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Abstract

:

Antimicrobial active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
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1. Antimicrobial Food Packaging


In Europe, the food sector is a major sector that generates more than 750,000,000,000 euros each year [1], representing 4.4% of the Gross Domestic Product to the European Economy [2]. According to the latest data provided by FAO [3], about one third of all food produced for human consumption is wasted each year, which corresponds to 1.3 Gtons of food; a global tendency that is expected to grow in the future [4].



Given the economic impact of the food industry in our society, microbial contamination of foods can result in significant losses for the food industry due to food spoilage. Furthermore, the consumption of microbial contaminated foods can lead to serious public health threats such as foodborne diseases and outbreaks. Microbial food spoilage is mainly caused by non-pathogenic spoilage microorganisms that are responsible for alterations on the nutritional and sensory characteristics of food products, such as oxidation, generation of off-flavours and off-odours as well as undesirable changes in texture and colour [5]. On the other hand, foodborne disease is caused by pathogenic microorganisms that are responsible, each year, for 600,000,000 cases of illness, with almost 420,000 deaths and 27,000,000 Years of Life Lost (YLL), according to World Health Organization (WHO) [6].



The first attempt of the food industry to fight microbial contamination was based on the direct addition of antimicrobials (e.g., food preservatives) to food products. This strategy proved to be of limited action due to the rapid diffusion of the antimicrobial substance from the surface to the mass of the product [7], with concomitant loss of efficacy, so the food industry had to search for new and innovative ways to introduce antimicrobials in food products. Given that 99.8% of all food and beverages have to be encased in some sort of packaging during their existence, the next logical step was to include these antimicrobial substances in the food packaging material, giving rise to antimicrobial food packaging technology. A clear advantage of this option would be that the packaged food would be protected without having edible preservatives added directly in its composition. Antimicrobial packaging has the main goal of reducing, retard or even inhibiting microbial growth by interacting with the packaged food (direct contact) or the package headspace (indirect contact) [5]. By controlling microbial flora, antimicrobial packaging ensures microbial food safety, while maintaining food’s quality and sensorial properties and increasing products’ shelf-life [8]. Nowadays, antimicrobial packaging can come in several forms such as sachets or pads containing volatile antimicrobials, polymer films with direct incorporation of antimicrobial substances (extrusion, casting) and coating, adsorption or grafting of antimicrobials onto the surface of the polymer [7]. It is quite obvious that antimicrobials have to reach the cells to inhibit their growth or to kill them. This fact implies that the antimicrobial agents will have to be in contact with the food, either in vapour phase or by direct contact between the active packaging and the food [8]. There is a wide and ever-growing list of antimicrobial agents that have been or are currently being for the development of antimicrobial food packaging. Although the list is vast, not all antimicrobials are suitable for every application, as the choice of the antimicrobial to be used depends on several factors. The primary factor is the antimicrobial activity against the target microorganisms, including specific activity and resistance development, and the regulatory status of its use in foods [9]. Furthermore, one has to take into account whether controlled release approaches are necessary or not, given the chemical nature of the food, its storage and distribution conditions as well as the physical-chemical characteristics of the packaging material where the antimicrobial is going to be included [9].



1.1. Antimicrobial Substances Used in Food Packaging


The list of antimicrobial substances used for the development of antimicrobial food packaging is quite vast and is continuously evolving as a result of changing consumer trends and legislation. These substances include chemicals such as organic acids, triclosan, antibiotics, chlorine dioxide, nitrites and ammonium salts that are slowly being replaced by “greener”, more natural alternatives such as bacteriocins, enzymes, phages, biopolymers, natural extracts and compounds, essential oils and their components and metal nanoparticles (Table 1).



1.1.1. Organic Acids and Their Salts


Some organic acids, such as propionic acid, benzoic acids, sorbic acid, lactic acid, and acetic acid, and their salts are synthetic antimicrobial agents that have strong antimicrobial activity and can be used for the development of antimicrobial packaging materials (Table 1). These colourless and tasteless substances are considered to be GRAS by the FDA [36] and have been used as preservatives in the cosmetics, pharmaceutical, and food industries for many decades. They have a very broad antimicrobial range, being active against yeasts, moulds, Gram-positive and Gram-negative bacteria [13] with distinct antimicrobial spectra depending on the acid or salt. For instance, salts of lactic acid, such as sodium lactate and potassium lactate, exert greater inhibitory effects against Gram-positive bacteria than against gram-negative bacteria and offer antifungal activity against certain Aspergillus species [37]. Potassium sorbate inhibits the germination of bacterial spores [38]. Organic acids such as lactic acid, sodium benzoate, citric acid or potassium sorbate have been included in packaging materials or composites giving rise to antimicrobial food packaging materials active against Gram-positive and Gram-negative bacteria (Table 1)



Several organic acids, their salts or anhydrides are listed as food preservatives in the EU database that informs about the food additives approved for use in food in the EU and is based on the EU list of food additives contained in the Annex II of Regulation (EC) No 1333/2008 [39] (Table 2). In addition to being classified as preservatives due to their antimicrobial action, these compounds can also serve other functions as food additives such as acidifiers, acidity regulators, stabilizers, antioxidants, vitamins, flavour enhancers, baking and flour treatment agents, emulsifying salts and sequestrants (for a more detailed review please see [40]).




1.1.2. Bacteriocins


Bacteriocins are natural antimicrobial peptides with positively charged compounds and hydrophobic moieties produced by Archaea, Gram-positive and Gram-negative bacteria. These positively charged compounds can interact electrostatically with the negative charges of the phosphate groups on the microbial cell membranes, resulting in the generation of pores in the membrane and subsequent cell death [38].



Although Gram-negative bacteria also produce bacteriocins like colicins, tailocins, alveicins and cloacins [41], the broad spectrum bacteriocins from Gram-positive bacteria have a more suitable use for food applications than the ones from Gram-negative bacteria, since the bacteriocin producing strains can be directly added to the food matrix and no exhaustive purification process is required, given that these preparations would not contain lipopolysaccharides (LPS) or other endotoxins that could cause health issues when ingested [41]. Although there is a vast list of bacteriocins, among the most well-known, we can find nisin, pediocin PA-1, sakacin A, enterocin AS-48, lacticin 3147A and bacteriocin 7293 (Table 3).



Over the last decades, bacteriocins have been used for food preservation because of their GRAS status recognition by the FDA and their lack of activity and toxicity to consumers [42]. Furthermore, after ingestion, they are inactivated by digestive tract proteases and do not influence the consumer’s gut microbiota [42]. Regarding their antimicrobial effectiveness, these compounds are active over a wide range of temperature and pH and have a relatively broad spectrum of antimicrobial activity against foodborne pathogens and spoilage bacteria (Table 3), especially against Gram-positive bacteria such as Listeria, Bacillus and Clostridium species as well as lactic acid bacteria.



There are two main methods of using bacteriocins into food packaging applications (Table 1): (i) in situ, by incorporating bacteriocin-producing bacteria [21], or (ii) ex situ with the addition of purified or semi-purified bacteriocin or bacteriocin-like substances [15,16,20]. Taking into consideration that bacteriocins are more effective against Gram-positive bacteria and possess a narrow antimicrobial spectrum, they are used in food packaging in combination with other antimicrobials or preservation techniques. Over the last five years, the use of enterocin AS-48 [47], bacteriocins-like substances [48] or bacteriocin-producing strains [49] with modified atmosphere packaging or high hydrostatic pressure has yielded improved results in the packaging of chilled food products. Furthermore, bacteriocin combination with other antimicrobials such as thymol [47,50], carvacrol [50], EDTA [51] or chitosan [17,52] have also improved their antibacterial action in food products such as meat and fish.



According to the EU legislation, so far, nisin is the only bacteriocin approved as a food additive (E 234) [39]. The European Food Safety Authority (EFSA) also granted the Qualified Presumption of Safety (QPS) status to most of the lactic acid bacteria genera, such as Lactococcus, Lactobacillus, Leuconostoc, Pediococcus, and some Streptococcus [53]. Nevertheless, species of the genus Enterococcus and some Streptococcus are pathogenic, thus, they have not been proposed for QPS status [53]. The QPS approach was developed by the EFSA Scientific Committee to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents intentionally introduced into the food and feed chain, in support of the concerned scientific Panels and Units in the frame of market authorisations [53].




1.1.3. Enzymes


Enzymes such as lysozyme, glucose oxidase, lactoferrin or the lactoperoxidase system can be used as effective antimicrobials in food packaging through their incorporation by chemical binding or grafting or physical entrapment in packaging materials (Table 3). Lysozyme is one of the most widely used enzymes as a food preservative due to its proven antimicrobial activities against bacteria, fungi, protozoans, and viruses [37]. However, this enzyme is more effective against Gram-positive bacteria due to its ability to break down the glycosidic bonds of peptidoglycan in the cell wall of these bacteria [54]. That is the reason why lysozyme is sometimes used in packaging in combination with other enzymes or compounds, such as lactoferrin or EDTA [23,55]. Lactoferrin is used together with lysozyme to improve its antimicrobial activity against Gram-negative bacteria. Lactoferrin, a whey protein that binds ferric ions, exerts its antimicrobial activity by depriving microbial cells of iron and by altering the permeability of Gram-negative bacteria due to its interaction with LPS components [23].



The glucose oxidase (GO) enzyme, a flavoprotein purified from different types of fungi, especially form A. niger and Penicillium species, exerts its antimicrobial activity by catalysing the formation of hydrogen peroxide and gluconic acid through the oxidation of β-d-glucose [25]. So far, this enzyme has proven an effective antimicrobial effect against pathogenic foodborne bacteria such as Salmonella infantis, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, Campylobacter jejuni, and Listeria monocytogens [25].



Another commonly used enzyme as natural antimicrobial is lactoperoxidase. Lactoperoxidase catalyses the oxidation of thiocyanate ion (SCN−) which generates oxidised products such as hypothiocyanite (OSCN−) and hypothiocyanous acid (HOSCN). These oxidised products act as antimicrobial agents by causing the irreversible oxidation of sulfhydryl (SH) groups present in microbial enzymes and other proteins, resulting in the loss of activity by these biomolecules and eventually cell death [26].



According to EFSA regulation, food enzymes are categorized as food improvement agents. The Regulation on food enzymes, Regulation (EC) No 1332/2008 harmonises the rules for food enzymes in the European Union (EU) [56]. According to that regulation, all food enzymes currently on the EU market as well as new enzymes have to be submitted to safety evaluation by the European Food Safety Authority (EFSA) and subsequently approved by the European Commission by means of a Union list. Currently, there is no Union list of authorised food enzymes, but there are some food enzymes approved as food additives. So far, from the four enzymes described only lysozyme is accepted by EFSA as a food additive (E1105) under Directive 95/2/EC on food additives [39].




1.1.4. Biopolymers


Two of the most known biopolymers with intrinsic antimicrobial activity are chitosan and pectin. Chitosan is obtained by the deacetylation of chitin, forming a linear structure of randomly acetylated and deacetylated units. Chitosan has been reported as an antimicrobial agent against a wide variety of bacteria, moulds and yeasts [57]. This antimicrobial action is due to the interaction of the positively charged amino groups on chitosan, at a pH below 6, with the anionic cell membranes, which leads to an increased cell permeability and, ultimately, to intracellular components leakage and cell death [9]. Due to its biodegradability and bio-based origin, chitosan can be used to produce environmentally friendly food packaging films either by extrusion [27] or press moulding that will not dissolve in water, unlike other biopolymers. Besides being used alone for the formation of packaging films or edible coatings, chitosan has also been used as a coating for plastic films or other materials [58,59]. However, nowadays, the most promising strategy for the development of chitosan-based antimicrobial films is the one based on chitosan combination with other natural antimicrobials such as bacteriocins [17], essential oils and their components [60,61,62], among others.



In a similar way to chitosan, a polycation, also other bio-based polymers can be used for the development of antimicrobial food packaging as some studies show that polyelectrolytes (polycations and polyanions) have antimicrobial properties [28]. Taking this into consideration, multilayer films composed of alginate, a natural anionic polymer, and cationic hydroxyethyl cellulose, a water soluble film-forming polymer, have been developed as a new packaging material with intrinsic antimicrobial properties [28]. In vitro testing has shown that, depending on the formulation and design used, these films are active against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli).




1.1.5. Natural Extracts and Compounds


The increased awareness of consumers regarding synthetic-based antimicrobials and the knowledge of their serious adverse effects on human health has discourage food scientists and consumers to use them and search for novel natural alternatives [54]. In this regard, plants, herbs and spices are being considered as the most important and rich natural source of antimicrobial substances like saponins, tannins, alkaloids, alkenyl phenols, glycoalkaloids, flavonoids, sesquiterpenes, lactones, terpenoids and phorbol esters [63]. Besides having antioxidant and/or antimicrobial properties, these substances can also enhance the organoleptic acceptability of food products [63]. Additionally, the new circular economy strategy for plastic reduction and the search for biodegradable, bio-based packaging materials also encourages the incorporation of natural substances in packaging materials for a “greener”, plastic-free and more sustainable food industry.



Regarding the antimicrobial mechanism of action of natural extracts and phytochemicals it is thought that these natural antimicrobials have a multi-target action on microbial cells being able to disrupt membrane function and structure, interrupt DNA/RNA synthesis/function, interfere with intermediary metabolism, induce coagulation of cytoplasmic constituents and interfere with cell-to-cell communication [64,65,66]. This wide action on the microbial cell subsequently results in a broad spectrum of antimicrobial activity of these compounds and also to a decreased risk in the arise of microbial resistance mechanisms.



Bearing in mind their potential application in food packaging, it is important to point out that most plant-derived extracts are generally recognized as safe (GRAS) and Qualified Presumption of Safety (QPS) status in the USA and EU [63]. Taking all this into consideration, over recent years, many phytochemicals have been used for the development of antimicrobial food packaging materials, mainly with antibacterial action, and tested for their in vitro and in vivo (food product) efficiency in improving microbial safety and shelf-life. Table 4 summarizes some of the most recently used natural extracts and other phytochemicals, such as green tea extract, stilbenes (resveratrol and pinosylvin), kombucha tea extract, Ginkgo biloba, olive leaf, grapefruit seed, propolis and several other plant extracts, lignign, gallic acid, with the exception of essential oils and their components, on the development of novel potential antimicrobial food packaging.




1.1.6. Essential Oils and Their Components


Essential oils (EOs) are mixtures of volatile compounds generally obtained from spices and herbs with several biological properties, including antimicrobial activity. According to the International Organization for Standardization (ISO) (ISO DIS9235.2), an essential oil is “a product made by distillation with either water or steam or by mechanical processing of citrus rinds or by dry distillation of natural materials,” meaning that an extract can only be named essential oil if it is obtained by either steam or hydrodistillation [81]. EOs can be obtained from distinct plant materials such as flowers, buds, leaves, stem, bark and seeds [82]. EOs are a complex mixture of compounds such as terpenoids, esters, aldehydes, ketones, acids, and alcohols, where major constituents can compose up to 85% of the oil composition, and the other 15% is composed by minor components and trace elements [82]. This composition depends on plant cultivar, development stage, geographical origin, collection season, plant’s age and cultivation conditions [83]. However, ISO also defines, for some essential oils, the major components and their percentage range, as a standardization method [81].



EOs’ antimicrobial activity is mainly a consequence of their hydrophobicity that enables them to partition into the lipid layer of cell membranes and mitochondria, increasing their permeability, leading to the ion and small molecule leakage and, to a greater extent, cell lysis and death [81]. This also disturbs the cytoplasmic membrane by disrupting proton motive force, electron flow, active transport and efflux [84]. Furthermore, this lipophilic character, makes that EOs accumulate in lipid bilayers and also disturb protein-lipid interactions [84]. Additionally, there is a synergism between EO major and minor components, meaning that the effect of the EO is higher than the sum of the effects of each EO component [82,85].



Considering their regulatory status in the EU for approved use in food packaging, it is important to point out that EOs contain flavouring substances that are approved to be used as flavourings by the European Food Safety Authority [39]. This Regulation prohibits the addition of certain natural undesirable substances and lays down maximum levels for certain substances. In the United States, EOs and their components are also registered as flavouring substances by the Food and Drug Administration and have GRAS status [86].



Regarding natural antimicrobial packaging, EOs have been one of the preferred antimicrobial classes to be included in packaging materials due, in one part, to their approved use as food additives, but also to their major advantage when compared to other phytochemicals and natural extracts, their volatility, meaning that no direct contact between the packaging material and the food product is required for EOs to exert their antimicrobial activity [87]. To date, many EO-containing packaging materials have been developed at laboratory scale and even as commercial solutions [8] incorporating cinnamon, oregano, lemongrass, ginger, thyme, chamomile, tea tree, among others, as well as some of their bioactive major components such as thymol, carvacrol, geraniol, terpilenol and eugenol [for a more detailed review, see [82,88]]. The latest developments on the use of essential oils and their constituents for antimicrobial packaging materials as well as the encapsulation strategies used to stabilize these oils in the packaging material, at research level, and their use in food preservation are summarized in Table 5.




1.1.7. Metal Nanoparticles


Metal nanoparticles (NPs) have been widely used as antimicrobial agents due to their high thermal stability, longevity, and their broad spectrum of antifungal and antibacterial activities [104]. Among the most used nanoparticles are silver, copper, gold, titanium dioxide (TiO2), zinc oxide (ZnO) and magnesium oxide (MgO) [37], with silver NPs being by far the most studied. Metal-based NPs present low toxicity to eukaryotic (mammalian cells) as they are able to differentiate prokaryotic (bacterial cells) from mammalian cells through bacteria’s metal transport system and metalloproteins [104]. When acting selectively with the bacterial cell, these NPs trigger antimicrobial action through three main routes: interaction with the lipid by-layer, interaction with cytosolic proteins and through oxidative stress due to the generation of reactive oxygen species (ROS) [104].



Giving their effectiveness as antibacterial agents, metal-based NPs have been used to develop antimicrobial packaging materials against a wide range of microorganisms in several food products (Table 6). Besides being used alone as active agents, metal-based NPs are also used in combination with bacteriocins, essential oils, and as a combination of several metal NPs [105,106,107]. However, the commercial use of packaging materials with NPs, from now on designated nanomaterials is still hindered by the lack of specific legislation and risk assessment data. In terms of regulation, the first requirement is to define what is a nanomaterial. From the EU point-of-view, the European Commission has recommended that a nanomaterial should contain a threshold of 50% of the particles in the number-based minimal external size distribution to be within the nanoscale (1–100 nm) [108]. However, this recommended definition is currently under review and has not been completely accepted. It is advised that all new nanomaterials follow the risk assessment procedure according to the guidelines provided by EFSA panels [108]. When working with materials containing nanoparticles, the first thing is to assess whether the nanoparticles can migrate from the packaging material into the food product. If no migration is observed or if the migration is within the desired limits, the safety assessment of the material should follow the regular directive for food contact materials [109]. If NP migration is observed, then, according to the EU Regulation on Novel Food (EU) No. 2015/2283, a food consisting of engineered nanomaterials will be considered a novel food and as such will require authorization [108]. To obtain such authorization and seal of EU approval, a complete risk assessment of the novel food shall be carried out by EFSA [110], which shall also be responsible for verifying that the most up-to-date test methods have been used to assess their safety [108].




1.1.8. Phages


Bacteriophages have been acknowledged for their great effectiveness in controlling bacterial pathogens in agro-food industry [29]. Lytic phages are viruses able to infect and lyse bacterial cells and, as a consequence of microbial cell lysis, release large number of progeny phages, which can then continue the infection cascade [31]. As they are specific for a host cell, they do not interact with other microorganisms or eukaryotic cells in the environment and so, they do not cause illness neither in animals nor humans [31]. Besides this advantageous feature, phages are also easy and economically feasible to isolate and produce and, on opposite to other biological agents, they have a long shelf-life [29].



In terms of their application in food products for human consumption, in the last decade, FDA recognized some phage-based products as safe (GRAS) [86]. For instance, a commercial phage preparation called LISTEX™ P100 intended to be used on ready-to-eat meat and poultry products has already been approved for use as a food processing aid by Canada, United States of America and Netherlands [31]. Also, SalmoFresh™, a lytic Salmonella bacteriophage cocktail containing six Salmonella phages, has been granted GRAS status by the FDA [117]. Currently, also EFSA is evaluating the use of bacteriophages in food products with recommendations from EFSA’s BIOHAZ Panel that, to further assess phage safety in foods, it is necessary to evaluate the persistence of bacteriophages in foods and their ability to prevent recontamination with bacterial pathogens, research for specific combinations of bacteriophages, pathogens and foods [118].



Therefore, bacteriophages have great potential to be applied by the food industry as antimicrobial agents incorporated directly into food products or through their incorporation into the food packaging material for a more controlled release [30]. So far, packaging materials containing bacteriophages have proven to effectively control several foodborne pathogens, including Salmonella enterica, Listeria monocytogenes and Escherichia coli O157:H7 (Table 1). Given that phages are specific to a designated bacterial species, their use in food packaging usually depends on their target foodborne pathogen, meaning that the type of food product to be packaged is selected according to the main foodborne pathogen present in that food. Furthermore, nowadays, instead of incorporating one single phage in the packaging material, phage cocktails are preferred in order to broad the antimicrobial spectrum of the active material developed [31,119]. Also, when studying combinations of phages and other antimicrobials in order to increase phage antimicrobial activity, one has to consider that some chemical preservatives are capable of inactivating bacteriophages, meaning that combinations of bacteriophages and preservatives are less effective than either treatment alone (for a more detailed review please see [120]). In spite of their effectiveness as antimicrobials, the vast majority of these novel antimicrobial agents such as natural extracts, bacteriocins, essential oils and other present some challenges regarding their incorporation in the packaging films due to polymer-antimicrobial chemical incompatibilities, and also to the poor stability of some of the developed films due to antimicrobial instability issues [121]. So, over recent years, researchers have developed new formulations to alleviate these problems, mainly through the encapsulation of these antimicrobials. Besides protecting the antimicrobial compound, these encapsulation agents also yield a more controlled-release of the antimicrobial compound from the packaging material to the food product or packaging atmosphere. This is especially relevant in antimicrobial food packaging as a high concentration of released compound in the packaged food could result in sensory or legal issues, as compound concentrations can exceed the restriction limits; whereas low concentrations would not yield the antimicrobial efficiency needed and the new packaging would be useless [121].






2. Encapsulation Strategies for Antimicrobial Packaging


Encapsulation is defined as the process to entrap one substance (active agent) within another substance, yielding small particles that release their contents at controlled rates over prolonged periods of time and under specific conditions [122]. In the antimicrobial food packaging area, the encapsulation of antimicrobial compounds provides more efficient packaging materials by (i) protecting the antimicrobial compounds from degradation, volatilization or undesirable interactions with packaging materials, (ii) improving the compatibility between the packaging polymer and the antimicrobial substance, (iii) increasing the availability of the antimicrobial and (iv) providing a controlled release or/and stimuli-responsive release to extend the activity of the active material, reduce changes in food sensorial properties or comply with the legal restriction limits.



Encapsulating some types of antimicrobial substances has become essential to solve some problems that limit their use in packaging applications. In the case of EOs, for example, encapsulation is essential to reduce losses by volatilization or degradation during packaging manufacturing or storage, to improve the compatibility with biopolymer by increasing their solubility and/or to diminish the organoleptic impact in food products caused by their strong odour [123,124].



A broad range of delivery systems or carriers have been developed to encapsulate bioactive compounds in the food and pharmaceutical sectors such as cyclodextrins, liposomes, emulsions, nanoparticles or microcapsules [125]. However not all these available carriers can be applied in antimicrobial active packaging as they should be compatible with the packaging material and do not modify negatively their mechanical and physical properties in order to preserve their primary function of food protection. Herein, we review the most used systems for antimicrobial packaging development with emphasis in the novel strategies developed over the last five years.



2.1. Emulsions


Conventional emulsions consist of two immiscible liquids where one liquid is dispersed in the other in form of small droplets (Figure 1). These colloidal systems can be used to encapsulate bioactive compounds at significant amounts. Lipophilic compounds can be encapsulated in oil-in-water (O/W) emulsions, while hydrophilic compounds can be encapsulated in water-in-oil (W/O) or oil-in-water emulsions. Multiple emulsions such as water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O) can also be used to encapsulate active compounds in order to improve delivery requirements [125,126].



Regarding antimicrobial packaging, emulsions are used almost exclusively to incorporate essential oils or their chemical constituents into water soluble polymers, generally of natural origin, resulting in an O/W emulsion. The incorporation of EOs in emulsions improves their compatibility with water-based polymers, provides more transparent films while protecting EOs from volatilization and enabling a more controlled released [127,128,129,130].



Emulsions with low particle size (nanometric or micrometric scale) present several advantages over systems containing larger particles [131,132] such as better stability, decreased particle aggregation, increased transparency, added rheological properties and higher bioavailability of the encapsulated substances. Therefore, presumably, antimicrobial films containing emulsions of low particle size will be more homogenous, transparent and effective than those prepared with conventional emulsions. In fact, this hypothesis has been demonstrated by several authors dealing with the encapsulation of EOs and their major components in water-based films. For example, Guo et al. demonstrated that films containing allyl isocyanate (AIT) microemulsions revealed stronger antimicrobial activity and were more homogenous than those containing conventional emulsions [133,134]. Similarly, Otoni et al. demonstrated that packaging films with nanoemulsions exhibited better uniformity and higher antifungal activity in packaged bread than those containing coarse emulsions [135]. Oh et al. found that chitosan edible films containing lemongrass oil nanoemulsions showed better antimicrobial activity and produced less sensorial changes in coated grape berries than similar coatings with higher droplet size [136].



Considering the advantages, most of the works carried out in recent years have focused their attention on the use of emulsion of lower particle size, namely microemulsions and nanoemulsions. Microemulsions are defined as oil and water colloidal dispersions stabilized by an interfacial layer of surfactant molecules with particles sizes ranging from 1 to 100 nm, usually 10–50 nm. This type of emulsions presents some advantages such as thermodynamic stability and transparency, which make them good vehicles to incorporate antimicrobial hydrophobic compounds into different polymeric matrices. However, they need a large amount of surfactant to be stable [137]. Nanoemulsions are defined as conventional emulsions containing very small particles, typically lower than 200 nm. Like conventional emulsions, they are thermodynamically unstable, but their lower droplet size endows them long-term stability, higher bioavailability and transparency. These nanoemulsions also required surfactants, but in a lower surfactant-to oil ratio than microemulsions. As disadvantages, they have low stability in acidic conditions and are usually prepared by high-energy methods such as high-pressure valve homogenization, ultrasonic homogenization or high-pressure microfluidic homogenization [137]. Nanoemulsions are, by far, the most used dispersions to encapsulate antimicrobials in active packaging. Examples of films containing micro and nanoemulsions recently developed together with their application to food systems are shown in Table 7.



Despite that, as can be seen, packaging materials containing emulsions as encapsulation strategy are based on polymers of natural origin. Most of the approaches used emulsifiers of synthetic origin, particularly, polysorbates such as Tween 20 [136,144,145] or Tween 80 [90,128,130,140,143,145,146,147,148,149,150]. Natural emulsifiers such as lecithin [97,138,141,151], soy protein isolate [141], arabinoxylan [133] or sapindus extract [152] have been scarcely used and generally in combination with polysorbates. Consequently, further research on the use of natural emulsifiers in bio-based packaging materials is on demand in order to satisfy the growing demand in food industry for natural ingredients.



Besides classical emulsions, Pickering emulsions have been used to encapsulate bioactive compounds with antimicrobial properties. These emulsions are stabilized by solid particles instead of the surfactants used in classical emulsions (Figure 1). As in the case of surfactants, stabilization of emulsion droplets takes place by adsorption of small solid particles at the surface of the emulsion droplets, although the mechanism of adsorption is very different to the one of surfactants [153]. This type of stabilization adds specific properties to Pickering emulsions which make them more suitable for certain applications. Particularly valuable for antimicrobial packaging applications is their higher stability and absence of surfactants [137,153]. Conversely, the main disadvantages of Pickering emulsions are their opacity and the limited number of stabilizing particles that can be used in food applications [137].



Additionally, it has been demonstrated that the use of this type of emulsions can improve some film characteristics when compared to those that incorporate classical emulsions. Almasi et al. compared pectin films incorporating oregano EO using nanoemulsions or Pickering emulsions [154]. The results showed that both have similar antimicrobial activity but the film containing Pickering emulsions present more suitable mechanical and water barrier properties. Moreover, oregano EO release is slower from films containing Pickering emulsions than from those containing nanoemulsions.



Despite the potential advantages of using Pickering emulsions, to date, few antimicrobial packaging materials have been developed using this technology (Table 8). Like in classical emulsions, Pickering emulsions are used as EO carriers and their components using solid stabilizing particles of natural origin. The antimicrobial activity of these new materials has been tested with good results in vitro, but only Fasihi et al. demonstrated their in vivo activity, namely, the inhibition of fungal growth in bread slices packaged in active films containing Pickering emulsions of rosemary essential oil [155].




2.2. Core-Shell Nanofibers: Emulsion and Coaxial Electrospinning


Electrospinning is an effective, low cost and versatile technique used to produce continuous sub-micron or nano-scale fibrous films from various biopolymer materials such as chitosan, alginate, cellulose, dextran, gelatine or zein among others [158]. This technique is based in the use of high voltage electrostatic fields to charge the surface of a polymer solution droplet, thereby inducing the ejection of a liquid jet through a spinneret to form a nanofibrous film [158]. Electrospinning, particularly emulsion and coaxial electrospinning, can be used to produce nanofibers with core–shell morphology. Using this structure, bioactive compounds can be directly incorporated in the core protected by the shell layer minimizing their volatilization or oxidation and reducing their release ratio [159,160]. In emulsion electrospinning, a stabilized emulsion (W/O or O/W) can be used as spinning solution using the conventional electrospinning technology to obtain core-shell nanofibers (Figure 2). It has been shown that core-shell fibres produced by emulsion electrospinning are able to yield a more sustainable controlled released than fibres obtained by coaxial electrospinning despite the later having a more organized core-shell structure [161]. In coaxial electrospinning, two solutions (core and shell) are delivered separately through a coaxial capillary and drawn by electric field to generate nanofibers with core-shell morphology (Figure 2), meaning that this technique requires a more complex design than emulsion electrospinning and a precise control of different parameters such as interfacial tension and viscoelasticity of the two polymers [159,162].



Despite the attention drawn to electrospun core-shell nanofibers containing bioactive compounds in last years, the vast majority of research works are focused on pharmaceutical and biomedical fields while food applications have been less explored. However, the incorporation of antimicrobials in the core-shell nanofiber has shown a great potential to be used in active packaging materials, demonstrating a higher controlled-release and a strong antimicrobial action. Table 9 summarizes the developed antimicrobial packaging materials containing core-shell nanofiber as encapsulating strategy along with their antimicrobial activity and release performance data.




2.3. Cyclodextrins


Cyclodextrins (CDs) are a family of cyclic oligomers of α-d-glucopyranose linked by α-1,4 glycosidic bonds (Figure 3A) that can be produced due to the biotransformation of starch by certain bacteria such as Bacillus macerans [169]. The more common natural cyclodextrins are α- cyclodextrins (6 glucose subunits), β- cyclodextrins (7 glucose subunits) and ɣ- cyclodextrins (8 glucose subunits), being β-CD the cheapest and, therefore, the most used. CDs present a truncated conical cylinder shape with an inner non-polar cavity and a polar external surface that makes them capable to encapsulate hydrophobic substances (Figure 3B). The complex created between the CD and the loaded compound is called inclusion complex where CDs are the host molecules [169,170].



The use of CDs and modified CDs are one of the strategies most used in the food packaging area to encapsulate active compounds as indicated by the high amount of publications in the last fifteen years regarding this topic. Using this encapsulating strategy, the bioactive molecules improve their water solubility, can be protected from volatilization, oxidization or heating and can be released in a more controlled manner [171,172,173,174]. Moreover, the low price, semi-natural origin and non-toxic effects [169,170] of CDs explain the great interest of both research and industry in their use.



In last years, several of the publications dealing with cyclodextrins as encapsulation method in antimicrobial packaging have explored novel strategies to develop improved materials such as the incorporation of inclusion complexes in electrospun nanofibers.



As explained above, electrospinning is an effective and low cost technique to produce nanofibers mats. The fibrous film produced display high porosity, small pore size and high surface-to-volume ratio that make them more suitable to load high amounts of active substances [175]. The combined use of electrospun nanofibers with cyclodextrin inclusion complexes aim to combine the benefits provided by each technique at the same time. Wen et al. produced and tested polylactic acid film electrospun nanofibers containing cinnamon EO/β-CD inclusion complexes. The inclusion of cinnamon in the cyclodextrin improved its thermal stability and its antimicrobial action, probably due to a higher solubility. Moreover, the electrospun fibres containing the inclusion complex exhibited better antimicrobial activity and retain the EO better than those films prepared by casting [176].



Using the combination of both techniques, antimicrobial materials with improved properties have been developed. Recent research studies regarding the use of CD inclusion complexes in antimicrobial electrospun nanofibers are reviewed in Table 10.



Another recent strategy developed to encapsulate antimicrobial in CDs is the use of nanosponges [180]. Nanosponges are cross-linked cyclodextrin polymers nanostructured within a three-dimensional network that offer some advantages in respect to monomeric native cyclodextrins such as a higher loading capacity, increased protection of encapsulated compounds and better controlled released [181,182]. This novel approach has been used recently to encapsulate cinnamon and coriander essential oil demonstrating antimicrobial activity against foodborne Gram positive and Gram negative bacteria and a controlled EO release [181,182]. However, the incorporation of these novel structures in packaging materials has not been tested yet.




2.4. Halloysites Nanotubes


Halloysite nanotubes (HNTs) are a type of natural occurring aluminosilicate clay minerals which are available in abundance in many continents including Asia, North America, Europe, Oceania, and South America [183,184,185]. These substances display a characteristic two-layered (1:1) aluminosilicate structure similar to kaolin that usually adopt a hollow tubular nanostructure with a typical size of 500–1000 nm in length and 15–100 nm in inner diameter [186] (Figure 4). Owing to their tubular structure, HNTs can be used to load and release bioactive molecules, including antimicrobial agents. Furthermore, their low price, abundance, non-toxicity and eco-friendly features as well as their biocompatibility make them an attractive alternative to other tubular materials such as carbon nanotubes or TiO2 nanotubes [185,186].



Given the advantages described above, HNTs have been also applied in the antimicrobial packaging area. Several studies have demonstrated that the incorporation of antimicrobial substances via halloysite nanotubes improves the retention of the active compound in the packaging material and enables a more controlled-release. For example, a more extended lysozyme release from poly (ε-caprolactone) or poly(lactide) films has been achieved through its incorporation in HNTs [24,187]. Similarly, a slow release of rosmarinic acid from PLA films was obtained by including rosemary EO in halloysite nanotubes [188]. The use of HNTs to control the delivery rate has made it possible to increase the shelf-life of materials containing volatile antimicrobial agents. For example, films containing halloysite nanotubes loaded with thyme oil showed antimicrobial activity against Escherichia coli during 10 days after thymol was loaded into HNTs [189]. Similarly, LDPE lipid containing thymol/carvacrol/halloysite nanotubes retained their initial antimicrobial activity during 4 weeks of storage [190].



By being included in HNTs, antimicrobials can be protected from losses due to volatilization or other processes. For instance, in another study, carvacrol was encapsulated in halloysite nanotubes and subsequently incorporated into polyamide polymers by extrusion. The results showed that polymers containing halloysites retained approximately 90% of the initial carvacrol content; while for the control PA/carvacrol system, no residual carvacrol was detected due to carvacrol evaporation [191]. Similar results were obtained for LDPE containing halloysite nanotubes encapsulating mixtures of carvacrol and thymol [190].



Nonetheless, the incorporation of halloysites has also been related to negative effects as the incorporation of HNTs in starch films increased the opacity of the films and reduced the antimicrobial activity of the active starch [16].



Modifications in halloysites have been performed in order to obtain some advantages. For example, halloysites treated with NaOH have been used to increase the loading capacity of thyme oil from 180.73 to 256.36 (mg thyme oil/g HNT) [189]. Other studies demonstrated that the capping of HNTs both ends and/or the coating of the outer surface of the HNTs can be employed to modify the release rate of antimicrobial compounds. For instance, the capping of HNTs ends with sodium alginate and the coating of the surface with positively charged poly(ethylene imine) polymer using the layer-by-layer method, yielded a slower thyme EO release from HNTs [189]. Likewise, the coating of allyl isothiocyanate loaded HNTs with sodium polyacrylate (both ends and surface) enabled a more efficient release of AIT comparing to non-treated HNTs [192].



Halloysite-loaded film manufacturing has been made using different techniques that include classical methodologies as casting [16,187,188], compression moulding [187], extrusion [190] or more innovative ones such as electrospinning [24]. Besides, halloysites have also been incorporated in packaging materials as coatings [16,102,103] or inks [189].



The antimicrobials materials loaded with HNTs as carriers have demonstrated high in vitro antimicrobial activity [16,188,189,192,193]; notwithstanding, not all works carried out have applied this novel technology to food applications (Table 11)




2.5. Liposomes


Liposomes are microscopic spherical-shape vesicles composed of a wall of amphipathic lipids arranged in one or more concentric bilayers with a aqueous phase inside and between the lipid bilayers [196] (Figure 5). The ability of liposomes to encapsulate hydrophilic or lipophilic drugs have allowed these vesicles to become useful drug delivery systems, being one of most widely used carriers for antimicrobial agents [196]. Besides, the development of nanoliposomes has added the benefits of the nanosized particles to the encapsulation, delivery and targeting of bioactive compounds [197].



Using natural and non-toxic lipid molecules commercially available (generally lecithin and cholesterol), liposomes and nanoliposomes loaded with antimicrobial agents have been prepared and included in food packaging materials to obtain materials with improved properties. For example, the encapsulation of eugenol or cinnamon essential oils in lecithin liposomes led to chitosan films with higher retention ratio (40% − 50%) of volatile compounds when compared to what is retained when they are free incorporated by emulsification (1% − 2%) [198]. Moreover, the incorporation of cinnamon essential oil nanoliposomes in gelatine films allowed for a lower antimicrobial release rate together with an improvement of the antimicrobial stability [199]. Besides, coatings of chitosan loaded with Satureja plant essential oil nanoliposomes exhibited a prolonged and consistent antimicrobial activity on meat pieces during their storage time in comparison with coating containing free EO [200].



It is important to point out that liposomes can lead to negative changes in the optical properties of films due to the chromatic properties of lecithin or the occurrence of chemical reactions [198,201].



As can be seen in Table 12, several studies have tested films containing antimicrobial liposomes in food. For this purpose, natural extracts, EOs, phages, metallic nanoparticles or nisin have been included in liposomes and loaded in polymeric matrixes, especially in chitosan. Chitosan provides benefits from other biomaterials due to its intrinsic antimicrobial properties that can enhance the antimicrobial action of loaded liposomes.



Liposomes can also be further engineered to confer stimuli-responsive properties for drug delivery. Despite that these advanced structures have been widely applied in the biomedical area [207], only few developments have been carried out for food applications [177,208,209,210,211,212]. In the antimicrobial packaging field, only Lin et al. used this strategy to control the release of antimicrobials from the packaging material. In this work, cinnamon EO/β-cyclodextrin complexes were loaded into stimuli-responsive proteoliposomes, and subsequently incorporated in poly(ethylene oxide) electrospun nanofibers as strategy to control the growth of Bacillus cereus in beef. The mechanism of activation of these proteoliposomes is based in the degradation of casein present in liposome walls produced by B. cereus proteases [203].




2.6. Other Encapsulating Particles


Besides the previously mentioned encapsulation particles, other micro- or nanoparticles such as microcapsules, nanocapsules, nanostructured lipid carriers, solid-lipid nanoparticles or nanoparticles among others have been used to encapsulate flavours, vitamins, antioxidants, food colorants or antimicrobials for food applications [180,213]. However, not all these structures have been applied for antimicrobial encapsulation in active food packaging materials.



In the past years, responsive microcapsules and nanocapsules (Figure 6) containing antimicrobials agents have been incorporated in polymers to control the release, and consequently, improve its effectiveness. For instance, Cymbopogon citratus oil has been encapsulated in responsive microcapsules of gelatine-carboxymethylcellulose, gelatine-gum or melamine-formaldehyde walls. When these structures are subjected to mechanical stress, the wall breaks and the active compound is released. These responsive microcapsules have been incorporated in paper through coating, exhibiting antimicrobial activity against Escherichia coli and Sacharomyces cerevisiae in vapour phase after activation [214]. Similarly, thyme EO has been incorporated in responsive capsules of lightly cross-linked polyamide shell. The shell is responsive to light due to the trans–cis isomerization of the photochromic azo-moieties, which causes a contraction of the polymer chains leading the release of the encapsulated content [215]. These capsules have been incorporated in low-density polyethylene or poly(lactide) polymers by coating, releasing thyme EO with proved antimicrobial efficacy [216]. An innovative responsive microcapsule for the delivery of chlorine dioxide (ClO2) based on the reaction of NaClO2 with water and tartaric acid was developed by Huang et al. [34]. Poly (lactide) capsules were loaded with a gelatine core and NaClO2 and, afterwards, incorporated in PLA film containing tartaric acid. In the presence of water, ClO2 gas is produced and released from the film reducing the population of Escherichia coli and Staphylococcus aureus [34]. In a more recent work, this material was tested in vivo displaying a positive effect in food preservation by extending the shelf life of packaged mango [217].



Nanoparticles (Figure 6) have been also widely used in last years to encapsulate antimicrobials, generally EOs or their components, in diverse packaging materials. Antimicrobial-nanoparticle complexes of chitosan [218,219,220,221], silica [60,222], zein [223] and polylactide [224] have been incorporated into chitosan [218,219,224], gelatine [177,220] or cellulose [223], among others, with the attainment of antimicrobial activity both in vitro and in vivo. Food applications of recent works dealing with nanoparticles and microcapsules are listed in Table 13.





3. Conclusions and Future Trends


Due to green consumerism, plastic reduction and EU circular economy guidelines, the development of active antimicrobial packaging is currently transitioning from the use of non-biodegradable, non-compostable, oil-derived plastic materials with incorporated synthetic antimicrobial compounds such as organic acids and antibiotics, to the use of sustainable, environmentally-friendly, biodegradable packaging materials such as chitosan, zein, starch or cellulose, with incorporated natural-derived compounds such as essential oils, plant extracts and compounds, bacteriophages and bacteriocins, among others. This trend brought new challenges regarding the incorporation of these new products into these novel packaging materials in terms of antimicrobial-packaging material compatibilities and, the most important one, the decreased stability of these natural-based compounds as they are more prone to suffer degradation by heat and light. Furthermore, there are other losses to be faced when incorporating some of these antimicrobials in packaging materials due to their inherent volatilization, as in the case of essential oils and their major compounds. Consequently, the food industry and food scientists begin to search for new strategies that could alleviate these problems and, as a result, increase the durability and efficiency of these new natural-based antimicrobial packaging. At that moment, they turned to the novel strategies being tested for drug delivery as a possible answer for their problems. Biocompatible carriers such as cyclodextrins, liposomes, emulsions and halloysites have been explored as antimicrobial encapsulation systems for the development of new packaging materials. Notwithstanding, the industrial use of these encapsulation-based antimicrobial packaging materials is still hindered by several factors such as the cost of such vehicles, their EFSA approval status for the development of food contact materials and, also the costs associated with novel machinery and modifications in plants for the industrial production of these novel antimicrobial food packaging materials. Hence, to overcome these issues, better and cheaper encapsulating agents’ production methods are needed together with the investment in machinery scale-up so that the new antimicrobial materials manufactured can compete with the current ones, not only in terms of efficiency but also in terms of price.







Author Contributions


R.B. and F.S. are responsible for the literature review and writing of the paper. C.N. is responsible for the review and correction of the manuscript. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by the Gobierno de Aragón (Spain) and FEDER through the project LMP49_18.




Conflicts of Interest


The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.




References


	



European Union Food Safety to Fork: Safe and Healthy Food for Everyone The EU Explained, Agriculture. Available online: http://europa.eu/pol/index_en.htm (accessed on 1 March 2020).

	



European Parliament Legislative Resolution of 19 November 2008 on the Proposal for A Council Decision Amending Decision 2006/144/EC on the Community Strategic Guidelines for Rural Development (Programming Period 2007 to 2013). Off. J. Eur. Union 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/464b67b4-2521-459a-a2f0-2520b8783d07/language-en (accessed on 20 January 2020).

	



Key Facts on Food Loss and Waste You Should Know! | SAVE FOOD: Global Initiative on Food Loss and Waste Reduction | Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/save-food/resources/keyfindings/en/ (accessed on 11 November 2019).

	



Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]

	



Otoni, C.G.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]

	



World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization (WHO): Geneva, Switzerland, 2015; pp. 1–15. [Google Scholar]

	



Radusin, T.; Škrinjar, M.M.; Cabarkapa, I.; Pilić, B.; Novaković, A.R.; Hromiš, N.M. Actual and future trends in antimicrobial food packaging. Agro Food Ind. Hi. Tech. 2013, 24, 44–48. [Google Scholar]

	



Silva, F.; Becerril, R.; Nerin, C. Safety assessment of active food packaging: Role of known and unknown substances. In Advances in the Determination of Xenobiotics in Foods; Bentham Science Publishers Pte. Ltd.: Singapore, 2019; pp. 1–41. [Google Scholar]

	



Dobrucka, R. Antimicrobial packaging with natural compunds - a review. Logforum 2015, 12, 193–202. [Google Scholar]

	



Smulders, F.J.M.; Paulsen, P.; Vali, S.; Wanda, S. Effectiveness of a polyamide film releasing lactic acid on the growth of E. coli O157: H7, Enterobacteriaceae and Total Aerobic Count on vacuum-packed beef. Meat Sci. 2013, 95, 160–165. [Google Scholar] [CrossRef]

	



Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 2019, 137, 1245–1255. [Google Scholar] [CrossRef]

	



Birck, C.; Degoutin, S.; Maton, M.; Neut, C.; Bria, M.; Moreau, M.; Fricoteaux, F.; Miri, V.; Bacquet, M. Antimicrobial citric acid/poly(vinyl alcohol) crosslinked films: Effect of cyclodextrin and sodium benzoate on the antimicrobial activity. Lwt - Food Sci. Technol. 2016, 68, 27–35. [Google Scholar] [CrossRef]

	



Liang, X.; Feng, S.; Ahmed, S.; Qin, W.; Liu, Y. Effect of potassium sorbate and ultrasonic treatment on the properties of fish scale collagen/polyvinyl alcohol composite film. Molecules 2019, 24, 2363. [Google Scholar] [CrossRef]

	



Barbiroli, A.; Musatti, A.; Capretti, G.; Iametti, S.; Rollini, M. Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. J. Sci. Food Agric. 2017, 97, 1042–1047. [Google Scholar] [CrossRef]

	



Mapelli, C.; Musatti, A.; Barbiroli, A.; Saini, S.; Bras, J.; Cavicchioli, D.; Rollini, M. Cellulose nanofiber (CNF)–sakacin-A active material: Production, characterization and application in storage trials of smoked salmon. J. Sci. Food Agric. 2019, 99, 4731–4738. [Google Scholar] [CrossRef] [PubMed]

	



Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]

	



Zimet, P.; Mombrú, Á.W.; Mombrú, D.; Castro, A.; Villanueva, J.P.; Pardo, H.; Rufo, C. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films. Carbohydr. Polym. 2019, 219, 334–343. [Google Scholar] [CrossRef] [PubMed]

	



Woraprayote, W.; Kingcha, Y.; Amonphanpokin, P.; Kruenate, J.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int. J. Food Microbiol. 2013, 167, 229–235. [Google Scholar] [CrossRef] [PubMed]

	



de Lima Marques, J.; Funck, G.D.; da Silva Dannenberg, G.; dos Santos Cruxen, C.E.; El Halal, S.L.M.; Dias, A.R.G.; Fiorentini, Â.M.; da Silva, W.P. Bacteriocin-like substances of Lactobacillus curvatus P99: Characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 2017, 63, 159–163. [Google Scholar] [CrossRef]

	



Salvucci, E.; Rossi, M.; Colombo, A.; Pérez, G.; Borneo, R.; Aguirre, A. Triticale flour films added with bacteriocin-like substance (BLIS) for active food packaging applications. Food Packag. Shelf Life 2019, 19, 193–199. [Google Scholar] [CrossRef]

	



Degli Esposti, M.; Toselli, M.; Sabia, C.; Messi, P.; de Niederhäusern, S.; Bondi, M.; Iseppi, R. Effectiveness of polymeric coated films containing bacteriocin-producer living bacteria for Listeria monocytogenes control under simulated cold chain break. Food Microbiol. 2018, 76, 173–179. [Google Scholar] [CrossRef]

	



Liu, Y.; Vincent Edwards, J.; Prevost, N.; Huang, Y.; Chen, J.Y. Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. Mater. Sci. Eng. C 2018, 91, 389–394. [Google Scholar] [CrossRef]

	



Barbiroli, A.; Bonomi, F.; Capretti, G.; Iametti, S.; Manzoni, M.; Piergiovanni, L.; Rollini, M. Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 2012, 26, 387–392. [Google Scholar] [CrossRef]

	



Bugatti, V.; Vertuccio, L.; Viscusi, G.; Gorrasi, G. Antimicrobial membranes of bio-based pa 11 and hnts filled with lysozyme obtained by an electrospinning process. Nanomaterials 2018, 8, 47–53. [Google Scholar]

	



Murillo-Martínez, M.M.; Tello-Solís, S.R.; García-Sánchez, M.A.; Ponce-Alquicira, E. Antimicrobial Activity and Hydrophobicity of Edible Whey Protein Isolate Films Formulated with Nisin and/or Glucose Oxidase. J. Food Sci. 2013, 78, M560–M566. [Google Scholar] [CrossRef] [PubMed]

	



Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 2015, 95, 1373–1378. [Google Scholar] [CrossRef] [PubMed]

	



Massouda, D.F.; Visioli, D.; Green, D.A.; Joerger, R.D. Extruded blends of chitosan and ethylene copolymers for antimicrobial packaging. Packag. Technol. Sci. 2012, 25, 321–327. [Google Scholar] [CrossRef]

	



Şen, F.; Kahraman, M.V. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polym. Adv. Technol. 2018, 29, 1895–1901. [Google Scholar] [CrossRef]

	



Alves, D.; Marques, A.; Milho, C.; José Costa, M.; Pastrana, L.M.; Cerqueira, M.A.; Sillankorva, S.M. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int. J. Food Microbiol. 2018, 291, 121–127. [Google Scholar] [CrossRef] [PubMed]

	



Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Basilio Heredia, J.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 2018, 38, e12571–e12581. [Google Scholar] [CrossRef]

	



Lone, A.; Anany, H.; Hakeem, M.; Aguis, L.; Avdjian, A.-C.; Bouget, M.; Atashi, A.; Brovko, L.; Rochefort, D.; Griffiths, M.W. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 2016, 217, 49–58. [Google Scholar] [CrossRef]

	



Silva, F.; Gracia, N.; McDonagh, B.H.; Domingues, F.C.; Nerín, C.; Chinga-Carrasco, G. Antimicrobial activity of biocomposite films containing cellulose nanofibrils and ethyl lauroyl arginate. J. Mater. Sci. 2019, 54, 12159–12170. [Google Scholar] [CrossRef]

	



Shankar, S.; Rhim, J.W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll. 2018, 82, 116–123. [Google Scholar] [CrossRef]

	



Huang, C.; Zhang, B.; Wang, S.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Huang, L. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system. J. Mater. Sci. 2018, 53, 12704–12717. [Google Scholar] [CrossRef]

	



Sekhavat Pour, Z.; Makvandi, P.; Ghaemy, M. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol). Int. J. Biol. Macromol. 2015, 80, 596–604. [Google Scholar] [CrossRef] [PubMed]

	



Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020, 107, 106786. [Google Scholar] [CrossRef]

	



Khaneghah, A.M.; Hashemi, S.M.B.; Es, I.; Fracassetti, D.; Limbo, S. Efficacy of antimicrobial agents for food contact applications: Biological activity, incorporation into packaging, and assessment methods: A review. J. Food Prot. 2018, 81, 1142–1156. [Google Scholar] [CrossRef] [PubMed]

	



Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]

	



European Commission Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union. 2008, L 354, 16–33. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/2012-12-03 (accessed on 20 January 2020).

	



Hauser, C.; Thielmann, J.; Muranyi, P. Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 563–580. ISBN 9780128007235. [Google Scholar]

	



Maliyakkal Johnson, E.; Jung, Y.-G.; Jin, Y.-Y.; Jayabalan, R.; Hwan Yang, S.; Joo Won Suh, P. Bacteriocins as food preservatives: Challenges and emerging horizons Bacteriocins as food preservatives: Challenges and emerging horizons. Food Sci. Nutr. 2017, 58, 2743–2767. [Google Scholar]

	



Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Roytrakul, S.; Perez, R.H.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control 2015, 55, 176–184. [Google Scholar] [CrossRef]

	



Cintas, L.M.; Casaus, M.P.; Herranz, C.; Nes, I.F.; Hernandez, P.E. Review: Bacteriocins of lactic acid bacteria. Food Sci. Technol. Int. 2001, 7, 281–305. [Google Scholar] [CrossRef]

	



Suda, S.; Cotter, P.D.; Hill, C.; Ross, R.P. Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Curr. Protein Pept. Sci. 2012, 13, 193–204. [Google Scholar] [CrossRef]

	



Grande Burgos, M.; Pulido, R.; del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar] [CrossRef] [PubMed]

	



Trinetta, V.; Rollini, M.; Limbo, S.; Manzoni, M. Influence of temperature and sakacin A concentration on survival of Listeria innocua cultures. Ann. Microbiol. 2008, 58, 633–639. [Google Scholar] [CrossRef]

	



Blázquez, I.O.; Burgos, M.J.G.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Treatment with high-hydrostatic pressure, activated film packaging with thymol plus enterocin AS-48, and its combination modify the bacterial communities of refrigerated sea bream (Sparus aurata) fillets. Front. Microbiol. 2018, 9, 314–324. [Google Scholar] [CrossRef] [PubMed]

	



Babich, O.; Dyshlyuk, L.; Sukhikh, S.; Prosekov, A.; Ivanova, S.; Pavsky, V.; Chaplygina, T.; Kriger, O. Effects of Biopreservatives Combined with Modified Atmosphere Packaging on the Quality of Apples and Tomatoes. Pol. J. Food Nutr. Sci. 2019, 69, 289–296. [Google Scholar] [CrossRef]

	



Costa, J.C.C.P.; Bover-Cid, S.; Bolívar, A.; Zurera, G.; Pérez-Rodríguez, F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 2019, 297, 72–84. [Google Scholar] [CrossRef] [PubMed]

	



Blázquez, I.O.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; Lucas, R. Bacterial inactivation by using plastic materials activated with combinations of natural antimicrobials. Coatings 2018, 8, 460. [Google Scholar] [CrossRef]

	



Khan, A.; Gallah, H.; Riedl, B.; Bouchard, J.; Safrany, A.; Lacroix, M. Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innov. Food Sci. Emerg. Technol. 2016, 35, 96–102. [Google Scholar] [CrossRef]

	



Xie, Y.; Zhang, M.; Gao, X.; Shao, Y.; Liu, H.; Jin, J.; Yang, W.; Zhang, H. Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J. Appl. Microbiol. 2018, 125, 1108–1116. [Google Scholar] [CrossRef]

	



Panel, E.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. The list of QPS Status Recommended Biological Agents for Safety Risk Assessments Carried Out by EFSA. 2019. Available online: https://zenodo.org/record/3336268#.Xlz6gyFKjIV (accessed on 20 January 2020).

	



Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef]

	



Ünalan, I.U.; Korel, F.; Yemenicioǧlu, A. Active packaging of ground beef patties by edible zein films incorporated with partially purified lysozyme and Na 2EDTA. Int. J. Food Sci. Technol. 2011, 46, 1289–1295. [Google Scholar] [CrossRef]

	



European Commission Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on Food Enzymes and Amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and Regulation (EC) No 258/97. Off. J. Eur. Union 2008, L 354, 7–15. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52017PC0265 (accessed on 20 January 2020).

	



Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]

	



Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]

	



Theapsak, S.; Watthanaphanit, A.; Rujiravanit, R. Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. Acs Appl. Mater. Interfaces 2012, 4, 2474–2482. [Google Scholar] [CrossRef] [PubMed]

	



Wu, C.; Zhu, Y.; Wu, T.; Wang, L.; Yuan, Y.; Chen, J.; Hu, Y.; Pang, J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem. 2019, 288, 139–145. [Google Scholar] [CrossRef]

	



Fang, Z.; Lin, D.; Warner, R.D.; Ha, M. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem. 2018, 260, 90–96. [Google Scholar] [CrossRef]

	



Souza, V.G.L.; Rodrigues, C.; Ferreira, L.; Pires, J.R.A.; Duarte, M.P.; Coelhoso, I.; Fernando, A.L. In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. 2019, 140, 111563. [Google Scholar] [CrossRef]

	



Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019. [Google Scholar]

	



Silva, F.; Nerín, C.; Domingues, F.C. Stilbene phytoallexins inclusion complexes: A natural-based strategy to control foodborne pathogen Campylobacter. Food Control 2015, 54, 66–73. [Google Scholar] [CrossRef]

	



Ferreira, S.; Silva, F.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int. J. Food Microbiol. 2014, 180, 62–68. [Google Scholar] [CrossRef]

	



Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar]

	



Alzagameem, A.; Klein, S.E.; Bergs, M.; Do, X.T.; Korte, I.; Dohlen, S.; Hüwe, C.; Kreyenschmidt, J.; Kamm, B.; Larkins, M.; et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polym. (Basel). 2019, 11, 670. [Google Scholar] [CrossRef]

	



Silva, F.; Domingues, F.C.; Nerín, C. Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. Lwt - Food Sci. Technol. 2018, 89, 148–154. [Google Scholar] [CrossRef]

	



Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P.; Hrnčič, M.K.; Bren, U.; Zemljič, L.F. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Mater. (Basel). 2019, 12, 2118. [Google Scholar] [CrossRef] [PubMed]

	



López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 2016, 60, 335–344. [Google Scholar] [CrossRef]

	



Siripatrawan, U.; Noipha, S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll. 2012, 27, 102–108. [Google Scholar] [CrossRef]

	



Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 2019, 21, 73. [Google Scholar] [CrossRef]

	



Hu, X.; Yuan, L.; Han, L.; Li, S.; Song, L. Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. Rsc Adv. 2019, 9, 27449–27454. [Google Scholar] [CrossRef]

	



Balti, R.; Mansour, M.B.; Sayari, N.; Yacoubi, L.; Rabaoui, L.; Brodu, N.; Massé, A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int. J. Biol. Macromol. 2017, 105, 1464–1472. [Google Scholar] [CrossRef]

	



Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol. 2017, 101, 882–888. [Google Scholar] [CrossRef]

	



Shankar, S.; Rhim, J.W. Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 2018, 120, 846–852. [Google Scholar] [CrossRef]

	



Albertos, I.; Avena-Bustillos, R.J.; Martín-Diana, A.B.; Du, W.X.; Rico, D.; McHugh, T.H. Antimicrobial Olive Leaf Gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag. Shelf Life 2017, 13, 49–55. [Google Scholar] [CrossRef]

	



Iturriaga, L.; Olabarrieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 2014, 110, 374–381. [Google Scholar] [CrossRef] [PubMed]

	



Ashrafi, A.; Jokar, M.; Mohammadi Nafchi, A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018, 108, 444–454. [Google Scholar] [CrossRef] [PubMed]

	



Shahbazi, Y. Characterization of nanocomposite films based on chitosan and carboxymethylcellulose containing Ziziphora clinopodioides essential oil and methanolic Ficus carica extract. J. Food Process. Preserv. 2018, 42, e13444. [Google Scholar] [CrossRef]

	



Silva, F.; Domingues, F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2017, 57, 35–47. [Google Scholar] [CrossRef] [PubMed]

	



Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]

	



Silva, F.; Domeño, C.; Domingues, F.C. Coriandrum Sativum: Characterization, biological activities and application. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; ELSEVIER ACADEMIC PRESS: London, UK, 2019; ISBN 9780128185537. [Google Scholar]

	



Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1320–1323. [Google Scholar] [CrossRef]

	



Bentayeb, K.; Vera, P.; Rubio, C.; Nerín, C. The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: The case of essential oils. Food Chem. 2014, 148, 204–208. [Google Scholar] [CrossRef]

	



Food and Drug Administration, U.S.D. of H. and H.S. CFR - Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20 (accessed on 27 November 2019).

	



Manso, S.; Becerril, R.; Nerín, C.; Gomez-Lus, R. Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control 2015, 47, 20–26. [Google Scholar] [CrossRef]

	



Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]

	



Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016, 59, 366–376. [Google Scholar] [CrossRef]

	



Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef]

	



Hager, J.V.; Rawles, S.D.; Xiong, Y.L.; Newman, M.C.; Thompson, K.R.; Webster, C.D. Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops × Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin. J. World Aquac. Soc. 2019, 50, 575–592. [Google Scholar] [CrossRef]

	



92. Da Silva, F.T.; da Cunha, K.F.; Fonseca, L.M.; Antunes, M.D.; El Halal, S.L.M.; Fiorentini, Â.M.; da Rosa Zavareze, E.; Dias, A.R.G. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int. J. Biol. Macromol. 2018, 118, 107–115. [Google Scholar] [CrossRef] [PubMed]

	



Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]

	



Zhang, H.; Li, X.; Kang, H. Chitosan coatings incorporated with free or nano-encapsulated Paulownia Tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT 2019, 116, 108580. [Google Scholar] [CrossRef]

	



Chein, S.H.; Sadiq, M.B.; Anal, A.K. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process. Preserv. 2019, 43, e14235–e14247. [Google Scholar] [CrossRef]

	



Oğuzhan Yıldız, P.; Yangılar, F. Effects of whey protein isolate based coating enriched with Zingiber officinale and Matricaria recutita essential oils on the quality of refrigerated rainbow trout. J. Food Saf. 2017, 37, e12341–e12349. [Google Scholar] [CrossRef]

	



Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Fraschini, C.; Lacroix, M. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. Int. J. Food Microbiol. 2019, 295, 33–40. [Google Scholar] [CrossRef]

	



Wang, H.; Yang, C.; Wang, J.; Chen, M.; Luan, D.; Li, L. EVOH Films Containing Antimicrobials Geraniol and α-Terpilenol Extend the Shelf Life of Snakehead Slices. Packag. Technol. Sci. 2017, 30, 587–600. [Google Scholar] [CrossRef]

	



Boyacı, D.; Iorio, G.; Sozbilen, G.S.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioğlu, A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life 2019, 20, 100316–100326. [Google Scholar] [CrossRef]

	



Konuk Takma, D.; Korel, F. Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packag. Shelf Life 2019, 19, 210–217. [Google Scholar] [CrossRef]

	



Lin, L.; Liao, X.; Cui, H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag. Shelf Life 2019, 21, 100337–100345. [Google Scholar] [CrossRef]

	



Buendía−Moreno, L.; Sánchez−Martínez, M.J.; Antolinos, V.; Ros−Chumillas, M.; Navarro−Segura, L.; Soto−Jover, S.; Martínez−Hernández, G.B.; López−Gómez, A. Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or hallosyte nanotubes: A Case Study Fresh Tomato Storage. Food Control 2020, 107, 106763–106773. [Google Scholar] [CrossRef]

	



Alkan Tas, B.; Sehit, E.; Erdinc Tas, C.; Unal, S.; Cebeci, F.C.; Menceloglu, Y.Z.; Unal, H. Carvacrol loaded halloysite coatings for antimicrobial food packaging applications. Food Packag. Shelf Life 2019, 20, 100300–100306. [Google Scholar] [CrossRef]

	



Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv. 2018, 1, 1700033. [Google Scholar] [CrossRef]

	



Espitia, P.J.P.; De Fátima Ferreira Soares, N.; Teófilo, R.F.; Dos Reis Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; De Andrade, N.J.; Medeiros, E.A.A. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [Google Scholar] [CrossRef]

	



Vasile, C.; Râpă, M.; Ștefan, M.; Stan, M.; Macavei, S.; Darie-Niță, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Ștefan, R.; et al. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 2017, 11, 531–544. [Google Scholar] [CrossRef]

	



Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. J. Food Sci. 2018, 83, 1299–1310. [Google Scholar] [CrossRef]

	



Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. Efsa J. 2018, 16, 5327–5332. [Google Scholar]

	



European Commission Regulation (EU) No 1282/2011 of 28 November 2011 Amending and Correcting Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food Text with EEA Relevance 2011. Off. J. Eur. Union 2011, L 328, 22–29. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1282 (accessed on 20 January 2020).

	



Silano, V.; Bolognesi, C.; Chipman, K.; Cravedi, J.; Engel, K.; Fowler, P.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; et al. Safety assessment of the active substance selenium nanoparticles, for use in active food contact materials. Efsa J. 2018, 16, e05115–e05122. [Google Scholar]

	



Kim, S.; Song, K. Bin Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 2018, 53, 1549–1557. [Google Scholar] [CrossRef]

	



Marcous, A.; Rasouli, S.; Ardestani, F. Low-density Polyethylene Films Loaded by Titanium Dioxide and Zinc Oxide Nanoparticles as a New Active Packaging System against Escherichia coli O157:H7 in Fresh Calf Minced Meat. Packag. Technol. Sci. 2017, 30, 693–701. [Google Scholar] [CrossRef]

	



Mathew, S.; S., S.; Mathew, J.; Radhakrishnan, E.K. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 2019, 19, 155–166. [Google Scholar] [CrossRef]

	



Lotfi, S.; Ahari, H.; Sahraeyan, R. The effect of silver nanocomposite packaging based on melt mixing and sol–gel methods on shelf life extension of fresh chicken stored at 4 °C. J. Food Saf. 2019, 39, e12625–e12634. [Google Scholar] [CrossRef]

	



Ahmed, J.; Mulla, M.; Jacob, H.; Luciano, G.; T.B., B.; Almusallam, A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag. Shelf Life 2019, 21, 100355–100364. [Google Scholar] [CrossRef]

	



Amjadi, S.; Emaminia, S.; Nazari, M.; Davudian, S.H.; Roufegarinejad, L.; Hamishehkar, H. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food Bioprocess Technol. 2019, 12, 1205–1219. [Google Scholar] [CrossRef]

	



Zhang, X.; Niu, Y.D.; Nan, Y.; Stanford, K.; Holley, R.; McAllister, T.; Narváez-Bravo, C. SalmoFreshTM effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. Int. J. Food Microbiol. 2019, 305, 108250–108260. [Google Scholar] [CrossRef]

	



Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; Koeijer, A.D.; Griffin, J.; Havelaar, A.; Hope, J.; Klein, G.; et al. The use and mode of action of bacteriophages in food production-Endorsed for public consultation 22 January 2009-Public consultation 30 January–6 March 2009. Efsa J. 2009, 7, 1076. [Google Scholar]

	



Gouvêa, D.M.; Mendonça, R.C.S.; Soto, M.L.; Cruz, R.S. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. Lwt - Food Sci. Technol. 2015, 63, 85–91. [Google Scholar]

	



Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed]

	



Nerin, C.; Silva, F.; Manso, S.; Becerril, R. The Downside of Antimicrobial Packaging: Migration of Packaging Elements into Food. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 81–93. ISBN 9780128007235. [Google Scholar]

	



Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef]

	



Zanetti, M.; Carniel, T.K.; Dalcanton, F.; dos Anjos, R.S.; Gracher Riella, H.; de Araújo, P.H.H.; de Oliveira, D.; Antônio Fiori, M. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci. Technol. 2018, 81, 51–60. [Google Scholar] [CrossRef]

	



Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]

	



Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef] [PubMed]

	



Espitia, P.J.P.; Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 264–285. [Google Scholar] [CrossRef]

	



Robledo, N.; López, L.; Bunger, A.; Tapia, C.; Abugoch, L. Effects of antimicrobial edible coating of thymol nanoemulsion/quinoa protein/chitosan on the safety, sensorial properties, and quality of refrigerated strawberries (Fragaria × ananassa) under commercial storage environment. Food Bioprocess Technol. 2018, 11, 1566–1574. [Google Scholar] [CrossRef]

	



Frank, K.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: Physical, mechanical, and antibacterial properties. Int. J. Polym. Sci. 2018, 2018, 1519408–1519416. [Google Scholar] [CrossRef]

	



Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]

	



Jantrawut, P.; Boonsermsukcharoen, K.; Thipnan, K.; Chaiwarit, T.; Hwang, K.-M.; Park, E.-S. Enhancement of Antibacterial Activity of Orange Oil in Pectin Thin Film by Microemulsion. Nanomaterials 2018, 8, 545. [Google Scholar] [CrossRef]

	



Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016, 61, 662–671. [Google Scholar] [CrossRef]

	



McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]

	



Guo, M.; Jin, T.Z.; Yadav, M.P.; Yang, R. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria. Int. J. Food Microbiol. 2015, 208, 58–64. [Google Scholar] [CrossRef] [PubMed]

	



Guo, M.; Yadav, M.P.; Jin, T.Z. Antimicrobial edible coatings and films from micro-emulsions and their food applications. Int. J. Food Microbiol. 2017, 263, 9–16. [Google Scholar] [CrossRef]

	



Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; de F.F. Soares, N.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]

	



Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 2017, 75, 742–750. [Google Scholar] [CrossRef]

	



Fu, Y.; Sarkar, P.; Bhunia, A.K.; Yao, Y. Delivery systems of antimicrobial compounds to food. Trends Food Sci. Technol. 2016, 57, 165–177. [Google Scholar] [CrossRef]

	



Lei, K.; Wang, X.; Li, X.; Wang, L. The innovative fabrication and applications of carvacrol nanoemulsions, carboxymethyl chitosan microgels and their composite films. Colloids Surf. B Biointerfaces 2019, 175, 688–696. [Google Scholar] [CrossRef]

	



Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef]

	



Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]

	



Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 2018, 112, 197–202. [Google Scholar] [CrossRef] [PubMed]

	



Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef] [PubMed]

	



Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018, 83, 445–453. [Google Scholar] [CrossRef]

	



Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int. J. Food Microbiol. 2017, 260, 75–80. [Google Scholar] [CrossRef] [PubMed]

	



Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int. J. Nanomed. 2015, 10, 67–75. [Google Scholar]

	



Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef]

	



Li, W.; Zheng, K.; Chen, H.; Feng, S.; Wang, W.; Qin, C. Influence of Nano Titanium Dioxide and Clove Oil on Chitosan–Starch Film Characteristics. Polym. (Basel). 2019, 11, 1418. [Google Scholar] [CrossRef]

	



Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT 2019, 106, 164–171. [Google Scholar] [CrossRef]

	



Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef]

	



Radi, M.; Akhavan-Darabi, S.; Akhavan, H.; Amiri, S. The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. J. Food Process. Preserv. 2018, 42, e13441. [Google Scholar] [CrossRef]

	



Moghimi, R.; Aliahmadi, A.; Rafati, H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr. Polym. 2017, 175, 241–248. [Google Scholar] [CrossRef] [PubMed]

	



Gundewadi, G.; Rudra, S.G.; Sarkar, D.J.; Singh, D. Nanoemulsion based alginate organic coating for shelf life extension of okra. Food Packag. Shelf Life 2018, 18, 1–12. [Google Scholar] [CrossRef]

	



Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Phys. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]

	



Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]

	



Fasihi, H.; Fazilati, M.; Hashemi, M.; Noshirvani, N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr. Polym. 2017, 167, 79–89. [Google Scholar] [CrossRef] [PubMed]

	



Zhu, J.-Y.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [Google Scholar] [CrossRef]

	



Liu, Q.-R.; Wang, W.; Qi, J.; Huang, Q.; Xiao, J. Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll. 2019, 87, 165–172. [Google Scholar] [CrossRef]

	



Zhang, C.; Feng, F.; Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 2018, 80, 175–186. [Google Scholar] [CrossRef]

	



Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. Rsc Adv. 2017, 7, 28951–28964. [Google Scholar] [CrossRef]

	



Zhang, H.; Hortal, M.; Dobon, A.; Jorda-Beneyto, M.; Bermudez, J.M. Selection of Nanomaterial-Based Active Agents for Packaging Application: Using Life Cycle Assessment (LCA) as a Tool. Packag. Technol. Sci. 2017, 30, 575–586. [Google Scholar] [CrossRef]

	



Zhao, X.; Lui, Y.S.; Wen, P.; Toh, J.; Chye, S.; Loo, J. Sustained Release of Hydrophilic L-ascorbic acid 2-phosphate Magnesium from Electrospun Polycaprolactone Scaffold-A Study across Blend, Coaxial, and Emulsion Electrospinning Techniques. Mater. (Basel). 2014, 7, 7398–7408. [Google Scholar] [CrossRef] [PubMed]

	



Naeimirad, M.; Zadhoush, A.; Kotek, R.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Ramakrishna, S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J. Appl. Polym. Sci. 2018, 135, 46265. [Google Scholar] [CrossRef]

	



Yao, Z.-C.; Chen, S.-C.; Ahmad, Z.; Huang, J.; Chang, M.-W.; Li, J.-S. Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. J. Food Sci. 2017, 82, 1412–1422. [Google Scholar] [CrossRef] [PubMed]

	



Sedghi, R.; Shaabani, A. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polym. (Guildf). 2016, 101, 151–157. [Google Scholar] [CrossRef]

	



Shin, J.; Lee, S. Encapsulation of Phytoncide in Nanofibers by Emulsion Electrospinning and their Antimicrobial Assessment. Fibers Polym. 2018, 19, 627–634. [Google Scholar] [CrossRef]

	



Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2019, 110, 302–310. [Google Scholar] [CrossRef]

	



Zhang, Y.; Zhang, Y.; Zhu, Z.; Jiao, X.; Shang, Y.; Wen, Y. Encapsulation of Thymol in Biodegradable Nanofiber via Coaxial Eletrospinning and Applications in Fruit Preservation. J. Agric. Food Chem. 2019, 67, 1736–1741. [Google Scholar] [CrossRef]

	



Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biol. Technol. 2020, 159, 111028. [Google Scholar] [CrossRef]

	



Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]

	



Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]

	



Aytac, Z.; Ipek, S.; Durgun, E.; Tekinay, T.; Uyar, T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 2017, 233, 117–124. [Google Scholar] [CrossRef]

	



Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 2016, 55, 100–107. [Google Scholar] [CrossRef]

	



Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M.G.; Santagata, G.; Di Lorenzo, M.L. Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex. Eur. Polym. J. 2016, 79, 82–96. [Google Scholar] [CrossRef]

	



Samperio, C.; Boyer, R.; Eigel, W.N.; Holland, K.W.; McKinney, J.S.; O’Keefe, S.F.; Smith, R.; Marcy, J.E. Enhancement of Plant Essential Oils’ Aqueous Solubility and Stability Using Alpha and Beta Cyclodextrin. J. Agric. Food Chem. 2010, 58, 12950–12956. [Google Scholar] [CrossRef] [PubMed]

	



Wen, P.; Wen, Y.; Zong, M.-H.; Linhardt, R.J.; Wu, H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 2017, 65, 9161–9179. [Google Scholar] [CrossRef]

	



Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016, 196, 996–1004. [Google Scholar] [CrossRef]

	



Lin, L.; Zhu, Y.; Cui, H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT 2018, 97, 711–718. [Google Scholar] [CrossRef]

	



Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem. 2019, 300, 125249–125257. [Google Scholar] [CrossRef] [PubMed]

	



Dias Antunes, M.; da Silva Dannenberg, G.; Fiorentini, A.M.; Pinto, V.Z.; Lim, L.-T.; da Rosa Zavareze, E.; Dias, A.R.G. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol. 2017, 104, 874–882. [Google Scholar] [CrossRef]

	



Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]

	



Simionato, I.; Domingues, F.C.; Nerín, C.; Silva, F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Carbohydr Polym 2018. submitted. [Google Scholar] [CrossRef] [PubMed]

	



Silva, F.; Caldera, F.; Trotta, F.; Nerín, C.; Domingues, F.C. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Food Chem 2018. submitted. [Google Scholar] [CrossRef]

	



Du, M.; Guo, B.; Jia, D. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582. [Google Scholar] [CrossRef]

	



Hanif, M.; Jabbar, F.; Sharif, S.; Abbas, G.; Farooq, A.; Aziz, M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Min. 2016, 51, 469–477. [Google Scholar] [CrossRef]

	



Zhang, H. Selective modification of inner surface of halloysite nanotubes: A review. Nanotechnol. Rev. 2017, 6, 573–581. [Google Scholar] [CrossRef]

	



Lvov, Y.M.; Shchukin, D.G.; Mö, H.; Price, R.R.; Muir, G. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano. 2008, 2, 814–820. [Google Scholar] [CrossRef]

	



Bugatti, V.; Sorrentino, A.; Gorrasi, G. Encapsulation of Lysozyme into halloysite nanotubes and dispersion in PLA: Structural and physical properties and controlled release analysis. Eur. Polym. J. 2017, 93, 495–506. [Google Scholar] [CrossRef]

	



Gorrasi, G. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis. Carbohydr. Polym. 2015, 127, 47–53. [Google Scholar] [CrossRef]

	



Jang, S.S.; Jang, S.S.; Lee, G.; Ryu, J.; Park, S.; Park, N. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials. J. Food Sci. 2017, 82, 2113–2120. [Google Scholar] [CrossRef]

	



Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 2017, 76, 117–126. [Google Scholar] [CrossRef]

	



Shemesh, R.; Krepker, M.; Nitzan, N.; Vaxman, A.; Segal, E. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol. Technol. 2016, 118, 175–182. [Google Scholar] [CrossRef]

	



Maruthupandy, M.; Seo, J. Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Mater. Sci. Eng. C 2019, 105, 110016–110025. [Google Scholar] [CrossRef] [PubMed]

	



Lee, M.H.; Seo, H.-S.; Park, H.J. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System. J. Food Sci. 2017, 82, 922–932. [Google Scholar] [CrossRef] [PubMed]

	



Shemesh, R.; Krepker, M.; Natan, M.; Danin-Poleg, Y.; Banin, E.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. Rsc Adv. 2015, 5, 87108–87117. [Google Scholar] [CrossRef]

	



Krepker, M.; Zhang, C.; Nitzan, N.; Prinz-Setter, O.; Massad-Ivanir, N.; Olah, A.; Baer, E.; Segal, E. Antimicrobial LDPE/EVOH Layered Films Containing Carvacrol Fabricated by Multiplication Extrusion. Polym. (Basel). 2018, 10, 864. [Google Scholar] [CrossRef]

	



Hallaj-Nezhadi, S.; Hassan, M. Nanoliposome-based antibacterial drug delivery. Drug Deliv. 2015, 22, 581–589. [Google Scholar] [CrossRef]

	



Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]

	



Valencia-Sullca, C.; Jiménez, M.; Jiménez, A.; Atarés, L.; Vargas, M.; Chiralt, A. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym. Int. 2016, 65, 979–987. [Google Scholar] [CrossRef]

	



Wu, J.; Liu, H.; Ge, S.; Wang, S.; Qin, Z.; Chen, L.; Zheng, Q.; Liu, Q.; Zhang, Q. The preparation, characterization, antimicrobial stability and invitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll. 2015, 43, 427–435. [Google Scholar] [CrossRef]

	



Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]

	



Cui, H.; Yuan, L.; Lin, L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017, 177, 156–164. [Google Scholar] [CrossRef] [PubMed]

	



Cui, H.; Yuan, L.; Li, W.; Lin, L. Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. Int. J. Food Sci. Technol. 2017, 52, 687–698. [Google Scholar] [CrossRef]

	



Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr. Polym. 2017, 178, 131–140. [Google Scholar] [CrossRef]

	



Cui, H.Y.; Wu, J.; Li, C.Z.; Lin, L. Anti-listeria effects of chitosan-coated nisin-silica liposome on Cheddar cheese. J. Dairy Sci. 2016, 99, 8598–8606. [Google Scholar] [CrossRef] [PubMed]

	



Nazari, M.; Majdi, H.; Milani, M.; Abbaspour-Ravasjani, S.; Hamishehkar, H.; Lim, L.T. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag. Shelf Life 2019, 21, 100349–100359. [Google Scholar] [CrossRef]

	



Wu, Z.; Zhou, W.; Pang, C.; Deng, W.; Xu, C.; Wang, X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019, 295, 16–25. [Google Scholar] [CrossRef] [PubMed]

	



Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1450. [Google Scholar] [CrossRef]

	



Cui, H.; Zhao, C.; Lin, L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control 2015, 56, 128–134. [Google Scholar] [CrossRef]

	



Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 2012, 23, 13–27. [Google Scholar] [CrossRef]

	



Pu, C.; Tang, W. A chitosan-coated liposome encapsulating antibacterial peptide, Apep10: Characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food Funct. 2016, 7, 4310–4322. [Google Scholar] [CrossRef]

	



Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef] [PubMed]

	



Lin, L.; Zhang, X.; Zhao, C.; Cui, H. Liposome containing nutmeg oil as the targeted preservative against Listeria monocytogenes in dumplings. Rsc Adv. 2016, 6, 978–986. [Google Scholar] [CrossRef]

	



Sarkar, P.; Choudhary, R.; Panigrahi, S.; Syed, I.; Sivapratha, S.; Dhumal, C.V. Nano-inspired systems in food technology and packaging. Environ. Chem. Lett. 2017, 15, 607–622. [Google Scholar] [CrossRef]

	



Šumiga; Šumiga; Ravnjak; Boh Podgornik Antimicrobial Paper Coatings Containing Microencapsulated Cymbopogon citratus Oil. Coatings 2019, 9, 470. [CrossRef]

	



Marturano, V.; Marcille, H.; Cerruti, P.; Bandeira, N.A.; Giamberini, M.; Trojanowska, A.; Tylkowski, B.; Carfagna, C.; Ausanio, G.; Ambrogi, V. Visible-Light Responsive Nanocapsules for Wavelength-Selective Release of Natural Active Agents. Acs Appl. Nano Mater. 2019, 2, 4499–4506. [Google Scholar] [CrossRef]

	



Marturano, V.; Bizzarro, V.; Ambrogi, V.; Cutignano, A.; Tommonaro, G.; Abbamondi, G.R.; Giamberini, M.; Tylkowski, B.; Carfagna, C.; Cerruti, P. Light-Responsive Nanocapsule-Coated Polymer Films for Antimicrobial Active Packaging. Polym. (Basel). 2019, 11, 68. [Google Scholar] [CrossRef]

	



Zhang, B.; Huang, C.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Liu, Y.; Li, C. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangos. J. Food Sci. Technol. 2019, 56, 1095–1103. [Google Scholar] [CrossRef]

	



Medina, E.; Caro, N.; Abugoch, L.; Gamboa, A.; Díaz-Dosque, M.; Tapia, C. Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J. Food Eng. 2019, 240, 191–198. [Google Scholar] [CrossRef]

	



Caro, N.; Medina, E.; Díaz-Dosque, M.; López, L.; Abugoch, L.; Tapia, C. Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocoll. 2016, 52, 520–532. [Google Scholar] [CrossRef]

	



Cui, H.; Bai, M.; Rashed, M.M.A.; Lin, L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int. J. Food Microbiol. 2018, 266, 69–78. [Google Scholar] [CrossRef]

	



Lin, L.; Gu, Y.; Cui, H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 2019, 19, 86–93. [Google Scholar] [CrossRef]

	



Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials 2019, 9, 227. [Google Scholar] [CrossRef] [PubMed]

	



Tsai, Y.H.; Yang, Y.N.; Ho, Y.C.; Tsai, M.L.; Mi, F.L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr. Polym. 2018, 180, 286–296. [Google Scholar] [CrossRef]

	



Basu, A.; Kundu, S.; Sana, S.; Halder, A.; Abdullah, M.F.; Datta, S.; Mukherjee, A. Edible nano-bio-composite film cargo device for food packaging applications. Food Packag. Shelf Life 2017, 11, 98–105. [Google Scholar] [CrossRef]

	



Hu, S.; Yu, J.; Wang, Z.; Li, L.; Du, Y.; Wang, L.; Liu, Y. Effects of Sorbic Acid-Chitosan Microcapsules as Antimicrobial Agent on the Properties of Ethylene Vinyl Alcohol Copolymer Film for Food Packaging. J. Food Sci. 2017, 82, 1451–1460. [Google Scholar] [CrossRef] [PubMed]

	



Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt - Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef]

	



Yin, C.; Huang, C.; Wang, J.; Liu, Y.; Lu, P.; Huang, L. Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials 2019, 12, 2039. [Google Scholar] [CrossRef]

	



Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. Lwt - Food Sci. Technol. 2017, 81, 233–242. [Google Scholar] [CrossRef]








[image: Molecules 25 01134 g001 550] 





Figure 1. Schematic representation of a classical emulsion stabilized by surfactant and a Pickering emulsion stabilized by solid particles. 
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Figure 2. Emulsion electrospinning and coaxial electrospinning techniques. 
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Figure 3. (a) Chemical structure and (b) geometrical shape of cyclodextrins. 
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Figure 4. Halloysite nanotubes have an external surface composed of silanol (Si-OH) along with siloxane groups and an internal surface composed of aluminol (Al-OH) groups. 
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Figure 5. Liposome loaded with hydrophobic and hydrophilic antimicrobial substances. 
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Figure 6. Microcapsule/nanocapsule and nanoparticle loaded with antimicrobial substances. 
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Table 1. Antimicrobial agents used in active food packaging. NA-not applicable.
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Antimicrobial Class

	
Antimicrobial Agent

	
Packaging Material

	
Main Microorganisms

	
Food Product

	
Ref.






	
Organic acids

	
Lactic acid

	
Polyamide

	
Escherichia coli O157:H7

	
Fresh beef cuts

	
[10]




	
Lactic acid

	
Chitosan pectin starch biocomposite

	
Bacillus subtilis

Listeria monocytogenes

	
NA

	
[11]




	
Sodium benzoate

Citric acid

	
Polyvinyl alcohol (PVA)

	
Staphylococcus aureus

Escherichia coli

Candida albicans

	
NA

	
[12]




	
Potassium sorbate

	
Fish collagen and polyvinyl alcohol (PVA) composite

	
Escherichia coli

Staphylococcus aureus

	
NA

	
[13]




	
Bacteriocins

	
Sakacin-A

	
PE coated paper

	
Listeria monocytogenes

	
Thin-cut meat

	
[14]




	
Sakacin-A

	
Cellulose nanofibres

	
Listeria monocytogenes

	
Smoked salmon fillets

	
[15]




	
Nisin

	
Starch-halloysite nanocomposites

	
Listeria monocytogenes

Clostridium perfringens

	
NA

	
[16]




	
Pediocin

	
Starch-halloysite nanocomposites

	
Listeria monocytogenes

Clostridium perfringens

	
NA

	
[16]




	
Nisin

	
Chitosan-carboxymethylchitosan composite films

	
Listeria monocytogenes

	
NA

	
[17]




	
Bacteriocin 7293

	
Poly (lactic acid)/sawdust particle biocomposite film

	
Listeria monocytogenes

Staphylococcus aureus

Pseudomonas aeruginosa

Aeromonas hydrophila

Escherichia coli

Salmonella Typhimurium

	
Pangasius fish fillets

	
[18]




	
Bacteriocin-like substances

	
Starch

	
Listeria monocytogenes

	
Cheese

	
[19]




	
Bacteriocin-like substances

	
Triticale flour films

	
Listeria innocua

	
Cheese

	
[20]




	
Bacteriocin-producer living bacteria

	
Poly (ethylene terephthalate) (PET) coated with polyvinyl alcohol (PVOH)

	
Listeria monocytogenes

	
Precooked chicken fillets

	
[21]




	
Enzymes

	
Lysozyme

	
Nonwoven regenerated cellulose with carbon nanotubes and graphene oxide

	
Micrococcus lysodeikticus

	
NA

	
[22]




	
Lysozyme+ lactoferrin

	
Carboxymethyl cellulose-coated paper

	
Listeria innocua

Escherichia coli

	
Veal carpaccio

	
[23]




	
Lysozyme

	
Polyamide 11 (PA11) with halloysite nanotubes (HNTs)

	
Pseudomonads

	
Chicken slices

	
[24]




	
Glucose oxidase

	
Whey protein isolate

	
Listeria innocua

Brochothrix thermosphacta

Escherichia coli

Enterococcus faecalis

	
NA

	
[25]




	
Lactoperoxidase

	
Chitosan

	
Shewanella putrefaciens

Pseudomonas fluorescens

Psychrotrophs

Mesophiles

	
Rainbow trout

	
[26]




	
Biopolymers

	
Chitosan

	
Chitosan/ethylene copolymer

	
Escherichia coli

Salmonella Enteritidis

Listeria monocytogenes

	
NA

	
[27]




	
Hydroxyethyl cellulose/sodium alginate

	
NA

	
Escherichia coli

Staphylococcus aureus

	
NA

	
[28]




	
Bacteriophages

	
ϕIBB-PF7A

	
Alginate

	
Pseudomonas fluorescens

	
Chicken fillets

	
[29]




	
vB_EcoMH2W

	
Chitosan

	
Escherichia coli O157:H7

	
Tomatoes

	
[30]




	
LISTEX™ P100

	
Cellulose membranes

	
Listeria monocytogenes

	
Ready-to-eat turkey

	
[31]




	
Other

	
LAE

	
Cellulose nanofibres

	
Listeria monocytogenes

	
NA

	
[32]




	
Sulphur nanoparticles

	
Chitosan

	
Listeria monocytogenes

Escherichia coli

	
NA

	
[33]




	
Chlorine dioxide

	
PLA

	
Staphylococcus aureus

Escherichia coli

	
NA

	
[34]




	
Quaternary ammonium salt

	
PVA/starch

	
Staphylococcus aureus

Bacillus subtilis

Escherichia coli

Pseudomonas aeruginosa

	
NA

	
[35]
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Table 2. Organic acids or organic acid-derived compounds listed as food preservatives and their E-numbers.






Table 2. Organic acids or organic acid-derived compounds listed as food preservatives and their E-numbers.





	Compound
	E Number





	Sorbic acid
	E200



	Potassium sorbate
	E202



	Calcium sorbate
	E203



	Benzoic acid
	E210



	Sodium benzoate
	E211



	Potassium benzoate
	E212



	Calcium benzoate
	E213



	Ethyl p-hydroxybenzoate
	E214



	Sodium ethyl p-hydroxybenzoate
	E215



	Methyl p-hydroxybenzoate
	E218



	Sodium methyl p-hydroxybenzoate
	E219



	Acetic acid
	E260



	Potassium acetate
	E261



	Sodium acetate
	E262



	Calcium acetate
	E263



	Lactic acid
	E270



	Propionic acid
	E280



	Sodium propionate
	E281



	Calcium propionate
	E282



	Potassium propionate
	E283
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Table 3. Examples of bacteriocins used in food packaging.






Table 3. Examples of bacteriocins used in food packaging.





	Bacteriocin
	Characteristics
	Producer
	Target Microorganisms
	Ref.





	Nisin
	Heat stable at 121 °C (pH = 2)

Less stable at pH 5–7
	Lactobacillus lactis subsp. lactis
	Streptococcus thermophilus

Lactobacillus spp.

Listeria monocytogenes

Lactobacillus lactis

Staphylococcus aureus

Clostridium botulinum

Bacillus cereus
	[43]



	Lacticin 3147A
	Heat stable at 100 °C (10 min at pH 5)

Stable at room and low temperature

Most stable at acid and neutral pH
	Lactobacillus lactis DPC3147
	Bacillus subtilis

Staphylococcus aureus

Listeria monocytogenes

Lactobacillus fermentum
	[44]



	Pediocin PA-1
	Stable at pH 4 to 6, becomes less stable as pH increases.

Heat stable at 80 °C (10 min)
	Pediococcus acidilactici
	Lactobacillus helveticus

Pediococcus pentosaceus

Listeria monocytogenes
	[43]



	Enterocin AS-48
	Remarkably stable to extremes of pH and denaturing agents

Inactivated by heat at 65 °C and alkaline pH

Compatible with several chemical compounds such as EDTA, lactic acid and sodium hypochlorite
	Enterococcus faecalis subsp. liquefaciens S-48
	Corynebacterium spp.

Mycobacterium spp.

Nocardia spp.

Micrococcus spp.

Staphylococcus spp.

Listeria monocytogenes

Brochothrix thermosphacta

Lactic acid bacteria

Bacillus cereus

Bacillus coagulans

Bacillus subtilis

Clostridium perfringens

Clostridium sporogenes

Clostridium tetani

Myxococcus spp.

Escherichia coli

Rhizobium spp.

Agrobacterium spp.

Salmonella spp.

Shigella spp.

Pseudomonas spp.

Klebsiella spp.
	[45]



	Sakacin-A
	Heat-stable (100 °C, 20 min)

Active at pH 2–9

Most stable at pH 3–5

Stable during frozen storage
	Lactobacillus sakei Lb706
	Listeria monocytogenes

Listeria innocua

Lactic acid bacteria
	[43,46]



	Bacteriocin 7293
	Stable in organic solvents and high ranges of pH and temperature
	Weisella hellenica BCC 7293
	Pseudomonas aeruginosa

Aeromonas hydrophila

Salmonella Typhimurium

Escherichia coli
	[42]
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Table 4. Natural extracts and compounds (with the exception of essential oils and their components) used for the development of active food packaging. NA-not applicable.






Table 4. Natural extracts and compounds (with the exception of essential oils and their components) used for the development of active food packaging. NA-not applicable.





	Natural Compound
	Packaging Material
	Antimicrobial Activity
	Food Preservation Data
	Ref.





	Gallic acid
	Chitosan coating
	Total viable counts
	The addition of 0.2% gallic acid to chitosan films for pork loin coating showed antioxidant and antimicrobial properties under high oxygen MAP storage at 4 °C
	[61]



	Lignign
	Hydroxypropylmethylcellulose composite
	Brochotrix thermosphacta

Pseudomonas fluorescens
	NA
	[67]



	Curcumin
	Chitosan
	Staphylococcus aureus

Escherichia coli
	NA
	[60]



	Pinosylvin
	Cellulose/polypropylene absorbent pads
	Campylobacter jejuni

Campylobacter coli

Total viable counts

Pseudomonads

Psychrotrophs

Lactic acid bacteria
	At 4 °C, pads with 0.4 mg pinosylvin/cm2 exhibited anti-Campylobacter activity in chicken fillets and exudates

Active coated pads were not able to reduce pseudomonads but caused reductions in lactic acid bacteria, psychrotrophs and total viable counts
	[68]



	Resveratrol
	Polyethylene (PE) film

polypropylene (PP) film
	Staphylococcus aureus

Escherichia coli
	NA
	[69]



	Murta fruit extract
	Methyl cellulose films
	Listeria innocua
	NA
	[70]



	Green tea extract
	Chitosan
	Total viable counts, Yeasts

Moulds

Lactic acid bacteria
	Decreased number of total viable counts, lactic acid bacteria, yeasts and moulds in film-wrapped pork sausages stored at 4 °C for 20 days
	[71]



	Allium ursinum L. extract
	Poly(lactic acid) (PLA) film
	Staphylococcus aureus

Escherichia coli
	NA
	[72]



	Ginkgo biloba extract
	Gelatine film
	Staphylococcus aureus

Candida albicans
	NA
	[73]



	Spirulina extract
	Chitosan film
	Escherichia coli

Staphylococcus aureus

Pseudomonas aeruginosa

Listeria monocytogenes

Salmonella typhimurium

Bacillus subtilis

Bacillus cereus
	NA
	[74]



	Turmeric extract
	Chitosan film
	Staphylococcus aureus

Salmonella spp.
	NA
	[75]



	Grapefruit seed extract
	Poly(lactide)/poly(butylene adipate-co- terephthalate) composite film
	Listeria monocytogenes
	NA
	[76]



	Olive leaf powder and extract
	Gelatine
	Listeria monocytogenes
	Films with 5.63% (w/w) of olive leaf extract decreased L. monocytogenes growth rate on inoculated RTE cold-cold-smoked salmon
	[77]



	Citrus extract
	Chitosan
	Listeria innocua
	NA
	[78]



	Kombucha tea extract
	Chitosan
	Staphylococcus aureus

Escherichia coli

Total viable counts

Staphylococcus spp.
	Decrease in total viable and staphylococci counts in minced beef packaged with active films at 4 °C

The shelf life of stored minced beef packaged in chitosan/kombucha tea can be extended up to 6 days
	[79]



	Propolis extract
	Chitosan/cellulose nanoparticles film
	Total viable count

Psychrotrophic bacteria

Pseudomonas spp.

Lactic acid bacteria

Enterobacteriaceae
	Films containing propolis extract 2% and cellulose nanoparticles delayed microbial growth as well as lipid and protein oxidation of minced beef meat
	[80]
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Table 5. Essential oils and their components and their use for the development of active food packaging.
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	Essential oil Component
	Encapsulation Strategy
	Packaging Material
	Food Product
	Antimicrobial Effectiveness in vivo
	Ref.





	Cinnamon
	NA
	Polyvinyl alcohol electrospun fibres
	Strawberries
	When compared to control films, EO films stopped fungal rotting for up to 6 days of storage at 21 °C
	[89]



	Oregano
	Nanoemulsion
	Mandarin fibre edible coating
	Low-fat cut cheese
	Decreased Staphylococcus microbial population by 1.4 and 1.5 log CFU/g in coated cheese pieces containing 2.0% or 2.5% w/w of EO, respectively, during 15 days of refrigerated storage
	[90]



	Lemongrass
	NA
	Zein edible coating
	Cold-smoked sunshine bass fillets
	LG-treated samples reduced L. monocytogenes counts by 2.5 log in polyvinyl chlorine and 1.7 log in vacuum-packaged samples, respectively
	[91]



	Ginger
	NA
	Soy protein/zein electrospun fibres
	Fresh Minas cheese
	Significant reductions of L. monocytogenes were observed on the 3rd and 9th day of storage

At day 9, L. monocytogenes counts decreased from 4.39 log CFU/g to 3.62 log CFU/g for the stored cheeses in the package containing EO-fibres when compared to the cheese stored in the fiberless package at 4 °C
	[92]



	Thymol

Carvacarol
	Montmorillonite
	Themoplastic starch films
	Strawberries
	In vivo additive/synergistic antimicrobial effect over Botrytis cinerea-inoculated strawberries was observed when carvacrol+thymol were both included in the films with respect to the films containing only carvacrol

A drastic reduction of 2.4-fold on EO inhibitory concentration against Botrytis cinerea in strawberries stored at room temperature for 5 days: IC50 values dropped from 14.16 g/kg film (only carvacrol) to 5.90 g/kg film (carvacrol: thymol 50:50) in indirect contact with the films
	[93]



	Paulownia tomentosa
	Chitosan nanoparticles
	Chitosan edible coating
	Pork chop slices
	EO-chitosan coatings decreased microbial growth (total viable counts, Pseudomonads and lactic acid bacteria) on pork chops compared to the control during 16 days of refrigerated storage

Microbial shelf-life extension from 6 to 9 days
	[94]



	Thyme

Cinnamon

Lemongrass
	NA
	Chitosan film
	Peanut kernels
	Peanut kernels packed in chitosan films incorporated with 4% cinnamon EO showed complete inhibition of Aspergillus flavus and Penicillium citrinum growth at 4 and 28 °C after 24 days of storage compared with all other treatments

Thyme and lemongrass EOs were less effective in reducing fungal growth at all concentrations and conditions tested
	[95]



	Chamomile

Ginger
	NA
	Whey protein isolate edible coating
	Rainbow trout fillets
	Significant reduction in total viable counts and psychrotrophs was observed in trout fillets during 15 days of refrigerated storage when coated with ginger and camomile alone or in combination

The best results were obtained when both oils were used in combination

These films did not show a significant reduction in lactic acid bacteria counts and Pseudomonads
	[96]



	Oregano

Tea tree

Peppermint
	Nanoemulsion
	Cellulose nanocrystals (CNCs) reinforced chitosan
	Rice
	Of the 3 combinations tested (thyme:oregano, thyme:tea tree and thyme:peppermint), thyme:oregano nanoemulsions were the most effective against A. niger, A. flavus, A. parasiticus and P. chrysogenum

Thyme:oregano films caused a significant reduction in all moulds growth during the 8 weeks of storage at room temperature

This antifungal activity was improved when active films were used in combination with irradiation treatment
	[97]



	Geraniol

α-Terpilenol
	NA
	Ethylene–vinyl alcohol copolymer (EVOH)
	Fish slices
	On day 8 of 10 days of refrigerated storage, the total viable counts cut down 1.98 ± 0.02 log units for fish samples packaged in geraniol/EVOH films

Active films containing 6% (w/w) of geraniol and terpineol effectively extended shelf life by 4–5 days under cold-storage conditions compared with the control group
	[98]



	Eugenol

Carvacrol

Thymol
	NA
	Zein edible coating
	Melons
	The coating of melons with zein-2% eugenol mixtures caused a marked and similar decrease in both L. innocua and E. coli counts on melon surface during storage at 4 °C for 10 days
	[99]



	Cumin
	NA
	PET films coated with chitosan and alginate
	Chicken meat
	No significant growth reduction was obtained for total viable counts and psychrotrophs in active film chicken samples during refrigerated storage during 6 days
	[100]



	Thyme
	NA
	Silk fibroin electrospun fibres
	Poultry (chicken and duck) meat
	Active films caused a 2-fold reduction on Salmonella Typhimurium on chicken and duck meat stored at 25 and 4 °C

Films antimicrobial activity was enhanced when combined with cold plasma
	[101]



	EO mix (carvacrol:oregano:cinnamon 70:10:20)
	Cyclodextrin

Halloysite tubes
	Cardboard
	Tomatoes
	Decay incidence of tomatoes within cyclodextrin−EOs boxes was reduced from 9−15% to 2% after a storage period of 6 days/8 °C+12 days/25 °C
	[102]



	Carvacrol
	Halloysite tubes
	Chitosan-coated polyethylene
	Chicken meat
	Active films caused a 1.5 log reduction on total viable counts on chicken meat surface following 24h of incubation at 4 °C
	[103]
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Table 6. The use of metal nanoparticles in antimicrobial food packaging.
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	Metal NP.
	Packaging Material
	Food Product
	Antimicrobial Effectiveness
	Ref.





	Bimetallic silver–copper (Ag–Cu)
	Polylactide (PLA) + cinnamon EO films
	Chicken meat
	PLA films with 4% of bimetallic NPs reduced L. monocytogenes, S. typhimurium counts by 1 log CFU/g and C. jejuni counts by 3 log CFU/g during refrigerated storage for 150 days
	[107]



	Zinc oxide (ZnO)
	Starch films
	Fresh-cut mushrooms
	Films with 3% ZnO exhibited antimicrobial activity against L. monocytogenes, resulting in a reduction of 0.86 log CFU/g after 6 days of storage at 4 °C in polypropylene containers
	[111]



	Titanium oxide (TiO2)
	Low-density polyethylene (LDPE)
	Fresh minced meat
	ZnO nanoparticle (2%)-coated LDPE films were identified as the best case to improve shelf life and prevent E. coli growth in fresh calf minced meat during refrigerated storage for 72 h
	[112]



	Silver
	Polyvinyl alcohol-montmorillonite blend
	Chicken sausages
	Marked reduction (qualitative) of total viable cell counts in chicken sausage samples stored at 4 °C for 4 days
	[113]



	Silver
	Polyethylene (PE) + clay blend
	Chicken breast
	Films containing 5% Ag and 5% TiO2 had the greatest effect on decreasing the microbial load of the chicken sample contaminated with S. aureus for 5 days at 4 °C

Films were more effective in inhibiting the growth of S. aureus than E. coli
	[114]



	Zinc oxide
	Polylactide/poly(ε-caprolactone) + clove EO
	Scrambled eggs
	The efficacy of the composite films was verified against S. aureus and E. coli inoculated in scrambled egg, and results indicated that the PLA/PEG/PCL/ZnO/CEO film exhibited the highest antibacterial activity during 21 days storage at 4 °C
	[115]



	Zinc oxide
	Gelatin-chitosan nanofibers composite film
	Chicken

Cheese
	The results showed that the wrapping with nanocomposite film significantly decreased the growth of inoculation bacteria in chicken fillet and cheese samples stored at 4 °C for 12 days

S. aureus and E. coli cell counts (chicken) were reduced by 2 log CFU/g during storage, whereas in cheese samples, P. aeruginosa and E. coli were reduced by only 1 log CFU/g
	[116]
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Table 7. Antimicrobial packaging materials loaded with antimicrobial nanoemulsions or microemulsions and their application in food.
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Packaging Material

	
Encapsulated Antimicrobial

	
Surfactant

	
Food Application

	
Antimicrobial Activity

	
Ref.






	
Carboxymethyl chitosan film

	
Carvacrol

	
fatty alcohol polyoxyethylene ether carboxylic acid

	
Wheat bread exposed to active films without direct contact

	
Reduction of aerobic mesophilic bacteria, mould and yeast growth

	
[138]




	
Chitosan film or edible coating

	
Allyl isothiocyanate (AIT) or lauric arginate ester (LAE)

	
Corn-bio-fibre gum

	
Packaged ready to eat deli turkey

	
Inhibition of inoculated Listeria innocua growth by AIT or LAE

	
[134]




	

	
Coated strawberries

	
Reduction of the survival of inoculated Escherichia coli O157:H7 and Salmonella spp., especially with AIT films




	
Quinoa/chitosan edible coating

	
Thymol

	
Tween 80/Miglyol 812

	
Coated strawberries

	
Reduction of yeast and fungal growth

	
[139]




	
Sodium caseinate edible coating

	
Ginger EO

	
Tween 80

	
Coated chicken fillets

	
Reduction of aerobic psychrophilic bacteria, moulds and yeasts growth

	
[140]




	
Reinforced chitosan films with cellulose nanocrystals

	
Thyme-oregano EO mixture

	
Lecithin and Tween 80

	
Packaged rice

	
Inhibition of fungal growth

The inhibitory effect was increased when gamma irradiation was also applied

	
[97]




	
Soybean polysaccharide

edible coating

	
Cinnamon EO

	
Soy protein isolate and lecithin

	
Coated beef meat

	
Reduction of aerobic psychrophilic bacteria, moulds and yeasts growth

	
[141]




	
Jujube gum (JG) edible coating

	
Nettle EO

	
Tween 40

	
Coated beluga sturgeon fillets

	
Reduction in total and psychrotrophic bacterial counts

	
[142]




	
Sodium alginate and mandarin fibre edible coating

	
Oregano EO

	
Tween 80

	
Coated low-fat cheese pieces

	
Reduction of psychrophilic bacteria growth and inhibition of mould and yeast growth

Lower Staphylococcus aureus survival in inoculated cheese

	
[90]




	
Pectin edible coating

	
Cinnamon bark and garlic EOs and curcumin

	
Tween 80

	
Coated breast chicken fillet

	
Reduction of total and psychrophilic bacteria, yeast and mould growth

	
[143]
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Table 8. Pickering emulsions used in antimicrobial packaging as encapsulating strategy.
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	Emulsified Antimicrobial
	Stabilizing Solid Particles
	Antimicrobial Activity
	Ref.





	Rosemary EO
	Carboxymethyl cellulose/polyvinyl alcohol
	In vitro antifungal activity against Penicillium digitatum

Inhibition of fungal growth in packaged bread slices
	[155]



	Thymol
	Zein/chitosan complex particles
	Slight in vitro antimicrobial activity against Escherichia coli and Staphylococcus aureus
	[156]



	Marjoran EO
	Whey protein isolate/inulin
	In vitro antimicrobial activity against Escherichia coli and Staphylococcus aureus
	[154]



	Oregano EO
	Soluble soybean polysaccharide/soluble soy protein
	In vitro antimicrobial activity against Escherichia coli O157:H7, Pseudomonas aeruginosa and Staphylococcus aureus
	[157]
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Table 9. Electrospun core-shell nanofibers loaded with antimicrobial compounds.
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	Antimicrobial
	Nanofiber Material
	Technique of Fabrication
	Antimicrobial Release Performance
	Antimicrobial Action
	Ref.





	Orange EO
	Zein prolamine
	Coaxial electrospinning
	Higher retention of EO in the film as increasing the amount of zein prolamine
	Antimicrobial activity in vitro against Escherichia coli
	[163]



	Curcumin
	poly(vinyl alcohol) - chitosan
	Coaxial electrospinning
	Extended release of curcumin from the material
	Inhibition of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis growth in vitro
	[164]



	Phytoncide
	poly(vinyl alcohol)
	Emulsion electrospinning
	Sustained release of phytoncide from the film over 14 days
	Reduction of Staphylococcus aureus and Escherichia coli in vitro
	[165]



	Cinnamon
	Polyvinylpyrrolidone
	Emulsion electrospinning
	ND
	Antibacterial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans in vitro
	[166]



	Thymol
	Poly(lactide-co-glycolide)
	Coaxial electrospinning
	ND
	Reduction of microbial growth and increase the shelf life of strawberries packaged in the active material
	[167]



	Eugenol
	Polyvinyl pyrrolidone (core) and shellac (shell)
	Coaxial electrospinning
	Slower release of thymol from the film
	Extension of shelf life of strawberries packaged with the active fibrous film
	[168]
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Table 10. Electrospun nanofibers loaded with antimicrobial inclusion complexes.
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	Nanofiber Material
	Inclusion Complex
	Antimicrobial Activity
	Reference





	Gelatine
	Thyme EO/β-cyclodextrin ε-polylysine
	Reduction in bacterial counts in coated chicken meat without adverse impact on colour, texture and sensory evaluation
	[177]



	Polyvinyl alcohol
	Cinnamon EO/β-cyclodextrin
	Higher in vitro antibacterial against Staphylococcus aureus and Escherichia coli than nanofibers without cyclodextrins

Reduction of bacterial counts and increasing of shelf life of wrapped mushrooms
	[178]



	Poly(ethylene oxide)
	Tea tree oil/β-cyclodextrin
	Antibacterial activity against Escherichia coli O157:H7

After plasma treatment the film show enhanced antibacterial activity due a higher release rate
	[177]



	Zein
	Eucalyptus EO/β-cyclodextrin
	In vitro antimicrobial activity Staphylococcus aureus and Listeria monocytogenes
	[179]



	Zein
	Thymol/γ-Cyclodextrin
	Higher antimicrobial activity Escherichia coli and Staphylococcus aureus in vitro than nanofibers with non-encapsulated thymol

Reduction of bacterial count in meat stored up to 5 days at 4 °C
	[171]



	Polylactic acid
	Cinnamon EO/β-cyclodextrin
	Antimicrobial activity against Escherichia coli and Staphylococcus aureus in vitro and efficacy in reducing bacterial counts in packaged pork film
	[176]



	Polyvinyl alcohol
	Cinnamon EO/β-cyclodextrin
	Antimicrobial activity against Escherichia coli and Staphylococcus aureus in vitro and extension of the shelf life of packaged strawberries
	[89]
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Table 11. Application of antimicrobial packaging materials containing loaded halloysites nanotubes to food applications.
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	Encapsulated Antimicrobial
	Packaging Material
	Food Application
	Results
	Ref.





	Carvacrol
	Polyamide film
	Cherry tomatoes, lychee and grapes packaged in bags
	Decay reduction in all foods except in cherry tomatoes packed in high concentrations of carvacrol
	[191]



	Carvacrol
	Low density polyethylene film
	Inoculated sliced wheat bread exposed to active films in a vapour phase assay
	Inhibition of fungal growth after 11 days at 25 °C

Films containing encapsulated carvacrol showed better performance than those without encapsulation
	[194]



	Lysozyme
	Polyamide nanofibers
	Chicken slices were stored on pads of active nanofibers
	Reduction of Pseudomonas growth by 1-2 log CFU/g during storage at 4 °C
	[24]



	carvacrol
	Polyethylene coated with chitosan loaded with HNTs
	Wrapped chicken meat
	Reduction of bacterial counts in 1.4 log CFU/cm2 (1 log more than films without HNTs)
	[103]



	Carvacrol and thymol mixtures
	Low density polyethylene film
	Inoculated and diluted hummus exposed to active films in a headspace assay
	Inhibition of Escherichia coli growth after 22 h at 27 °C
	[190]



	Carvacrol
	Low density polyethylene/poly ethylene vinyl alcohol layered films
	Inoculated cherry tomato exposed to active films using a packaged simulation
	Inhibition of Alternaria alternata and Rhizopus spp. growth after 4 days at 23 °C
	[195]



	Carvacrol, oregano and cinnamon EOs mixture
	cardboard box coated with a lacquer loaded with HNTs
	Fresh tomatoes stored in active cardboard boxes
	Some microbial reduction after 6 days of storage
	[102]
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Table 12. Use of antimicrobial materials containing antimicrobial liposomes in food applications.
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	Antimicrobial
	Liposomes
	Packaging Material
	Food Application
	Antimicrobial Activity
	Reference





	Escherichia coli 0157:H7 phage
	Lecithin and cholesterol
	Chitosan film
	Wrapped beef
	Extended antibacterial activity against Escherichia coli O157:H7 in inoculated beef Extension of beef shelf life without affect sensorial properties
	[201]



	Artemisia annua oil
	Lecithin and cholesterol
	Chitosan edible film
	Coated cherry tomatoes
	Escherichia coli 0157:H7 growth reduction without changes in overall like mouthfeel and texture Changes in the colour were observed
	[202]



	Cinnamon EO
	Lecithin, cholesterol and casein
	Poly(ethylene oxide) nanofibers
	Packaged beef
	Reduction of inoculated Bacillus cereus with no impact on sensorial properties
	[203]



	Nisin or nisin-silica
	Lecithin and cholesterol
	Chitosan edible coating
	Coated cheese
	Extended antibacterial activity against inoculated Listeria monocytogenes maintaining the sensory properties of cheese
	[204]



	Cinnamon
	Lecithin
	PVA electrospun nonwoven
	Packaged shrimp
	Antibacterial activity against total bacteria and Pseudomonas aeruginosa
	[205]



	Laurel EO and lignin-silver nanoparticles
	Phosphatidyl choline and choresterol
	Chitosan coated in polyethylene films
	Packaged pork meat
	Increase of pork meat self-life by reduction of TVB-N values and keeping the quality of pork
	[206]
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Table 13. Antimicrobial materials containing active nanoparticles or microcapsules applied in food.






Table 13. Antimicrobial materials containing active nanoparticles or microcapsules applied in food.





	Particle Matrix
	Encapsulated Antimicrobial
	Antimicrobial Packaging
	Food Application
	Results
	Reference





	Chitosan microcapsules
	Sorbic acid
	Ethylene vinyl alcohol copolymer/polyethylene terephthalate film
	Packaged snakehead
	Increased the shelf life 4 days by reducing total volatile counts
	[225]



	Chitosan microcapsules
	Grape seed extract and carvacrol
	Chitosan films
	Packaged salmon
	Lower total volatile basic nitrogen and bacterial counts for a longer period of time.
	[226]



	Chitosan microcapsules
	Cinnamon EO
	Layer by layer edible coating of alginate and chitosan loaded with cinnamon microcapsules
	Coated mangoes
	Extension of mango shelf life. Reduction of black spots produced by moulds
	[227]



	Poly-γ-glutamic acid/chitosan nanoparticles
	Nisin
	Polyethylene oxide nanofibers coated in aluminium foil
	Packaged cheese
	Antibacterial activity against Listeria monocytogenes on cheese, without impact on the sensory quality
	[228]



	Chitosan nanoparticles
	Clove oil
	Krafted Gelatine nanofibers coating
	Packaged cucumber
	Inhibition of Escherichia coli O157:H7 biofilms in cucumber
	[220]



	Zein nanoparticles
	Silymarin
	Bacterial cellulose nanofiber films
	Packaged salmon
	Reduction of total volatile basic nitrogen contents during storage
	[223]



	Chitosan nanoparticles
	Moringa oil
	Gelatin nanofibers
	Packaged cheese
	Antibacterial effect against Listeria monocytogenes and Staphylococcus aureus on cheese at 4 °C and 25 °C without impact on the surface colour and sensory quality
	[221]
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