Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds in Different Cultivars of Okra Fruits
2.2. Antioxidant Capacities of Different Cultivars of Okra Fruits
2.3. Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra Fruits
2.4. Correlations between Phenolic Compounds and Bioactivities
3. Materials and Methods
3.1. Samples and Chemicals
3.2. Extraction of Phenolic Compounds
3.3. Determination of Total Flavonoids
3.4. Analyses of Individual Phenolic Compounds
3.5. Determination of In Vitro Antioxidant Capacities
3.6. Determination of In Vitro Inhibitory Effects on Digestive Enzymes
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panneerselvam, K.; Ramachandran, S.; Sabitha, V.; Naveen, K.R. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J. Pharm. Bioallied Sci. 2011, 3, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and Anti-Fatigue Constituents of Okra. Nutrients 2015, 7, 8846–8858. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.-R.; Li, H.-Y.; Du, G.; Lin, S.; Hu, R.; Li, H.-Y.; Zhao, L.; Zhang, Q.; Chen, H.; Wu, D.-T.; et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. Int. J. Boil. Macromol. 2019, 139, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.T.; Kumar, S.A. Antioxidant and antidiabetic properties of Abelmoschus esculentus extract—An in vitro assay. Res. J. Biotechnol. 2016, 11, 34–41. [Google Scholar]
- Yuan, K.; Liao, H.; Dong, W.; Shi, X.; Liu, H. Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L. Pharmacogn. Mag. 2012, 8, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.O.; Agbenorhevi, J.K.; Kpodo, F.M. Total Phenol Content and Antioxidant Activity of Okra Seeds from Different Genotypes. Am. J. Food Nutr. 2017, 5, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.; Islam, M.; Sarkar, S.; Murugan, A.; Makky, E.; Rashid, S.; Yusoff, M. Anti-amylolytic activity of fresh and cooked okra (Hibiscus esculentus L.) pod extract. Biocatal. Agric. Biotechnol. 2014, 3, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Tongjaroenbuangam, W.; Ruksee, N.; Chantiratikul, P.; Pakdeenarong, N.; Kongbuntad, W.; Govitrapong, P. Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice. Neurochem. Int. 2011, 59, 677–685. [Google Scholar] [CrossRef]
- Islam, M.T. Phytochemical information and pharmacological activities of Okra (Abelmoschus esculentus ): A literature-based review. Phytotherapy Res. 2018, 33, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Kpodo, F.; Agbenorhevi, J.; Alba, K.; Bingham, R.J.; Oduro, I.; Morris, G.; Kontogiorgos, V. Pectin isolation and characterization from six okra genotypes. Food Hydrocoll. 2017, 72, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem. 2018, 242, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsędek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In Vitro Inhibitory Effect on Digestive Enzymes and Antioxidant Potential of Commonly Consumed Fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Demleitner, M.F.; Song, L.; Rychlik, M.; Huang, D. Oligomeric proanthocyanidins are the active compounds in Abelmoschus esculentus Moench for its α-amylase and α-glucosidase inhibition activity. J. Funct. Foods 2016, 20, 463–471. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Y.; Sun, Q.; Yu, L.; Li, M.; Zheng, B.; Wu, X.; Yang, B.; Li, Y.; Huang, C. Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice. J. Nutr. Biochem. 2014, 25, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, M.-F.; Liao, H.-B.; Li, Y.-X.; Han, W.; Yuan, K. Content determination of the flavonoids in the different parts and different species of Abelmoschus esculentus L. by reversed phase-high performance liquid chromatograph and colorimetric method. Pharmacogn. Mag. 2014, 10, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Olivera, D.F.; Mugridge, A.; Chaves, A.R.; Mascheroni, R.H.; Viña, S. Quality Attributes of Okra (Abelmoschus esculentus L. Moench) Pods as Affected by Cultivar and Fruit Size. J. Food Res. 2012, 1, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Oliveira, M.B.P.P.; Ibanez, E.; Herrero, M. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J. Chromatogr. A 2014, 1327, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Arapitsas, P. Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chem. 2008, 110, 1041–1045. [Google Scholar] [CrossRef]
- Abbasi, A.M.; Shah, M.H.; Li, T.; Fu, X.; Guo, X.; Liu, R.H. Ethnomedicinal values, phenolic contents and antioxidant properties of wild culinary vegetables. J. Ethnopharmacol. 2015, 162, 333–345. [Google Scholar] [CrossRef]
- Shen, D.-D.; Li, X.; Qin, Y.-L.; Li, M.-T.; Han, Q.-H.; Zhou, J.; Lin, S.; Zhao, L.; Zhang, Q.; Qin, W.; et al. Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra (Abelmoschus esculentus) fruit at different maturation stages. J. Food Sci. Technol. 2019, 56, 1275–1286. [Google Scholar] [CrossRef]
- Li, H.-Y.; Yuan, Q.; Yang, Y.-L.; Han, Q.-H.; He, J.-L.; Zhao, L.; Zhang, Q.; Liu, S.-X.; Lin, D.-R.; Wu, D.-T.; et al. Phenolic Profiles, Antioxidant Capacities, and Inhibitory Effects on Digestive Enzymes of Different Kiwifruits. Molecules 2018, 23, 2957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Deng, Z.; Ramdath, D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chang, S.K.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakulnarmrat, K.; Konczak, I. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem. 2012, 134, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Sergent, T.; Vanderstraeten, J.; Winand, J.; Béguin, P.; Schneider, Y.-J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012, 135, 68–73. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Samoticha, J. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. J. Funct. Foods 2016, 25, 397–407. [Google Scholar] [CrossRef]
- Cahyana, A.H.; Kam, N. Study on the stability of antioxidant and anti α-glucosidase activities using soaking treatment in okra (Abelmoschus esculentus L.) mucilage extraction. Chem. Int. 2017, 3, 201–211. [Google Scholar]
- Chao, P.-Y.; Lin, S.-Y.; Lin, K.-H.; Liu, Y.-F.; Hsu, J.-I.; Yang, C.-M.; Lai, J.-Y. Antioxidant Activity in Extracts of 27 Indigenous Taiwanese Vegetables. Nutrients 2014, 6, 2115–2130. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Liu, Q.; Yu, J.; Wang, M.; Chen, M.; Wang, R.; He, X.; Gao, M.; Chen, X.-Q. Separation of α-amylase inhibitors from Abelmoschus esculentus L. Moench by on-line two-dimensional high-speed counter-current chromatography target-guided by ultrafiltration-HPLC. J. Sep. Sci. 2015, 38, 3897–3904. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Gong, J.D.B.; Lu, M.; Lu, M.-Y.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D.-T. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J. Cereal Sci. 2018, 81, 69–75. [Google Scholar] [CrossRef]
Sample Availability: Samples of the raw material of okra are available from the authors. |
Five Cultivars | TFC (mg RE/g DW) | DPPH (µmol TE/g DW) | ABTS (µmol TE/g DW) | FRAP (µmol TE/g DW) |
---|---|---|---|---|
Kalong 3 | 3.22 ± 0.31 ab | 18.86 ± 0.45 bc | 134.02 ± 1.23 b | 145.80 ± 1.04 c |
Kalong 8 | 3.03 ± 0.33 ab | 19.93 ± 0.44 b | 137.15 ± 1.68 b | 158.12 ± 1.62 b |
Shuiguo | 3.39 ± 0.09 a | 22.87 ± 1.14 a | 173.99 ± 0.17 a | 211.36 ± 0.65 a |
Wufu | 2.94 ± 0.09 b | 17.25 ± 0.66 c | 114.19 ± 1.32 c | 94.76 ± 2.47 d |
Royal red | 1.75 ± 0.09 c | 13.28 ± 0.73 d | 90.65 ± 2.28 d | 56.92 ± 1.73 e |
Peaks | Phenolic Compounds (µg/g DW) | Okra Fruits | ||||
---|---|---|---|---|---|---|
Kalong 3 | Kalong 8 | Shuiguo | Wufu | Royal Red | ||
1 | Protocatechuic acid | 49.31 ± 0.13 d | 101.98 ± 0.30 b | 62.95 ± 0.23 c | 116.63 ± 0.50 a | 21.59 ± 0.25 e |
2 | Catechin | N.D | N.D | N.D | N.D | N.D |
3 | Quercetin-3-O-gentiobioside | 1322.39 ± 0.23 c | 1360.42 ± 0.33 b | 1703.24 ± 0.44 a | 1260.21 ± 0.53 d | 654.75 ± 0.53 e |
4 | Rutin | 29.38 ± 0.49 c | 40.21 ± 0.38 b | 44.85 ± 0.29 a | 24.51 ± 0.29 d | 22.73 ± 0.40 e |
5 | Isoquercitrin | 869.97 ± 0.32 c | 1076.96 ± 0.45 a | 1028.62 ± 0.39b | 643.14 ± 0.40 d | 380.74 ± 0.40 e |
6 | Quercetin | 3.56 ± 0.47 c | 4.74 ± 0.25 b | 11.47 ± 0.28 a | 2.71 ± 0.42 c | 1.19 ± 0.22 d |
Total flavonoids | 2274.61 | 2584.31 | 2851.13 | 2047.20 | 1081.00 |
TFC | PA | QOG | RU | IS | QU | DPPH | ABTS | FRAP | PL | α-Glu | α-Amy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TFC | 1 | |||||||||||
PA | 0.515 | 1 | ||||||||||
QOG | 0.962** | 0.477 | 1 | |||||||||
RU | 0.670 | 0.215 | 0.807 | 1 | ||||||||
IS | 0.863 | 0.419 | 0.882* | 0.894* | 1 | |||||||
QU | 0.671 | 0.088 | 0.836 | 0.886* | 0.709 | 1 | ||||||
DPPH | 0.915* | 0.368 | 0.979** | 0.904* | 0.930* | 0.888* | 1 | |||||
ABTS | 0.856 | 0.210 | 0.946* | 0.911* | 0.878 | 0.943* | 0.984** | 1 | ||||
FRAP | 0.854 | 0.204 | 0.930* | 0.934* | 0.925* | 0.907* | 0.983** | 0.991** | 1 | |||
PL | −0.671 | −0.091 | −0.824 | −0.973** | −0.825 | −0.963** | −0.912* | −0.951* | −0.950* | 1 | ||
α-Glu | −0.977** | −0.657 | −0.919* | −0.630 | −0.869 | −0.558 | −0.864 | −0.772 | −0.783 | 0.586 | 1 | |
α-Amy | −0.976** | −0.580 | −0.953* | −0.757 | −0.939* | −0.666 | −0.932* | −0.858 | −0.875 | 0.714 | 0.984** | 1 |
Phenolic Compounds | Regression Equation | Test Range (μg/mL) | R2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|
protocatechuic acid | Y = 28.665 × X + 0.3124 | 0.78–12.48 | 1.0000 | 0.26 | 0.78 |
quercetin-3-O-gentiobioside | Y = 43.945 × X − 310.13 | 10.00–320.00 | 0.9989 | 3.33 | 10.00 |
catechin | Y = 16.756 × X − 9.765 | 2.00–16.00 | 0.9999 | 0.70 | 2.00 |
rutin | Y = 30.351 × X − 6.271 | 1.00–8.00 | 0.9998 | 0.33 | 1.00 |
isoquercetin | Y = 56.55 × X + 68.103 | 14.08–112.64 | 0.9998 | 0.12 | 0.44 |
quercetin | Y = 80.507 × X + 9.5089 | 0.80–6.40 | 0.9992 | 0.26 | 0.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.-T.; Nie, X.-R.; Shen, D.-D.; Li, H.-Y.; Zhao, L.; Zhang, Q.; Lin, D.-R.; Qin, W. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules 2020, 25, 1276. https://doi.org/10.3390/molecules25061276
Wu D-T, Nie X-R, Shen D-D, Li H-Y, Zhao L, Zhang Q, Lin D-R, Qin W. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules. 2020; 25(6):1276. https://doi.org/10.3390/molecules25061276
Chicago/Turabian StyleWu, Ding-Tao, Xi-Rui Nie, Dan-Dan Shen, Hong-Yi Li, Li Zhao, Qing Zhang, De-Rong Lin, and Wen Qin. 2020. "Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus)" Molecules 25, no. 6: 1276. https://doi.org/10.3390/molecules25061276
APA StyleWu, D. -T., Nie, X. -R., Shen, D. -D., Li, H. -Y., Zhao, L., Zhang, Q., Lin, D. -R., & Qin, W. (2020). Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules, 25(6), 1276. https://doi.org/10.3390/molecules25061276