Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Equilibrium Study
2.2. Spectroscopy Studies
2.2.1. IR Spectroscopy
2.2.2. UV-Vis Spectroscopy
2.2.3. Luminescence Spectroscopy
2.2.4. Circular Dichroism
3. Materials and Methods
3.1. Materials
3.2. Equilibrium Study
3.3. Spectroscopy Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gálico, D.A.; Lahoud, M.G.; Davolos, M.R.; Frem, R.C.G.; Fraga-Silva, T.F.C.; Venturini, J.; Arruda, M.S.P.; Bannach, G. Spectroscopic, luminescence and in vitro biological studies of solid ketoprofen of heavier trivalent lanthanides and yttrium(III). J. Inorg. Biochem. 2014, 140, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Shurygin, A.V.; Vovna, V.I.; Korochentsev, V.V.; Mirochnik, A.G.; Kalinovskaya, I.V.; Sergienko, V.I. Electronic structure and optical properties of Ln(III) nitrate adducts with 1,10-phenanthroline. Spectrochim. Acta Part A 2019, 213, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M.; Salti, M.; Goren, S.D.; Yudina, E.B.; Aleksenskii, A.E.; Ya Vul’, A.; Shames, A.I. Gd(III)-Grafted Detonation Nanodiamonds for MRI Contrast Enhancement. J. Phys. Chem. C 2019, 123, 2627–2631. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, X.; Wong, W.-K.; Tam, H.-L.; Wong, W.-Y. Light-Harvesting Ytterbium(III)-Porphyrinae-BODIPY conjugates: Synthesis, Excitation-Energy Transfer, and Two-Photon-induced Near-Infrared-Emission Studies. Chem. Eur. J. 2013, 19, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. [Google Scholar] [CrossRef]
- Ajlouni, A.M.; Abu-Salem, Q.; Taha, Z.A.; Hijazi, A.K.; Momani, W.A. Synthesis characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] Schiff bases ligand. J. Rare Earths 2016, 34, 986–993. [Google Scholar] [CrossRef]
- Das, K.; Nandi, S.; Mondal, S.; Askun, T.; Cantürk, Z.; Celikboyun, P.; Massera, C.; Garribba, E.; Datta, A.; Sinha, C.; et al. Triple phenoxo bridged Eu(III) and Sm (III) complexes with 2,6-diformyl-4-methylphenol-di(benzoylhydrazone): Structure, spectra and biological study in human cell lines. New J. Chem. 2015, 39, 1101–1114. [Google Scholar] [CrossRef]
- Zhang, F.-H.; Wang, Y.-Y.; Lv, C.; Li, Y.-C.; Zhao, X.-Q. Luminescent complexes associated with isonicotinic acid. J. Lumin. 2019, 207, 561–570. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kierzek, R.; Kubicki, M.; Radecka-Paryzek, W. Metal-promoted synthesis, characterization, crystal structure and RNA cleavage ability of 2,6-acetylpyridine bis(2 aminobenzoylhydrazone) lanthanide complexes. J. Inorg. Biochem. 2013, 126, 38–45. [Google Scholar] [CrossRef]
- Andrushchenko, V. Eu3+ as a luminescent probe in DNA studies: Structural and conformational implications. Spectrochim. Acta Part A 2019, 231, 456–462. [Google Scholar] [CrossRef]
- Jastrząb, R.; Nowak, M.; Skrobańska, M.; Tolińska, A.; Zabiszak, M.; Gabryel, M.; Marciniak, Ł.; Kaczmarek, M.T. DNA as a target for lanthanide(III) complexes influence. Coord. Chem. Rev. 2019, 382, 145–159. [Google Scholar] [CrossRef]
- Jastrzab, R.; Kaczmarek, M.T.; Nowak, M.; Trojanowska, A.; Zabiszak, M. Complexes of polyamines and their derivatives as living system active compounds. Coord. Chem. Rev. 2017, 351, 32–44. [Google Scholar] [CrossRef]
- Baggio, R.; Perec, M. Isolation and characterization of polymeric lanthanum citrate. Inorg. Chem. 2004, 43, 6965–6968. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-G.; Liu, W.; Zuo, J.-L.; Li, Y.-Z.; You, X.-Z. Synthesis, structure and luminescent properties of lanthanide(III) polymeric complexes constructed by citric acid. Inorg. Chem. Commun. 2005, 8, 328–330. [Google Scholar] [CrossRef]
- Łyszczek, R.; Mazur, L. Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: Structures, thermal and luminescent properties. Polyhedron 2012, 41, 7–19. [Google Scholar] [CrossRef]
- Wang, L.; Ni, L.; Yao, J. Synthesis, structures and fluorescent properties of two novel lanthanides [Ln=Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylateand 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands. Solid State Sci. 2012, 14, 1361–1366. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Li, Y.; Zhou, L.; Lan, Y. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III). Environ. Pollut. 2019, 245, 711–718. [Google Scholar] [CrossRef]
- Thuery, P. Reaction of uranyl nitrate with carboxylic diacid under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acid. Polyhedron 2007, 26, 101–106. [Google Scholar] [CrossRef]
- Gawroński, J.; Gawronska, K.; Rychlewska, U. Conformational disparity of (R,R)-tartaric acid esters and amides. Tetrahedron Lett. 1989, 30, 6071–6074. [Google Scholar] [CrossRef]
- Gawroński, J.; Gawrońska, K.; Skowronek, P.; Rychlewska, U.; Warżajtis, B.; Rychlewski, J.; Hoffmann, M.; Szarecka, A. Factors Affecting Conformation of (R,R)-Tartaric Acid Ester, Amide and Nitrile Derivatives. X-Ray Diffraction, Circular Dichroism, Nuclear Magnetic Resonance and Ab Initio Studies. Tetrahedron 1997, 53, 6113–6144. [Google Scholar] [CrossRef]
- Janiak, A.; Rychlewska, U.; Kwit, M.; Stępień, U.; Gawrońska, K.; Gawroński, J. From single molecule to crystal: Mapping out the conformations of tartaric acids and their derivatives. Chem. Phys. Chem. 2012, 13, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Grajewski, J.; Gawronski, J. Extending the applications of circular dichroism in structure elucidation: Aqueous environment breaks the symmetry of tartrate dianion. New J. Chem. 2010, 34, 2020–2026. [Google Scholar] [CrossRef]
- Katsuki, T.; Sharpless, K.B. The first practical method for asymmetric epoxidation. J. Am. Chem Soc. 1980, 102, 5974–5976. [Google Scholar] [CrossRef]
- Yamauchi, J.; Yasui, S.; Ito, Y. Detection of Radicals and Radical Pairs in Photo-irradiated 2,4,6-Triisopropyl-42032-methoxycarbonylbenzophenone in the Solid State. Chem. Lett. 1998, 27, 137–138. [Google Scholar] [CrossRef]
- Roush, W.R.; Banfi, L. N,N’-dibenzyl-N,N’-ethylenetartramide: A rationally designed chiral auxiliary for the allylboration reaction. J. Am. Chem. Soc. 1988, 110, 3979–3982. [Google Scholar] [CrossRef]
- Grajewski, J.; Mądry, T.; Kwit, M.; Warżajtis, B.; Rychlewska, U.; Gawroński, J.K. Benzhydryl ethers of tartaric acid derivatives: Stereochemical response of dynamically chiral propeller. Chem. Phys. Chem. 2017, 18, 2197–2207. [Google Scholar] [CrossRef]
- Gawronski, J.; Długokinska, A.; Grajewski, J.; Plutecka, A.; Rychlewska, U. Conformational response of tartaric acid to derivatization: Role of 1,3-dipole-dipole interactions. Chirality 2005, 17, 388–395. [Google Scholar] [CrossRef]
- Kiss, T.; Buglo, P.; Sanna, D.; Micera, G.; Decock, P.; Dewaele, D. Oxovanadium(IV) complexes of citric and tartaric acid in aqueous solution. Inorg. Chim. Acta 1995, 239, 145–153. [Google Scholar] [CrossRef]
- Zabiszak, M.; Nowak, M.; Taras-Goslinska, K.; Kaczmarek, M.T.; Hnatejko, Z.; Jastrzab, R. Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J. Inorg. Biochem. 2018, 82, 37–47. [Google Scholar] [CrossRef]
- Berto, S.; Daniele, P.G.; Diana, E.; Laurenti, E.; Prenesti, E. Thermodynamic, spectroscopic and DFT description of oxovanadium(IV) complexes with malate and tartare in aqueous solution. Inorg. Chim. Acta 2014, 414, 105–114. [Google Scholar] [CrossRef]
- Juang, R.-S.; Wu, F.-C.; Tseng, R.-L. Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents. Water Res. 1999, 33, 2403–2409. [Google Scholar] [CrossRef]
- Kaczmarek, M.T.; Jastrząb, R.; Radecka-Paryzek, W. Potentiometric study of lanthanide salicylaldimine Schiff base complexes. J. Solut. Chem. 2013, 42, 18–26. [Google Scholar] [CrossRef]
- Müller, D.; Knoll, C.; Herrmann, A.; Savasci, G.; Welch, J.M.; Artner, W.; Ofner, J.; Lendl, B.; Giester, G.; Weinberger, P.; et al. Azobis[tetrazolide]-Carbonates of the Lanthanides – Breaking the Gadolinium Break. Eur. J. Inorg. Chem. 2018, 19, 1969–1975. [Google Scholar] [CrossRef]
- Selwood, P.W. Deformation of electron shells. II. Absorption spectrum, molecular volume and refraction of certain rare earth salts. J. Am. Chem. Soc. 1930, 52, 4308–4316. [Google Scholar] [CrossRef]
- Richardson, M.F. Crystal and molecular structure of ytterbium acetylacetonate monohydrate. Inorg. Chem. 1969, 8, 22–28. [Google Scholar] [CrossRef]
- Legendziewicz, J.; Oczko, G.; Keller, B.; Stręk, W.; Jeżowska-Trzebiatowska, B. Absorption and luminescence spectra of dysprosium compound in non-aqueous solutions. Spectral intensity analysis. J. Mol. Struct. 1984, 115, 421–425. [Google Scholar] [CrossRef]
- Carnall, W.T. Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Eds.; North-Holland Publishing: Amsterdam, The Netherlands, 1979; Volume 3, pp. 171–208. ISBN 978-0-444-85215-1. [Google Scholar]
- Lis, S.; Elbanowski, M.; Mąkowska, B.; Hnatejko, Z. Energy transfer in the solution of lanthanide complexes. J. Photochem. Photobiol. A Chem. 2002, 150, 233–247. [Google Scholar] [CrossRef]
- Lis, S.; But, S. Spectroscopic studies of Eu(III) and Nd(III) complexes with several polyoxometalates. J. Alloy. Compd. 2000, 300, 370–376. [Google Scholar] [CrossRef]
- Kłonkowski, A.; Lis, S.; Pietraszkiewicz, M.; Hnatejko, Z.; Czarnobaj, K.; Elbanowski, M. Luminescence properties of materials with Eu(III) complexes: The role of ligand, co-ligand, anion and matrix. Chem. Mater. 2003, 15, 656–663. [Google Scholar] [CrossRef]
- Eaten, D.F. Reference materials for fluorescence measurements. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and specification (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
- Lomozik, L.; Jastrzab, R. Interference of copper(II) ions with non-covalent interactions in uridine or uridine 5’-monophosphate systems with adenosine, cytidine, thymidine and their monophosphates in aqueous solution. J. Solut. Chem. 2007, 36, 357–374. [Google Scholar] [CrossRef]
- Bregier-Jarzebowska, R.; Gasowska, A.; Jastrzab, R. Noncovalent interactions and coordination reactions in the systems consisting of copper(II) ions, aspartic acid and diamines. J. Inorg. Biochem. 2009, 103, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Gasowska, A.; Jastrzab, R.; Lomozik, L. Specific type of interactions in the quatenary system of Cu(II), adenosine 5’-triphosphate, 1,11-diamino-4,8-diazaundecane and uridine. J. Inorg. Biochem. 2007, 101, 1362–1369. [Google Scholar] [CrossRef]
- Jastrzab, R. Phosphoserine and specific types of its coordination in copper(II) and adenosine nucleotides systems—Potentiometric and spectroscopic studies. J. Inorg. Biochem. 2009, 103, 766–773. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Jastrzab, R. Studies of new phosphothreonine complexes formed in binary and ternary systems including biogenic amines and copper(II). J. Coord. Chem. 2013, 66, 98–113. [Google Scholar] [CrossRef]
- Jastrzab, R.; Nowak, M.; Skrobanska, M.; Zabiszak, M. Complexation copper(II) or magnesium ions with d-glucuronic acid—Potentiometric, spectral and theoretical studies. J. Coord. Chem. 2016, 69, 2174–2181. [Google Scholar] [CrossRef]
- Glasoe, P.K.; Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide 1,2. J. Phys. Chem. 1960, 64, 188–190. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Species | Overall Protonation Constants (logβ) [30,31] | Reactions | Successive Protonation Constants (logKe) | |
---|---|---|---|---|
H2Tar | 7.50(4) | 6.78 | HTar- + H+ ⇆ H2Tar | 2.59 |
HTar | 4.91(4) | 3.96 | Tar2- + H+ ⇆ HTar- | 4.91 |
Species | Overall Stability Constants (logβ) | Reaction | Equilibrium Constants (logKe) |
---|---|---|---|
La(HTar) | 8.10(9) | La3+ + H(Tar) ⇆ La(HTar) | 3.19 |
La(Tar) | 4.35(5) | La3+ + Tar ⇆ La(Tar) | 4.35 |
La(Tar)(OH) | −3.04(5) | La(Tar) +H2O ⇆ La(Tar)(OH) + H+ | 6.36 |
Nd(HTar)(Tar) | 12.66(3) | Nd3+ + H(Tar) + Tar ⇆ Nd(HTar)(Tar) | 7.75 |
Nd(Tar)2 | 7.70(7) | Nd3+ + 2Tar ⇆ Nd(Tar)2 | 7.70 |
Nd(Tar)2(OH) | 1.55(5) | Nd(Tar)2 + H2O ⇆ Nd(Tar)2(OH) + H+ | 7.61 |
Nd(Tar)(OH) | −2.89(4) | Nd3+ + Tar + H2O ⇆ Nd(Tar)(OH) + H+ | 10.87 |
Eu(HTar)(Tar) | 12.68(4) | Eu3+ + H(Tar) + Tar ⇆ Eu(HTar)(Tar) | 7.77 |
Eu(Tar)2 | 8.29(5) | Eu3+ + 2Tar ⇆ Eu(Tar)2 | 8.29 |
Eu(Tar)2(OH) | 2.53(4) | Eu(Tar)2 + H2O ⇆ Eu(Tar)2(OH) + H+ | 8.00 |
Eu(Tar)(OH) | −2.60(2) | Eu3+ + Tar + H2O ⇆ Eu(Tar)(OH) + H+ | 11.16 |
Eu(Tar)(OH)2 | −13.87(6) | Eu(Tar)(OH) + H2O ⇆ Eu(Tar)(OH)2 + H+ | 2.50 |
Gd(Tar)2 | 7.65(4) | Gd3+ + 2Tar ⇆ Gd(Tar)2 | 7.65 |
Gd(Tar)2(OH) | 1.58(7) | Gd(Tar)2 + H2O ⇆ Gd(Tar)2(OH) + H+ | 7.69 |
Gd(Tar)(OH) | −2.94(5) | Gd3+ + Tar + H2O ⇆ Gd(Tar)(OH) + H+ | 10.82 |
Tb(HTar)(Tar) | 12.77(4) | Tb3+ + H(Tar) + Tar ⇆ Tb(HTar)(Tar) | 7.86 |
Tb(Tar)2 | 8.51(4) | Tb3+ + 2Tar ⇆ Tb(Tar)2 | 8.51 |
Tb(Tar)2(OH) | 2.89(4) | Tb(Tar)2 + H2O ⇆ Tb(Tar)2(OH) + H+ | 8.15 |
Tb(Tar)(OH) | −2.19(2) | Tb3+ + Tar + H2O ⇆ Tb(Tar)(OH) + H+ | 11.57 |
Tb(Tar)(OH)2 | −13.30(5) | Tb(Tar)(OH) + H2O ⇆ Tb(Tar)(OH)2 + H+ | 2.66 |
Ho(HTar)(Tar) | 13.23(4) | Ho3+ + H(Tar) + Tar ⇆ Ho(HTar)(Tar) | 8.32 |
Ho(Tar)2 | 8.83(6) | Ho3+ + 2Tar ⇆ Ho(Tar)2 | 8.83 |
Ho(Tar)2(OH) | 3.62(6) | Ho(Tar)2 + H2O ⇆ Ho(Tar)2(OH) + H+ | 8.56 |
Ho(Tar)(OH) | −1.69(3) | Ho3+ + Tar + H2O ⇆ Ho(Tar)(OH) + H+ | 12.07 |
Ho(Tar)(OH)2 | −13.19(9) | Ho(Tar)(OH) + H2O ⇆ Ho(Tar)(OH)2 + H+ | 2.26 |
Lu(HTar)(Tar) | 13.07(4) | Lu3+ + H(Tar) + Tar ⇆ Ho(HTar)(Tar) | 8.16 |
Lu(Tar)2 | 9.05(5) | Lu3+ + 2Tar ⇆ Ho(Tar)2 | 9.05 |
Lu(Tar)2(OH) | 4.25(6) | Lu(Tar)2 + H2O ⇆ Lu(Tar)2(OH) + H+ | 8.96 |
Lu(Tar)(OH) | −1.11(4) | Lu3+ + Tar + H2O ⇆ Ho(Tar)(OH) + H+ | 12.65 |
Lu(Tar)(OH)2 | −12.31(7) | Lu(Tar)(OH) + H2O ⇆ Lu(Tar)(OH)2 + H+ | 2.57 |
Species | pH | λmax[nm] | ε [mol⋅dm−3⋅cm−1] |
---|---|---|---|
Nd(III) | 4.2 | 794.00 | 12.0 |
800.85 | 6.0 | ||
Nd(HTar)(Tar) | 4.2 | 795.05 | 11.0 |
801.14 | 6.4 | ||
Nd(Tar)2 | 5.5 | 795.70 | 9.7 |
798.93 | 8.7 |
Species | η = Iem618/Iem593 |
---|---|
Eu(HTar)(Tar) | 1.18 |
Eu(Tar)2 | 1.89 |
Eu(Tar)2(OH) | 2.55 |
Eu(Tar)(OH) | 2.28 |
Eu(Tar)(OH)2 | 2.22 |
La(III)/Tar | Nd(III)/Tar | Eu(III)/Tar | Gd(III)/Tar | Ho(III)/Tar | Tb(III)/Tar | Lu(III)/Tar |
---|---|---|---|---|---|---|
pH = 3.0 Δε (nm) −3.0 (195) −2.8 (213) | pH = 4.2 Δε (nm) −4.1 (194) 2.6 (215) | pH = 3.8 Δε (nm) −5.1 (193) 3.4 (210)3.4 (215) | pH = 3.65 Δε (nm) −4.3 (192) 3.2 (211) | pH = 3.8 Δε (nm) −5.3 (193) 4.4 (215) | pH = 3.8 Δε (nm) −3.0 (190) −0.5 (209) 0.5 (211) −0.3 (222) | |
pH = 5.8 Δε (nm) −5.7 (193) 1.1 (219) | pH = 5. 55 Δε (nm) −2.6 (194) 3.1 (215) | pH = 5.1 Δε (nm) −4.2 (193) 3.7 (212) | pH = 5.0 Δε (nm) −3.1 (194) 3.7 (210) 3.8 (215) | pH = 4.8 Δε (nm) −4.7 (191) 0.8 (213) | pH = 5.0 Δε (nm) −4.9 (194) 3.3 (217) | pH = 4.5 Δε (nm) −3.0 (194) 1.7 (225) |
pH = 7.0 Δε (nm) −2.3 (195) −1.5 (206) −0.4 (214) −1.4 (223) | pH = 6.8 Δε (nm) −4.6 (194) 1.1 (222) | pH = 6.8 Δε (nm) −2.7 (195) 3.9 (217) | pH = 6.3 Δε (nm) −4.5 (193) 2.7 (215) | pH = 6.6 Δε (nm) −5.4 (194) 3.5 (215) | pH = 5.8 Δε (nm) −2.8 (194) 2.4 (211) 2.6 (217) | |
pH = 8.3 Δε (nm) −3.3 (191) −3.4 (196) −2.2 (208) | pH = 10.0 Δε (nm) −3.8 (194) −1.9 (208) 1.1 (227) | pH = 10.0 Δε (nm) −4.2 (195) −1.5 (209) 0.7 (227) | pH = 9.9 Δε (nm) −4.5 (195) −2.3 (205) 1.2 (227) | pH = 9.7 Δε (nm) −2.9 (196) −1.9 (210) 0.5 (226) | ||
pH = 11.0 Δε (nm) −2.7 (194) −2.2 (205) −1.1 (210) 0.9 (228) | pH = 11.0 Δε (nm) −3.0 (192) −1.4 (206) 1.6 (229) | pH = 11.0 Δε (nm) −2.5 (194) −1.1 (226) | pH = 11.0 Δε (nm) −3.6 (194) −1.5 (209) −0.5 (228) | pH = 11.0 Δε (nm) −4.7 (194) −2.0 (208) | pH = 11.0 Δε (nm) −2.6 (192) −2.7 (198) −1.7 (210) 0.2 (232) |
Overall Hydrolysis Constants (logβ) | |||
---|---|---|---|
M(OH) | M(OH)2 | M(OH)3 | |
La3+ | −15.54(1) | ||
Nd3+ | −16.12(2) | −25.53(4) | |
Eu3+ | −15.15(3) | −24.31(6) | |
Gd3+ | −9.30(1) | −17.74(2) | −28.12(6) |
Tb3+ | −15.56(1) | ||
Ho3+ | −15.62(1) | ||
Lu3+ | −14.93(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabiszak, M.; Nowak, M.; Hnatejko, Z.; Grajewski, J.; Ogawa, K.; Kaczmarek, M.T.; Jastrzab, R. Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems. Molecules 2020, 25, 1121. https://doi.org/10.3390/molecules25051121
Zabiszak M, Nowak M, Hnatejko Z, Grajewski J, Ogawa K, Kaczmarek MT, Jastrzab R. Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems. Molecules. 2020; 25(5):1121. https://doi.org/10.3390/molecules25051121
Chicago/Turabian StyleZabiszak, Michal, Martyna Nowak, Zbigniew Hnatejko, Jakub Grajewski, Kazuma Ogawa, Malgorzata T. Kaczmarek, and Renata Jastrzab. 2020. "Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems" Molecules 25, no. 5: 1121. https://doi.org/10.3390/molecules25051121
APA StyleZabiszak, M., Nowak, M., Hnatejko, Z., Grajewski, J., Ogawa, K., Kaczmarek, M. T., & Jastrzab, R. (2020). Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems. Molecules, 25(5), 1121. https://doi.org/10.3390/molecules25051121