	
1600	Aryl ring stretching, symmetric	Lignin	
1620	Ring conjugated C=C stretch of coniferaldehyde	Lignin	
1660	Ring conjugated C=C stretch of coniferyl alcohol;	Lignin	
	C=O stretch of coniferaldehyde		

Table S4. Assignment of Raman bands for main components in hardwood [14, 16, 17].

References

- 14. Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 2015, 69(1), 103-112.
- 16. Guo, J.; Zhou, H.; Stevanic, J. S.; Dong, M.; Yu, M.; Salmén, L.; Yin, Y., Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. *Wood Science and Technology* **2017**.
- Guo, J.; Xiao, L.; Han, L.; Wu, H.; Yang, T.; Wu, S.; Yin, Y.; Donaldson, L. A., Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old. *IAWA Journal* 2019, 1, 1-25.
- 22. Simonović, J.; Stevanic, J.; Djikanović, D.; Salmén, L.; Radotić, K., Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. *Cellulose* **2011**, 18, (6), 1433-1440.
- 23. Cha, M. Y.; Lee, K. H.; Kim, Y. S., Micromorphological and chemical aspects of archaeological bamboos under long-term waterlogged condition. *International Biodeterioration & Biodegradation* **2014**, 86, 115-121.
- 24. Bardet, M.; Gerbaud, G.; Giffard, M.; Doan, C.; Hediger, S.; Pape, L. L., 13C highresolution solid-state NMR for structural elucidation of archaeological woods. *Progress in Nuclear Magnetic Resonance Spectroscopy* **2009**, 55, (3), 199-214.
- 25. Davis, M. F.; Schroeder, H. R.; Maciel, G. E., Solid-state 13C nuclear magnetic resonance studies of wood decay. I. White rot decay of Colorado blue spruce. Walter de Gruyter,

Berlin/New York: 1994.

- 28. Faix, O.; Meier, D.; Fortmann, I., Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin-derived products. *Holz als Roh- und Werkstoff (Germany, F.R.)* **1991,** 49, (7-8), 299-304.
- 29. RíO, J. C. D.; Speranza, M.; Gutiérrez, A.; MartíNez, M. J.; MartíNez, A. T., Lignin attack during eucalypt wood decay by selected basidiomycetes: a Py-GC/MS study. *Journal of Analytical & Applied Pyrolysis* **2002**, 64, (2), 421-431.
- Tamburini, D.; Łucejko, J. J.; Zborowska, M.; Modugno, F.; Prądzyński, W.; Colombini, M. P., Archaeological wood degradation at the site of Biskupin (Poland): wet chemical analysis and evaluation of specific Py-GC/MS profiles. *Journal of Analytical & Applied Pyrolysis* 2015, 115, 7-15.
- 31. Fors, Y.; Nilsson, T.; Risberg, E. D.; Sandström, M.; Torssander, P., Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. *International Biodeterioration & Biodegradation* 2008, 62, (4), 336-347.
- Prats-Mateu, B.; Bock, P.; Schroffenegger, M.; Toca-Herrera, J. L.; Gierlinger, N., Following laser induced changes of plant phenylpropanoids by Raman microscopy. *Scientific Reports* 2018, 8, (1).
- 37. Gierlinger, N.; Schwanninger, M., Chemical imaging of poplar wood cell walls by confocal Raman microscopy. *Plant Physiol* **2006**, 140, (4), 1246-54.
- 43. Salmén, L.; Stevanic, J. S.; Olsson, A.-M., Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). *Holzforschung* **2016**, 70, (12).
- 47. Yin, Y.; Berglund, L.; Salmén, L., Effect of Steam Treatment on the Properties of Wood Cell Walls. *Biomacromolecules* **2011**, 12, (1), 194.