Nanoscale Quantum Thermal Conductance at Water Interface: Green’s Function Approach Based on One-Dimensional Phonon Model
Abstract
:1. Introduction
2. Extraction of Phonon Dispersion Curves of Liquid Water from Experimental Results
- Extracting wave numbers and at yellow and red broken lines of absorbance maxima in the experimental absorption spectrum of water in the liquid phase shown in Figure 3.
- Calculating angular frequencies and as and , respectively, with c being the light velocity, so that the one-dimensional phonon model is consistent with the experimental spectrum.
- Calculating angular frequency by using Equation (2c) above.
- Calculating the wave number k of phonon by using the dispersion relation Equation (1) above.
- Obtaining dispersion curves in the upper part of Figure 4 below with the frequency on the abscissa and the normalized wave number on the ordinate.
3. Formulation of the Phonon Transmission Function through HO
4. Thermal Conductance in Water
4.1. Validation of Calculated Thermal Conductance
4.2. Classical Limit of Thermal Conductance
- variable heat sources in stimulated cells (order 10);
- length scales (order 10–10);
- micro- and nanoscale thermal parameters (order 10–10).
- reservoir model representing heat and bath reservoirs;
- one-dimensional phonon model with water molecules sandwiched between the reservoirs;
- phonon transports at atomic scale in water.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GFM | Green’s function method |
Trad/s | unit of tera radians per second |
tr | trace of matrix |
Im | imaginary part of complex number |
Appendix A. Phonon Transport Equations in a One-Dimensional Chain Model of Water
Appendix A.1. Derivation of Transport Equations of Phonon in Water
Appendix A.2. Derivation of Eigenvalue Equations in Left and Right Reservoirs
Appendix A.3. Non-Equilibrium Green’s Functions
Appendix A.4. Quantum Thermal Conductance in Water
- Transforming wave functions consisting of the tight binding (TB) basis into those consisting of the plane wave (PW) basis.
- Finding the PW basis solutions in semi-infinite (, →∞) heat reservoir at both ends of water with using the periodic characteristics of the heat reservoir in thermal equilibrium.
- Inverse transformation from PW basis wave functions to TB basis ones.
References
- Dubi, Y.; Ventra, M.D. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 2011, 83, 131–155. [Google Scholar] [CrossRef]
- Yu, C.; Shi, L.; Yao, Z.; Li, D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Nano Lett. 2005, 5, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-Y.; Deshp, V.V.; Postma, H.W.C.; Lau, C.N.; Mikò, C.; Forrò, L.; Bockrath, M. Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2005, 95, 226101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, M.; Zhang, X.; Xie, H.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the Thermal Conductivity of a Single Carbon Nanotube. Phys. Rev. Lett. 2005, 95, 065502. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Zhang, Q.; Chen, G.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Zhou, Q.; Wang, S.G.; Li, J.Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 2002, 66, 165440. [Google Scholar] [CrossRef] [Green Version]
- Gonnet, P.; Liang, Z.; Choi, E.S.; Kadambala, R.S.; Zhang, C.; Brooks, J.S.; Ben, W.; Leslie, K. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr. Appl. Phys. 2006, 6, 119–122. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.; Tomànek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingo, N.; Broido, D. Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves”. Nano Lett. 2005, 5, 1221–1225. [Google Scholar] [CrossRef]
- Lervik, A.; Bresme, F.; Kjelstrup, S. Heat transfer in soft nanoscale interfaces: The influence of interface curvature. Soft Matter 2009, 5, 2407–2414. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Sato, M. Microwave heating of water, ice, and saline solution: Molecular dynamics study. J. Chem. Phys. 2007, 126, 034509. [Google Scholar] [CrossRef] [Green Version]
- Weissenborn, R.; Reinhardt, T.; Hansen, V.; Maret, G.; Gisler, T. A broadband waveguide for protein crystallography under intense microwave fields. Rev. Sci. Inst. 2004, 75, 5253–5256. [Google Scholar] [CrossRef] [Green Version]
- Fisher, T. Thermal Energy at the Nanoscale (Lessons from Nanoscience: A Lecture Notes Series); World Scientific: Singapore, 2014; Volume 3, Chapter 4. [Google Scholar]
- Rego, L.; Kiczenow, G. Quantized Thermal Conductance of Dielectric Quantum Wires. Phys. Rev. Lett. 1998, 81, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Baffou, G.; Rigneault, H.; Marguet, D.; Jullien, L. Reply to “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 105 gap issue between calculation and measurement in single-cell thermometry”. Nat. Methods 2015, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Kiyonaka, S.; Sakaguchi, R.; Hamachi, I.; Morii, T.; Yoshizaki, T.; Mori, Y. Validating subcellular thermal changes revealed by fluorescent thermosensors. Nat. Methods 2015, 12, 801–802. [Google Scholar] [CrossRef] [PubMed]
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyonaka, S.; Kajimoto, T.; Sakaguchi, R.; Shinmi, D.; Omatsu-Kanbe, M.; Matsuura, H.; Imamura, H.; Yoshizaki, T.; Hamachi, I.; Morii, T.; et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 2013, 10, 1232–1238. [Google Scholar] [CrossRef]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; Wiley: Hoboken, NJ, USA, 1998; pp. 333–350. [Google Scholar]
- Baffou, G.; Rigneault, H.; Marguet, D.; Jullien, L. A critique of methods for temperature imaging in single cells. Nat. Methods 2014, 11, 899–901. [Google Scholar] [CrossRef]
- Lervik, A.; Bresme, F.; Kjelstrup, S.; Bedeaux, D.; Rubi, J.M. Heat transfer in protein–water interfaces. Phys. Chem. Chem. Phys. 2010, 12, 1610–1617. [Google Scholar] [CrossRef] [Green Version]
- Pandey, H.D.; Leitner, D.M. Small Saccharides as a Blanket around Proteins: A Computational Study. J. Phys. Chem. B 2018, 122, 7277–7285. [Google Scholar] [CrossRef]
- Leitner, D.M.; Pandey, H.D.; Reid, K.M.J. Energy Transport across Interfaces in Biomolecular Systems. J. Phys. Chem. B 2019, 123, 9507–9524. [Google Scholar] [CrossRef]
- Umegaki, T.; Ogawa, M.; Miyoshi, T. Investigation of electronic transport in carbon nanotubes using Green’s-function method. J. Appl. Phys. 2006, 99, 034307. [Google Scholar] [CrossRef] [Green Version]
- Elsaesser, T.; Bakker, H.J. Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Ashihara, S. Time-Resolved Observation of Molecular Dynamics in Liquid Water by Mid-Infrared Nonlinear Spectroscopy. Jpn. J. Opt. 2011, 40, 409–414. (In Japanese) [Google Scholar]
- Walrafen, G. Raman Spectrum of Water: Transverse and Longitudinal Acoustic Modes below 300 cm−1 and Optic Modes above 300 cm−1. J. Phys. Chem. 1990, 94, 2237–2239. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Imamura, Z. Quantum Chemistry for Molecular Design; Kohdansya: Tokyo, Japan, 1991; pp. 105–108. [Google Scholar]
- Marechal, Y. The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 2011, 1004, 146–155. [Google Scholar] [CrossRef]
- Suzuki, K. Mizunohanashi; Kagaku Dohjin: Tokyo, Japan, 1997. (In Japanese) [Google Scholar]
- Paulsson, M.; Brandbyge, M. Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 2007, 76, 115117. [Google Scholar] [CrossRef] [Green Version]
- Bell, R. Large Scale Simulations of Conduction in Carbon Nanotube Networks. Ph.D. Thesis, The University of Cambridge, Cambridge, UK, 2014. Chapter 3. [Google Scholar]
- Zhang, W.; Fisher, T.S.; Mingo, N. The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport. Numer. Heat Transf. Part B 2007, 51, 333–349. [Google Scholar] [CrossRef]
- Suzuki, M.; Zeeb, V.; Arai, S.; Oyama, K.; Ishiwata, S. The 105 gap issue between calculation and measurement in single-cell thermometry. Nat. Methods 2015, 12, 802–803. [Google Scholar] [CrossRef]
- Ramakrishnan, G.; Gonzàlez-Jimènez, M.; Lapthorn, A.J.; Wynne, K. Spectrum of Slow and Super-Slow (Picosecond to Nanosecond) Water Dynamics around Organic and Biological Solutes. J. Phys. Chem. Lett. 2017, 8, 2964–2970. [Google Scholar] [CrossRef] [Green Version]
- Chieffo, L.; Shattuck, J.; Amsden, J.J.; Erramilli, S.; Ziegler, L.D. Ultrafast vibrational relaxation of liquid H2O following librational combination band excitation. Chem. Phys. 2007, 341, 71–80. [Google Scholar] [CrossRef]
- Balaji, P.V.; Qasba, P.K.; Rao, V.S.R. Flexibility of Sugar Chains and Molecular Dynamics Simulations. Trends Glycosci. Glycotechnol. 1994, 6, 93–94. [Google Scholar]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Sample Availability: Not available. |
Wave Number | Angular Frequency | ||
---|---|---|---|
Mode | (cm) | 2 (Trad/s) | |
OH anti-symmetric | a | 3509 | 661.4 |
stretching | |||
OH symmetric | b | 3410 | 642.8 |
stretching | |||
OH bending | c | 1660 | 312.9 |
Binding rotation | d | 700 | 131.9 |
(libration) | |||
Intermolecular | e | 190 | 35.8 |
vibration |
Mode | Angular Frequency | Transmission | |
---|---|---|---|
Range | Probability | ||
acoustic wave | |||
attenuation | |||
optical wave |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umegaki, T.; Tanaka, S. Nanoscale Quantum Thermal Conductance at Water Interface: Green’s Function Approach Based on One-Dimensional Phonon Model. Molecules 2020, 25, 1185. https://doi.org/10.3390/molecules25051185
Umegaki T, Tanaka S. Nanoscale Quantum Thermal Conductance at Water Interface: Green’s Function Approach Based on One-Dimensional Phonon Model. Molecules. 2020; 25(5):1185. https://doi.org/10.3390/molecules25051185
Chicago/Turabian StyleUmegaki, Toshihito, and Shigenori Tanaka. 2020. "Nanoscale Quantum Thermal Conductance at Water Interface: Green’s Function Approach Based on One-Dimensional Phonon Model" Molecules 25, no. 5: 1185. https://doi.org/10.3390/molecules25051185
APA StyleUmegaki, T., & Tanaka, S. (2020). Nanoscale Quantum Thermal Conductance at Water Interface: Green’s Function Approach Based on One-Dimensional Phonon Model. Molecules, 25(5), 1185. https://doi.org/10.3390/molecules25051185