Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds
Abstract
:1. Introduction
2. Results
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, B.J.; Melde, B.J.; Moore, M.H.; Taft, J.R. Deposition of porous sorbents on fabric supports. J. Vis. Exp. 2018, 57331. [Google Scholar] [CrossRef]
- Levine, L.; Johnson, R.F.; Teal, W.B., Jr.; Cadarette, B.S.; Merullo, D.J. Joint Service Lightweight Integrated Suit Technology Program: Heat Strain Evaluation in an Environmental Chamber and in the Field; [Technical Report]; Army Research Inst Of Environmental Medicine: Natick MA, USA, 1998; pp. 1–112.
- Roberts, A.D.; Li, X.; Zhang, H. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356. [Google Scholar] [CrossRef] [PubMed]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Maya, E.; Montoro, C.; Rodríguez-Albelo, L.M.; Aznar Cervantes, S.D.; Lozano-Pérez, A.A.; Cenís, J.L.; Barea, E.; Navarro, J.A.R. Textile/Metal–Organic-Framework Composites as Self-Detoxifying Filters for Chemical-Warfare Agents. Angew. Chemie Int. Ed. 2015, 54, 6790–6794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Losego, M.D.; Lemaire, P.C.; Williams, P.S.; Gong, B.; Atanasov, S.E.; Blevins, T.M.; Oldham, C.J.; Walls, H.J.; Shepherd, S.D.; et al. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition. Adv. Mater. Interfaces 2014, 1, 1400040. [Google Scholar] [CrossRef]
- Liu, Y.; Howarth, A.J.; Vermeulen, N.A.; Moon, S.-Y.; Hupp, J.T.; Farha, O.K. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord. Chem. Rev. 2017, 346, 101–111. [Google Scholar] [CrossRef]
- Columbus, I.; Waysbort, D.; Shmueli, L.; Nir, I.; Kaplan, D. Decomposition of Adsorbed VX on Activated Carbons Studied by 31P MAS NMR. Environ. Sci. Technol. 2006, 40, 3952–3958. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chem. Mater. 2008, 20, 634–648. [Google Scholar] [CrossRef]
- Medeiros, E.L.G.; Braz, A.L.; Porto, I.J.; Menner, A.; Bismarck, A.; Boccaccini, A.R.; Lepry, W.C.; Nazhat, S.N.; Medeiros, E.S.; Blaker, J.J. Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds. ACS Biomater. Sci. Eng. 2016, 2, 1442–1449. [Google Scholar] [CrossRef]
- Magaz, A.; Roberts, A.D.; Faraji, S.; Nascimento, T.R.L.; Medeiros, E.S.; Zhang, W.; Greenhalgh, R.D.; Mautner, A.; Li, X.; Blaker, J.J. Porous, Aligned, and Biomimetic Fibers of Regenerated Silk Fibroin Produced by Solution Blow Spinning. Biomacromolecules 2018, 19, 4542–4553. [Google Scholar] [CrossRef] [Green Version]
- Scotti, K.L.; Dunand, D.C. Freeze casting–A review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 2018, 94, 243–305. [Google Scholar] [CrossRef] [Green Version]
- McCann, J.T.; Marquez, M.; Xia, Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J. Am. Chem. Soc. 2006, 128, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hussain, I.; Brust, M.; Butler, M.F.; Rannard, S.P.; Cooper, A.I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787. [Google Scholar] [CrossRef] [PubMed]
- Deville, S. Ice-templating, freeze casting: Beyond materials processing. J. Mater. Res. 2013, 28, 2202–2219. [Google Scholar] [CrossRef]
- Zhang, H.; Cooper, A.I. Aligned Porous Structures by Directional Freezing. Adv. Mater. 2007, 19, 1529–1533. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, H. Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86, 172–184. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Zhang, C.; Lu, S.; Yan, H.; Huang, D.; Ye, H. Study on porous silk fibroin materials. II. Preparation and characteristics of spongy porous silk fibroin materials. J. Appl. Polym. Sci. 2001, 79, 2192–2199. [Google Scholar] [CrossRef]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef]
- Greenhalgh, R.D.; Ambler, W.S.; Quinn, S.J.; Medeiros, E.S.; Anderson, M.; Gore, B.; Menner, A.; Bismarck, A.; Li, X.; Tirelli, N.; et al. Hybrid sol–gel inorganic/gelatin porous fibres via solution blow spinning. J. Mater. Sci. 2017, 52, 9066–9081. [Google Scholar] [CrossRef] [Green Version]
- Deville, S. The lure of ice-templating: Recent trends and opportunities for porous materials. Scr. Mater. 2018, 147, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Deville, S. Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering; Springer: Berlin, Germany, 2017. [Google Scholar]
- Chatzi, E.G.; Koenig, J.L. Morphology and Structure of Kevlar Fibers: A Review. Polym. Plast. Technol. Eng. 1987, 26, 229–270. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Q.; Yue, X.; Zuo, B.; Qin, M.; Li, F.; Kaplan, D.L.; Zhang, X. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2–formic acid solvent. Acta Biomater. 2015, 12, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Marsano, E.; Corsini, P.; Arosio, C.; Boschi, A.; Mormino, M.; Freddi, G. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int. J. Biol. Macromol. 2005, 37, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Liu, L.; Wu, Z. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol. J. Appl. Polym. Sci. 2007, 106, 53–59. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, G.; Knight, D.P.; Shao, Z.; Chen, X. Wet-Spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solution: Discussion of Spinning Parameters. Biomacromolecules 2010, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Um, I.C.; Kweon, H.; Lee, K.G.; Ihm, D.W.; Lee, J.-H.; Park, Y.H. Wet spinning of silk polymer: I. Effect of coagulation conditions on the morphological feature of filament. Int. J. Biol. Macromol. 2004, 34, 89–105. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Briggs, M.E.; Hasell, T.; Cooper, A.I. Hyperporous Carbons from Hypercrosslinked Polymers. Adv. Mater. 2016, 28, 9804–9810. [Google Scholar] [CrossRef]
- Roberts, A.D.; Kelly, P.; Bain, J.; Morrison, J.J.; Wimpenny, I.; Barrow, M.; Woodward, R.T.; Gresil, M.; Blanford, C.; Hay, S.; et al. Graphene–aramid nanocomposite fibres via superacid co-processing. Chem. Commun. 2019, 55, 11703–11706. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhang, Y.; Zhao, Y.; Shao, H.; Hu, X. Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Mater. Des. 2012, 36, 816–822. [Google Scholar] [CrossRef]
- Guan, G.; Bai, L.; Zuo, B.; Li, M.; Wu, Z.; Li, Y.; Wang, L. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs). Biomed. Mater. Eng. 2010, 20, 295–308. [Google Scholar] [CrossRef]
- Guan, G.; Bai, L.; Zuo, B.; Li, M.; Wu, Z.; Wang, L.; Li, Y. Distinct tissue responses to porous silk fibroin scaffolds (PSFSs) and polyvinyl alcohol (PVA) sponges in vivo. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 4, pp. 1668–1672. [Google Scholar]
- Guan, G.; Wang, L.; Li, M.; Bai, L. In vivo biodegradation of porous silk fibroin films implanted beneath the skin and muscle of the rat. Biomed. Mater. Eng. 2014, 24, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.D.; Zhang, H. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers. Int. J. Pharm. 2013, 447, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.D.; Finnigan, W.; Wolde-Michael, E.; Kelly, P.; Blaker, J.J.; Hay, S.; Breitling, R.; Takano, E.; Scrutton, N.S. Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace. MRS Commun. 2019, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds listed in Table 1 are available from the authors. |
Method | AC Loading [wt.%] | Average Fibre Ø [µm] | Average Macropore Ø [µm] | N2 BET SSA [m2·g−1] | Accessible SSA [%] | Micropore Vol. [cm3·g−1] | Max. Cyclohexane Uptake [w/w%] |
---|---|---|---|---|---|---|---|
(AC only) | 100 | n/a | n/a | 697 | 100 | 0.358 | 22.8 |
Cryo-SBS | 0 | 43 ± 9 | 1.1 ± 0.4 | 34 | 100 | 0.038 | n/a |
Cryo-SBS | 4 | 23 ± 4 | 1.8 ± 0.5 | 17 | 28 | 0.015 | n/a |
Cryo-SBS | 10 | 55 ± 6 | 10.4 ± 3.1 | 44 | 44 | 0.051 | n/a |
Cryo-WS | 0 | 160 ± 25 | 1.6 ± 1.0 | 79 | 100 | 0.032 | 12.9 |
Cryo-WS | 10 | 124 ± 14 | 0.1 ± 0.04 | 121 | 86 | 0.035 | 26.6 |
Cryo-WS | 15 | 110 ± 16 | 0.68 ± 0.30 | 134 | 79 | 0.018 | 27.0 |
Cryo-WS | 20 | 180 ± 30 | 0.14 ± 0.05 | 143 | 71 | 0.047 | 25.5 |
Cryo-WS | 25 | 190 ± 29 | 0.54 ± 0.45 | 210 | 90 | 0.156 | 22.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, A.D.; Lee, J.-S.M.; Magaz, A.; Smith, M.W.; Dennis, M.; Scrutton, N.S.; Blaker, J.J. Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds. Molecules 2020, 25, 1207. https://doi.org/10.3390/molecules25051207
Roberts AD, Lee J-SM, Magaz A, Smith MW, Dennis M, Scrutton NS, Blaker JJ. Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds. Molecules. 2020; 25(5):1207. https://doi.org/10.3390/molecules25051207
Chicago/Turabian StyleRoberts, Aled D., Jet-Sing M. Lee, Adrián Magaz, Martin W. Smith, Michael Dennis, Nigel S. Scrutton, and Jonny J. Blaker. 2020. "Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds" Molecules 25, no. 5: 1207. https://doi.org/10.3390/molecules25051207
APA StyleRoberts, A. D., Lee, J. -S. M., Magaz, A., Smith, M. W., Dennis, M., Scrutton, N. S., & Blaker, J. J. (2020). Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds. Molecules, 25(5), 1207. https://doi.org/10.3390/molecules25051207