Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems
Abstract
:1. Introduction
2. Protein Characteristics
2.1. Molecular Dimensions
2.2. Electrostatic Effects
2.3. Polarity, Solubility, and Surface Activity
2.4. Stability
3. Hurdles to the Oral Delivery of Proteins
3.1. Delivery Vehicle Compatibility
3.2. Stability in Gastrointestinal Tract
3.3. Absorption from Gastrointestinal Tract
3.4. Product Requirements
4. Characteristics of Colloidal Particles
4.1. Composition
4.2. Particle Morphology and Dimensions
4.3. Interfacial Characteristics
4.4. State of Aggregation
5. Functional Performance of Colloidal Particles
5.1. Loading Capacity and Encapsulation Efficiency
5.2. Retention/Release
5.2.1. Simple Diffusion
5.2.2. Swelling
5.2.3. Molecular Interactions
5.2.4. Particle Erosion or Dissociation
5.3. Protection
5.4. Particle Stability
5.5. Particle Permeability
5.6. Potency and Half-Life
6. Delivery System Selection
6.1. Microemulsions and Emulsified Microemulsions
6.2. Emulsions
6.3. Solid Lipid Particles
6.4. Liposomes
6.5. Biopolymer Microgels
7. Applications
7.1. Hormones
7.2. Digestive Enzymes
7.3. Vaccines
7.4. Antimicrobials
7.5. ACE Inhibitors
8. Conclusions
Funding
Conflicts of Interest
References
- Ibraheem, D.; Elaissariand, A.; Fessi, H. Administration strategies for proteins and peptides. Int. J. Pharm. 2014, 477, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Teyand, B.T.; Chan, E.S. Particlede signs for the stabilization and controlled-delivery of protein drugs by biopolymers: A case study on insulin. J. Control. Release 2014, 186, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.H. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J. Control. Release 2014, 193, 324–340. [Google Scholar] [CrossRef]
- Ramirez, J.E.V.; Sharpeand, L.A.; Peppas, N.A. Current state and challenges in developing or alvaccines. Adv. Drug Deliv. Rev. 2017, 114, 116–131. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstadand, L.; Bjorn, C. Antimicro bial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Zou, L.; Zhang, R.; Salvia-Trujillo, L.; Kumosaniand, T.; Xiao, H. Enhancing nutraceutical performance using excipient foods: Designing food structures and composition stoin crease bioavail ability. Compr. Rev. Food Sci. Food Saf. 2015, 14, 824–847. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Bogh, K.L.; Madsen, C.B. Food Allergens: Is There A Correlation between Stability to Digestion and Allergenicity? Crit. Rev. Food Sci. Nutr. 2016, 56, 1545–1567. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.L.; Garcia, A.J. Methods for Generating Hydrogel Particles for Protein Delivery. Ann. Biomed. Eng. 2016, 44, 1946–1958. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, S.J.; Kwag, D.S.; Kim, S.; Park, J.; Youn, Y.S.; Baeand, Y.H.; Lee, E.S. Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs. Curr. Pharm. Des. 2015, 21, 3097–3110. [Google Scholar] [CrossRef]
- Cao, S.J.; Xu, S.; Wang, H.M.; Ling, Y.; Dong, J.H.; Xiaand, R.D.; Sun, X.H. Nanoparticles: Oral Delivery for Proteinand Peptide Drugs. AAPS Pharmscitech 2019, 20, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: Areview. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Velikov, K. Colloidal delivery systems in foods: Ageneral comparison with oral drug delivery. Lwt-Food Sci. Technol. 2011, 44, 1958–1964. [Google Scholar] [CrossRef]
- Kessel, A.; Ben-Tal, N. Introduction to Proteins: Structure, Function, and Motion; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Mezzenga, R.; Fischer, P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Rep. Progress. Phys. 2013, 76, 046601. [Google Scholar] [CrossRef] [PubMed]
- Nicoud, L.; Owczarz, M.; Arosioand, P.; Morbidelli, M. Amultiscale view of the rapeutic protein aggregation: Acolloid science perspective. Biotechnol. J. 2015, 10, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.G. Mechanism of protein extraction from the solid state by water-in-oil microemulsions. Biotechnol. Bioeng. 1997, 53, 583–593. [Google Scholar] [CrossRef]
- Van Leusden, P.; den Hartog, G.J.M.; Bast, A.; Postema, M.; Lindenand, E.V.; Sagis, L.M.C. Permeation of probe molecules into alginate microbeads: Effect of salt and processing. Food Hydrocoll. 2017, 73, 255–261. [Google Scholar] [CrossRef]
- Rahmani, V.; Elshereef, R.; Sheardown, H. Optimizing electro static interactions for controlling there lease of proteins from anionic and cationically modified alginate. Eur. J. Pharm. Biopharm. 2017, 117, 232–243. [Google Scholar] [CrossRef]
- Longo, G.S.; Szleifer, I. Adsorption and protonation of peptides and proteinsinp Hresponsivegels. J. Phys. D-Appl. Phys. 2016, 49, 323001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, R.J.; Chen, L.; Tongand, Q.Y.; McClements, D.J. Designing hydrog elparticles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. Eur. Polym. J. 2015, 72, 698–716. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.J.; Zouand, L.Q.; McClements, D.J. Proteinen cap sulationinal ginatehy drogel beads: Effect of pHonmicrogel stability, protein retention and protein release. Food Hydrocoll. 2016, 58, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Schillemans, J.; Henninkand, W.E.; van Nostrum, C.F. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels. Eur. J. Pharm. Biopharm. 2010, 76, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kayitmazer, A.B.; Seeman, D.; Minsky, B.B.; Dubinand, L.; Xu, Y.S. Protein-poly electroly teinter actions. Soft Matter 2013, 9, 2553–2583. [Google Scholar] [CrossRef]
- Kizilay, E.; Kayitmazer, A.B.; Dubin, L. Complex ation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011, 167, 24–37. [Google Scholar] [CrossRef]
- Cooper, C.L.; Dubin, L.; Kayitmazerand, A.B.; Turksen, S. Polyelectrolyte-protein complexes. Curr. Opin. Colloid Interface Sci. 2005, 10, 52–78. [Google Scholar] [CrossRef]
- Blocher, W.C.; Perry, S.L. Design rules for encapsulating protein sin to complex coacervates. Soft Matter 2019, 15, 3089–3103. [Google Scholar] [CrossRef] [Green Version]
- Damodaran, S. Amino Acids, Peptides, and Proteins. In Fennema’s Food Chemistry; amodaranand, S.D., Parkin, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dickinson, E. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf. B-Biointerfaces 1999, 15, 161–176. [Google Scholar] [CrossRef]
- Arakawa, T.; Prestrelski, S.J.; Kenneyand, W.C.; Carpenter, J.F. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001, 46, 307–326. [Google Scholar] [CrossRef]
- Balcao, V.M.; Vila, M. Structural and functional stabilization of protein entities: state-of-the-art. Adv. Drug Deliv. Rev. 2015, 93, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Bodduand, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013, 447, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, P.; Artursson, P. Oral absorption of peptides and nano particles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev. 2016, 106, 256–276. [Google Scholar] [CrossRef] [PubMed]
- Foegeding, E.A.; Davis, J. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Contrerasand, M.D.; Recio, I. Antihy pertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Fandino, R.; Otteand, J.; van Camp, J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihy pertensive and ACE-inhibitory activity. Int. Dairy J. 2006, 16, 1277–1293. [Google Scholar] [CrossRef]
- Rahaman, T.; Vasiljevicand, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trendsin Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Schubert, M.L. Gastricsecretion. Curr. Opin. Gastroenterol. 2014, 30, 578–582. [Google Scholar] [CrossRef]
- Sarkar, A.; Goh, K.K.T.; Singhand, R.; Singh, H. Behaviour of anoil-in-water emulsion stabilized by β-lactoglobulin in an invitro gastric model. Food Hydrocoll. 2009, 23, 1563–1569. [Google Scholar] [CrossRef]
- Moreno, F.J. Gastrointestinal digestion of food allergens: Effecton their allergenicity. Biomed. Pharmacother. 2007, 61, 50–60. [Google Scholar] [CrossRef]
- Roberts, N.B. Reviewarticle: human pepsins-their multiplicity, function and role inreflux disease. Aliment. Pharmacol. Ther. 2006, 24, 2–9. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R. Disintegration of solid foods in humans tomach. J. Food Sci. 2008, 73, R67–R80. [Google Scholar] [CrossRef]
- Grundy, M.M.L.; Edwards, C.H.; Mackie, A.R.; Gidley, M.J.; Butterworth, J.; Ellis, R. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 2016, 116, 816–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capuano, E. The behavior of dietaryfiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cone, R.A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ensign, L.M.; Coneand, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.K.; Wang, Y.Y.; Wirtzand, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Maher, S.; Brayden, D.J.; Casettariand, L.; Illum, L. Application of Permeation Enhancersin Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Tuvia, S.; Pelled, D.; Marom, K.; Salama, P.; Levin-Arama, M.; Karmeli, I.; Idelson, G.H.; Landauand, I.; Mamluk, R. A Novel Suspension Formulation Enhances Intestinal Absorption of Macromolecules Via Transientand Reversible Transport Mechanisms. Pharm. Res. 2014, 31, 2010–2021. [Google Scholar] [CrossRef] [Green Version]
- Twarog, C.; Fattah, S.; Heade, J.; Maher, S.; Fattaland, E.; Brayden, D.J. Intestinal Permeation Enhancers or Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C-10). Pharmaceutics 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Buckley, S.T.; Baekdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Ronne, J.; Madsen, K.G.; Scheele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular stomach absorption of aderivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef]
- Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936. [Google Scholar] [CrossRef]
- Schleh, C.; Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schaffler, M.; Schmid, G.; Simonand, U.; Kreyling, W.G. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012, 6, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Delivery by Design (DbD): A Standardized Approachto the Development of Efficacious Nanoparticle- and Microparticle- Based Delivery Systems. Compr. Rev. Food Sci. Food Saf. 2017, 17, 200–219. [Google Scholar] [CrossRef] [Green Version]
- Aditya, N.; Espinosa, Y.G.; Norton, I.T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol. Adv. 2017, 35, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 2015, 219, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Simoes, L.D.S.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, O.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Li, B.S.; Tang, C.H. Nanocomplexation between Curcumin and Soy Protein Isolate: Influence on Curcumin Stability/Bioaccessibility and in Vitro Protein Digestibility. J. Agric. Food Chem. 2015, 63, 3559–3569. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Perez-Ciordia, S.; Marin-Arroyo, M.R.; McClements, D.J. Improving Resveratrol Bioaccessibility Using Biopolymer Nanoparticles and Complexes: Impact of Protein-Carbohydrate Maillard Conjugation. J. Agric. Food Chem. 2015, 63, 3915–3923. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle- and Microparticle-based delivery systems: Encapsulation, Protection, and Release of Active Components; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Lian, G.; Malone, M.E.; Homan, J.E.; Norton, I.T. A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles. J. Control. Release 2004, 98, 139–155. [Google Scholar] [CrossRef]
- Chan, A.W.; Neufeld, R.J. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials 2009, 30, 6119–6129. [Google Scholar] [CrossRef]
- Zhang, Y.; Amsden, B.G. Application of an obstruction-scaling model to diffusion of vitamin B-12 and proteins in semidilute alginate solutions. Macromolecules 2006, 39, 1073–1078. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Quesada-Perez, M.; Maroto-Centeno, J.A.; Forcada, J.; Hidalgo-Alvarez, R. Gel swelling theories: The classical formalism and recent approaches. Soft Matter 2011, 7, 10536–10547. [Google Scholar] [CrossRef]
- Bannikova, A.; Rasumova, L.; Evteev, A.; Evdokimov, I.; Kasapis, S. Protein-loaded sodium alginate and carboxymethyl cellulose beads for controlled release under simulated gastrointestinal conditions. Int. J. Food Sci. Technol. 2017, 52, 2171–2179. [Google Scholar] [CrossRef]
- Zeeb, B.; Saberi, A.H.; Weiss, J.; McClements, D.J. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: Impact of emulsifier type and pH. Soft Matter 2015, 11, 2228–2236. [Google Scholar] [CrossRef]
- Freire, A.C.; Fertig, C.C.; Podczeck, F.; Veiga, F.; Sousa, J. Starch-based coatings for colon-specific drug delivery. Part I: The influence of heat treatment on the physico-chemical properties of high amylose maize starches. Eur. J. Pharm. Biopharm. 2009, 72, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 2017, 229, 542–552. [Google Scholar] [CrossRef]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef]
- Chung, C.; McClements, D.J. Controlling microstructure and physical properties of biopolymer hydrogel particles through modulation of electrostatic interactions. J. Food Eng. 2015, 158, 13–21. [Google Scholar] [CrossRef]
- Azarikia, F.; Wu, B.C.; Abbasi, S.; McClements, D.J. Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability. Food Res. Int. 2015, 78, 18–26. [Google Scholar] [CrossRef]
- Wu, B.C.; McClements, D.J. Development of hydrocolloid microgels as starch granule mimetics: Hydrogel particles fabricated from gelatin and pectin. Food Res. Int. 2015, 78, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.C.; McClements, D.J. Modulating the morphology of hydrogel particles by thermal annealing: Mixed biopolymer electrostatic complexes. J. Phys. D-Applied Phys. 2015, 48, 434002. [Google Scholar] [CrossRef]
- Bak, A.; Ashford, M.; Brayden, D.J. Local delivery of macromolecules to treat diseases associated with the colon. Adv. Drug Deliv. Rev. 2018, 136, 2–27. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.; Estevez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Zhang, W.G.; Xiao, S.; Ahn, D.U. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, F.; Zhang, R.J.; Deng, Z.Y.; McClements, D.J. Encapsulation of Pancreatic Lipase in Hydrogel Beads with Self-Regulating Internal pH Microenvironments: Retention of Lipase Activity after Exposure to Gastric Conditions. J. Agric. Food Chem. 2016, 64, 9616–9623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, R.J.; McClements, D.J. Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity. Food Hydrocoll. 2017, 67, 85–93. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Modulation of globular protein functionality by weakly interacting cosolvents. Crit. Rev. Food Sci. Nutr. 2002, 42, 417–471. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Trojer, M.A.; Nordstierna, L.; Nordin, M.; Nyden, M.; Holmberg, K. Encapsulation of actives for sustained release. Phys. Chem. Chem. Phys. 2013, 15, 17727–17741. [Google Scholar] [CrossRef] [PubMed]
- Blass, B.E. Basic Principles of Drug Discovery and Development; Academic Press: London, UK, 2015. [Google Scholar]
- Moroz, E.; Matoori, S.; Leroux, J.C. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Garti, N.; Aserin, A. Micelles and microemulsions as food ingredient and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Garti, N., McClements, D.J., Eds.; Woodhead Publishing: London, UK, 2012; pp. 211–251. [Google Scholar]
- Spernath, A.; Aserin, A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci. 2006, 128, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, D.R.; Cespi, M.; Pucciarelli, S.; Vincenzetti, S.; Casettari, L.; Lam, J.K.W.; Logrippo, S.; Canala, E.; Soliman, M.E.; Bonacucina, G.; et al. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability. Curr. Pharm. Biotechnol. 2017, 18, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yokoyama, W.; Xu, S.N.; Zhu, S.; Ma, J.G.; Zhong, F. Formation and stability of W/O microemulsion formed by food grade ingredients and its oral delivery of insulin in mice. J. Funct. Foods 2017, 30, 134–141. [Google Scholar] [CrossRef]
- Rairkar, M.E.; Hayes, D.G.; Harris, J.M. Solubilization of enzymes in water-in-oil microemulsions and their rapid and efficient release through use of a pH-degradable surfactant. Biotechnol. Lett. 2007, 29, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Engelskirchen, S.; Maurer, R.; Levy, T.; Berghaus, R.; Auweter, H.; Glatter, O. Highly concentrated emulsified microemulsions as solvent-free plant protection formulations. J. Colloid Interface Sci. 2012, 388, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Yaghmur, A.; de Campo, L.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 2005, 21, 569–577. [Google Scholar] [CrossRef]
- Chemelli, A.; Maurer, M.; Geier, R.; Glatter, O. Optimized Loading and Sustained Release of Hydrophilic Proteins from Internally Nanostructured Particles. Langmuir 2012, 28, 16788–16797. [Google Scholar] [CrossRef]
- Mahmood, A.; Bernkop-Schnurch, A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv. Drug Deliv. Rev. 2019, 142, 91–101. [Google Scholar] [CrossRef]
- AboulFotouh, K.; Allam, A.A.; El-Badry, M.; El-Sayed, A.M. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. Colloids Surf. B-Biointerfaces 2018, 167, 82–92. [Google Scholar] [CrossRef]
- Leonaviciute, G.; Bernkop-Schnurch, A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin. Drug Deliv. 2015, 12, 1703–1716. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Niu, Z.G.; Conejos-Sanchez, I.; Griffin, B.T.; O’Driscoll, C.M.; Alonso, M.J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev. 2016, 106, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Mutaliyeva, B.; Grigoriev, D.; Madybekova, G.; Sharipova, A.; Aidarova, S.; Saparbekova, A.; Miller, R. Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 521, 147–152. [Google Scholar] [CrossRef]
- Cardenas-Bailon, F.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Microencapsulation of insulin using a W/O/W double emulsion followed by complex coacervation to provide protection in the gastrointestinal tract. J. Microencapsul. 2015, 32, 308–316. [Google Scholar] [CrossRef]
- Cournarie, F.; Savelli, M.; Rosilio, W.; Bretez, F.; Vauthier, C.; Grossiord, J.L.; Seiller, M. Insulin-loaded W/O/W multiple emulsions: Comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur. J. Pharm. Biopharm. 2004, 58, 477–482. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res. Int. 2013, 52, 64–74. [Google Scholar] [CrossRef]
- Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 2007, 12, 213–220. [Google Scholar] [CrossRef]
- Muller, R.H.; Mader, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Wissing, S.A.; Kayser, O.; Muller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 1257–1272. [Google Scholar] [CrossRef]
- Ansari, M.J.; Anwer, M.K.; Jamil, S.; Al-Shdefat, R.; Ali, B.E.; Ahmad, M.M.; Ansari, M.N. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv. 2016, 23, 1972–1979. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, J.F.; Gonzalez-Mira, E.; Martins-Lopes, P.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Souto, E.B. A novel lipid nanocarrier for insulin delivery: Production, characterization and toxicity testing. Pharm. Dev. Technol. 2013, 18, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Martins, S.; Ferreira, D.; Souto, E.B. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomed. 2007, 2, 743–749. [Google Scholar]
- Gallarate, M.; Trotta, M.; Battaglia, L.; Chirio, D. Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J. Microencapsul. 2009, 26, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Maherani, B.; Arab-Tehrany, E.; Mozafari, M.R.; Gaiani, C.; Linder, M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci. 2011, 7, 436–452. [Google Scholar] [CrossRef]
- Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327. [Google Scholar] [CrossRef]
- Sawant, R.R.; Torchilin, V. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 2010, 6, 4026–4044. [Google Scholar] [CrossRef]
- Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Akhlaghi, M.F. Potential of Liposomes for Enhancement of Oral Drug Absorption. Curr. Drug Deliv. 2017, 14, 289–303. [Google Scholar] [CrossRef]
- Du, A.W.; Stenzel, M.H. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014, 15, 1097–1114. [Google Scholar] [CrossRef]
- Taylor, T.M.; Davidson, M.; Bruce, B.D.; Weiss, J. Liposomal nanocapsules in food science and agriculture. Criti. Rev. Food Sci. Nutr. 2005, 45, 587–605. [Google Scholar] [CrossRef]
- Silva, A.C.; Lopes, C.M.; Lobo, J.M.S.; Amaral, M.H. Delivery Systems for Biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers. Curr. Pharm. Biotechnol. 2015, 16, 955–965. [Google Scholar] [CrossRef]
- Rekha, M.R.; Sharma, C. Oral delivery of therapeutic protein/peptide for diabetes-Future perspectives. Int. J. Pharm. 2013, 440, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Karamanidou, T.; Bourganis, V.; Kammona, O.; Kiparissides, C. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine 2016, 11, 3009–3032. [Google Scholar] [CrossRef] [PubMed]
- Moeller, E.H.; Holst, B.; Nielsen, L.H.; Pedersen, S.; Ostergaard, J. Stability, liposome interaction, and in vivo pharmacology of ghrelin in liposomal suspensions. Int. J. Pharm. 2010, 390, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; McClements, D.J.; Udenigwe, C.C. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 2016, 213, 143–148. [Google Scholar] [CrossRef]
- Kisel, M.A.; Kulik, L.N.; Tsybovsky, I.S.; Vlasov, A.; Vorob’yov, M.S.; Kholodova, E.A.; Zabarovskaya, Z.V. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: Studies in the rat. Int. J. Pharm. 2001, 216, 105–114. [Google Scholar] [CrossRef]
- Matalanis, A.; Jones, O.G.; McClements, D.J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 2011, 25, 1865–1880. [Google Scholar] [CrossRef] [Green Version]
- Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- McClements, D.J. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocoll. 2017, 68, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, R.; Chen, L.; McClements, D.J. Encapsulation of lactase (β-galactosidase) into k-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem. 2016, 200, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, R.J.; Sun, Q.C.; Park, Y.; McClements, D.J. Confocal fluorescence mapping of pH profile inside hydrogel beads (microgels) with controllable internal pH values. Food Hydrocoll. 2017, 65, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Q.H.; Lu, J.B.; Hong, A.; Zhong, D.G.; Xie, S.S.; Liu, Q.; Huang, Y.X.; Shi, Y.F.; He, L.M.; Xue, W. Preparation and characterization of PEM-coated alginate microgels for controlled release of protein. Biom. Mater. 2012, 7, 035012. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.Y.; Zhang, Z.; Zhang, A.; Chen, L.; He, C.L.; Zhuang, X.L.; Chen, X.S. Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr. Polym. 2012, 89, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Santalices, I.; Gonella, A.; Torres, D.; Alonso, M.J. Advances on the formulation of proteins using nanotechnologies. J. Drug Deliv. Sci. Technol. 2017, 42, 155–180. [Google Scholar] [CrossRef]
- Geraldes, D.C.; Beraldo-de-Araujo, V.L.; Pardo, B.O.; Pessoa, A.; Stephano, M.A.; de Oliveira-Nascimento, L. Protein drug delivery: Current dosage form profile and formulation strategies. J. Drug Target. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Preat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006, 116, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, K.; Ganguly, K.; Nadagouda, M.N.; Aminabhavi, T.M. Polymeric hydrogels for oral insulin delivery. J. Control. Release 2013, 165, 129–138. [Google Scholar] [CrossRef]
- Ismail, R.; Csoka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs-Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm. 2017, 115, 257–267. [Google Scholar] [CrossRef]
- Nur, M.; Vasiljevic, T. Can natural polymers assist in delivering insulin orally? Int. J. Biol. Macromol. 2017, 103, 889–901. [Google Scholar] [CrossRef]
- Fonte, P.; Araujo, F.; Silva, C.; Pereira, C.; Reis, S.; Santos, H.A.; Sarmento, B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv. 2015, 33, 1342–1354. [Google Scholar] [CrossRef]
- Cardenas-Bailon, F.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Microencapsulation techniques to develop formulations of insulin for oral delivery: A review. J. Microencapsul. 2013, 30, 409–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W.; Lv, P.; Wang, L.; Ma, G. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur. J. Pharm. Biopharm. 2011, 77, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.; Abrahim-Vieira, B.; Oliveira, C.; Fonte, P.; Souza, A.M.T.; Lira, T.; Sequeira, J.A.D.; Rodrigues, C.R.; Cabral, L.M.; Sarmento, B.; et al. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int. J. Nanomed. 2015, 10, 5865–5880. [Google Scholar]
- Erel, G.; Kotmakci, M.; Akbaba, H.; Karadagli, S.S.; Kantarci, A.G. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J. Drug Deliv. Sci. Technol. 2016, 36, 161–167. [Google Scholar] [CrossRef]
- Goswami, S.; Bajpai, J.; Bajpai, A. Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. J. Exp. Nanosci. 2014, 9, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Sabu, C.; Raghav, D.; Jijith, U.S.; Mufeedha, P.; Naseef, P.; Rathinasamy, K.; Pramoda, K. Bioinspired oral insulin delivery system using yeast microcapsules. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109753. [Google Scholar] [CrossRef]
- Wang, A.H.; Yang, T.T.; Fan, W.W.; Yang, Y.W.; Zhu, Q.L.; Guo, S.Y.; Zhu, C.L.; Yuan, Y.C.; Zhang, T.; Gan, Y. Protein Corona Liposomes Achieve Efficient Oral Insulin Delivery by Overcoming Mucus and Epithelial Barriers. Adv. Healthc. Mater. 2019, 8, 1801123. [Google Scholar] [CrossRef]
- Liu, J.Y.; Werner, U.; Funke, M.; Besenius, M.; Saaby, L.; Fano, M.; Mu, H.L.; Mullertz, A. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Int. J. Pharm. 2019, 560, 377–384. [Google Scholar] [CrossRef]
- Lin, H.R.; Zhang, J.; Yu, C.C.; Lu, Y.; Ning, J.; Le, S.X.; Li, Y.; Zang, L.Q. Oral delivery of insulin via mesoporous carbon nanoparticles for colonic release allows glycemic control in diabetic rats. Carbon Lett. 2019, 29, 133–143. [Google Scholar]
- Heyman, M.B. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Vesa, T.H.; Marteau, P.; Korpela, R. Lactose intolerance. J. Am. College Nutr. 2000, 19, 165S–175S. [Google Scholar] [CrossRef]
- Sikkens, E.C.M.; Cahen, D.L.; Kuipers, E.J.; Bruno, M.J. Pancreatic enzyme replacement therapy in chronic pancreatitis. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhong, Q.X. Freeze-dried capsules prepared from emulsions with encapsulated lactase as a potential delivery system to control lactose hydrolysis in milk. Food Chem. 2018, 241, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Montemagno, C.; Choi, H.J. Smart Microparticles with a pH-responsive Macropore for Targeted Oral Drug Delivery. Sci. Rep. 2017, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevinho, B.N.; Damas, A.M.; Martins, P.; Rocha, F. Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Res. Int. 2014, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Grattard, N.; Pernin, M.; Marty, B.; Roudaut, G.; Champion, D.; le Meste, M. Study of release kinetics of small and high molecular weight substances dispersed into spray-dried ethylcellulose microspheres. J. Control. Release 2002, 84, 125–135. [Google Scholar] [CrossRef]
- Bertoni, S.; Albertini, B.; Dolci, L.S.; Passerini, N. Spray congealed lipid microparticles for the local delivery of β-galactosidase to the small intestine. Eur. J. Pharm. Biopharm. 2018, 132, 1–10. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Pei, Y.Q.; Wang, S.S.; Zhou, B.; Li, J.W.; Hou, X.Y.; Li, J.; Li, B.; Liang, H.S. Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of β-galactosidase. Food Funct. 2019, 10, 4782–4791. [Google Scholar] [CrossRef]
- Singh, B.; Maharjan, S.; Jiang, T.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Combinatorial Approach of Antigen Delivery Using M Cell-Homing Peptide and Mucoadhesive Vehicle to Enhance the Efficacy of Oral Vaccine. Mol. Pharm. 2015, 12, 3816–3828. [Google Scholar] [CrossRef]
- Azizi, A.; Kumar, A.; Diaz-Mitoma, F.; Mestecky, J. Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells. PLoS Pathog. 2010, 6, e1001147. [Google Scholar] [CrossRef] [Green Version]
- Peek, L.J.; Middaugh, C.R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 2008, 60, 915–928. [Google Scholar] [CrossRef]
- Roopngam, E. Liposome and polymer-based nanomaterials for vaccine applications. Nanomed. J. 2019, 6, 1–10. [Google Scholar]
- Yoshida, M.; Kamei, N.; Muto, K.; Kunisawa, J.; Takayama, K.; Peppas, N.A.; Takeda-Morishita, M. Complexation hydrogels as potential carriers in oral vaccine delivery systems. Eur. J. Pharm. Biopharm. 2017, 112, 138–142. [Google Scholar] [CrossRef]
- Marasini, N.; Giddam, A.K.; Ghaffar, K.A.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus. Nanomedicine 2016, 11, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Mendieta, S.A.; Guillen, D.; Espitia, C.; Hernandez-Pando, R.; Sanchez, S.; Rodriguez-Sanoja, R. A novel antigen-carrier system: The Mycobacterium tuberculosis Acr protein carried by raw starch microparticles. Int. J. Pharm. 2014, 474, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.A.S.; Panou, D.A.; Stephansen, K.; Chronakis, I.S.; Boisen, A.; Mendes, A.C.; Nielsen, L.H. Preparation and Characterization of an Oral Vaccine Formulation Using Electrosprayed Chitosan Microparticles. AAPS Pharmscitech 2018, 19, 3770–3777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, K.K.; Pandey, R.S. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm. Dev. Technol. 2019, 24, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.F.S.; Shakir, E.; Carter, K.C.; Mullen, A.B.; Alexander, J.; Ferro, V.A. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009, 27, 3643–3649. [Google Scholar] [CrossRef]
- Manfrin, C.; Piazza, F.; Cocchietto, M.; Antcheva, N.; Masiello, D.; Franceschin, A.; Peruzza, L.; Bonzi, L.C.; Mosco, A.; Guarnaccia, C.; et al. Can peptides be orally-delivered in crustaceans? The case study of the Crustacean Hyperglycaemic Hormone in Procambarus clarkii. Aquaculture 2016, 463, 209–216. [Google Scholar] [CrossRef]
- Malik, B.; Gupta, R.K.; Rath, G.; Goyal, A.K. Development of pH responsive novel emulsion adjuvant for oral immunization and in vivo evaluation. Eur. J. Pharm. Biopharm. 2014, 87, 589–597. [Google Scholar] [CrossRef]
- Rajapaksa, T.E.; Stover-Hamer, M.; Fernandez, X.; Eckelhoefer, H.A.; Lo, D.D. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J. Control. Release 2010, 142, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Splith, K.; Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. Biophys. Lett. 2011, 40, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A. Nanostructures as Promising Tools for Delivery of Antimicrobial Peptides. Mini-Rev. Med. Chem. 2012, 12, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Malheiros, D.; Daroit, D.J.; Brandelli, A. Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci. Technol. 2010, 21, 284–292. [Google Scholar] [CrossRef]
- Gontsarik, M.; Buhmann, M.T.; Yaghmur, A.; Ren, Q.; Maniura-Weber, K.; Salentinig, S. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid Crystalline Nanocarriers. J. Phys. Chem. Lett. 2016, 7, 3482–3486. [Google Scholar] [CrossRef]
- Were, L.M.; Bruce, B.; Davidson, M.; Weiss, J. Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. J. Food Prot. 2004, 67, 922–927. [Google Scholar] [CrossRef]
- Bi, L.; Yang, L.; Narsimhan, G.; Bhunia, A.K.; Yao, Y. Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J. Control. Release 2011, 150, 150–156. [Google Scholar] [CrossRef]
- Imran, M.; Reyol-Junelles, A.M.; Paris, C.; Guedon, E.; Linder, M.; Desobry, S. Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. Lwt-Food Sci. Technol. 2015, 62, 341–349. [Google Scholar] [CrossRef]
- Wu, T.T.; Wu, C.H.; Fang, Z.X.; Ma, X.B.; Chen, S.G.; Hu, Y.Q. Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker. Food Control. 2017, 79, 317–324. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Wu, T.T.; Wu, C.H.; Fu, S.L.; Yuan, C.H.; Chen, S.G. Formation and optimization of chitosan-nisin microcapsules and its characterization for antibacterial activity. Food Control. 2017, 72, 43–52. [Google Scholar] [CrossRef]
- Krivorotova, T.; Staneviciene, R.; Luksa, J.; Serviene, E.; Sereikaite, J. Impact of pectin esterification on the antimicrobial activity of nisin-loaded pectin particles. Biotechnol. Prog. 2017, 33, 245–251. [Google Scholar] [CrossRef]
- Khaksar, R.; Hosseini, S.M.; Hosseini, H.; Shojaee-Aliabadi, S.; Mohammadifar, M.A.; Mortazavian, A.M.; Khosravi-Darani, K.; Javadi, N.H.S.; Komeily, R. Nisin-loaded alginate-high methoxy pectin microparticles: Preparation and physicochemical characterisation. Int. J. Food Sci. Technol. 2014, 49, 2076–2082. [Google Scholar] [CrossRef]
- Zhong, Q.X.; Jin, M.F. Nanoscalar Structures of Spray-Dried Zein Microcapsules and in Vitro Release Kinetics of the Encapsulated Lysozyme as Affected by Formulations. J. Agric. Food Chem. 2009, 57, 3886–3894. [Google Scholar] [CrossRef]
- Zhong, Q.X.; Jin, M.F.; Davidson, M.; Zivanovic, S. Sustained release of lysozyme from zein microcapsules produced by a supercritical anti-solvent process. Food Chem. 2009, 115, 697–700. [Google Scholar] [CrossRef]
- Li, Y.; Kadam, S.; Abee, T.; Slaghek, T.M.; Timmermans, J.W.; Stuart, M.A.C.; Norde, W.; Kleijn, M.J. Antimicrobial lysozyme-containing starch microgel to target and inhibit amylase-producing microorganisms. Food Hydrocoll. 2012, 28, 28–35. [Google Scholar] [CrossRef]
- Huang, W.Y.; Davidge, S.T.; Wu, J. Bioactive Natural Constituents from Food Sources-Potential Use in Hypertension Prevention and Treatment. Crit. Rev. Food Sci. Nutr. 2013, 53, 615–630. [Google Scholar] [CrossRef] [PubMed]
- He, H.L.; Liu, D.; Ma, C.B. Review on the Angiotensin-I-Converting Enzyme (ACE) Inhibitor Peptides from Marine Proteins. Appl. Biochem. Biotechnol. 2013, 169, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Q.; Xiao, J.X.; Hao, L.Q.; Yang, J. Microencapsulation of an Angiotensin I-Converting Enzyme Inhibitory Peptide VLPVP by Membrane Emulsification. Food Bioprocess. Technol. 2017, 10, 2005–2012. [Google Scholar] [CrossRef]
- Auwal, S.M.; Zarei, M.; Tan, C.; Basri, M.; Saari, N. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Sci. Rep. 2018, 8, 10411. [Google Scholar] [CrossRef]
- Li, N.; Shi, A.M.; Wang, Q.; Zhang, G.Q. Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and In Vitro Evaluation. Molecules 2019, 24, 1746. [Google Scholar] [CrossRef] [Green Version]
- Melmed, S.; Popovic, V.; Bidlingmaier, M.; Mercado, M.; van der Lely, A.J.; Biermasz, N.; Bolanowski, M.; Coculescu, M.; Schopohl, J.; Racz, K. Safety and Efficacy of Oral Octreotide in Acromegaly: Results of a Multicenter Phase III Trial. J. Clin. Endocrinol. Metab. 2015, 100, 1699–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, A.; Moehle, K.; Chevalier, E.; Dale, G.; Obrecht, D. Protein epitope mimetic macrocycles as biopharmaceuticals. Curr. Opin. Chem. Biol. 2017, 38, 45–51. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perry, S.L.; McClements, D.J. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules 2020, 25, 1161. https://doi.org/10.3390/molecules25051161
Perry SL, McClements DJ. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules. 2020; 25(5):1161. https://doi.org/10.3390/molecules25051161
Chicago/Turabian StylePerry, Sarah L., and David Julian McClements. 2020. "Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems" Molecules 25, no. 5: 1161. https://doi.org/10.3390/molecules25051161
APA StylePerry, S. L., & McClements, D. J. (2020). Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules, 25(5), 1161. https://doi.org/10.3390/molecules25051161