Sensing Zn2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ligand Protonation
2.2. Zn2+ Complexation and Sensing
2.3. Anion Binding and Interference in Chemosensor Properties
3. Materials and Methods
3.1. General
3.2. Synthesis of L
3.3. Potentiometric Measurements
3.4. Spectroscopic Measurements
3.5. Theoretical Calculations. Optimum Geometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pallavicini, P.S.; Perotti, A.; Poggi, A.; Seghi, B.; Fabbrizzi, L. N-(aminoethyl)cyclam: A tetraaza macrocycle with a coordinating tail (scorpiand). Acidity controlled coordination of the side chain to nickel(II) and nickel(III) cations. J. Am. Chem. Soc. 1987, 109, 5139–5144. [Google Scholar] [CrossRef]
- Mewis, R.E.; Archibald, S.J. Biomedical applications of macrocyclic ligand complexes. Coord. Chem. Rev. 2010, 254, 1686–1712. [Google Scholar] [CrossRef]
- Lejault, P.; Duskova, K.; Bernhard, C.; Valverde, I.E.; Romieu, A.; Monchaud, D. The Scope of Application of Macrocyclic Polyamines beyond Metal Chelation. Eur. J. Org. Chem. 2019, 2019, 6146–6157. [Google Scholar] [CrossRef]
- Rashid, H.U.; Utrera Martines, M.A.; Jorge, J.; Martin de Moraes, P.; Umar, M.N.; Khan, K.; Rehman, H.U. Cyclen-based Gd3+ complexes as MRI contrast agents: Relaxivity enhancement and ligand design. Bioorg. Med. Chem. 2016, 24, 5663–5684. [Google Scholar] [CrossRef] [PubMed]
- Tsitovich, P.B.; Morrow, J.R. Macrocyclic ligands for Fe(II) paraCEST and chemical shift MRI contrast agents. Inorg. Chim. Acta 2012, 393, 3–11. [Google Scholar] [CrossRef]
- Guillou, A.; Lima, L.M.P.; Esteban-Gomez, D.; Le Poul, N.; Bartholoma, M.D.; Platas-Iglesias, C.; Delgado, R.; Patinec, V.; Tripier, R. Methylthiazolyl Tacn Ligands for Copper Complexation and Their Bifunctional Chelating Agent Derivatives for Bioconjugation and Copper-64 Radiolabeling: An Example with Bombesin. Inorg. Chem. 2019, 58, 2669–2685. [Google Scholar] [CrossRef]
- Yagi, Y.; Shimizu, Y.; Arimitsu, K.; Nakamoto, Y.; Higuchi, T.; Togashi, K.; Kimura, H. Efficient gallium-68 radiolabeling reaction of DOTA derivatives using a resonant-type microwave reactor. J. Labelled Compd. Rad. 2019, 62, 132–138. [Google Scholar] [CrossRef]
- David, T.; Hlinova, V.; Kubicek, V.; Bergmann, R.; Striese, F.; Berndt, N.; Szollosi, D.; Kovacs, T.; Mathe, D.; Bachmann, M.; et al. Improved Conjugation, 64-Cu Radiolabeling, In Vivo Stability, and Imaging Using Nonprotected Bifunctional Macrocyclic Ligands: Bis(Phosphinate) Cyclam (BPC) Chelators. J. Med. Chem. 2018, 61, 8774–8796. [Google Scholar] [CrossRef]
- Comba, P.; Jermilova, U.; Orvig, C.; Patrick, B.O.; Ramogida, C.F.; Rueck, K.; Schneider, C.; Starke, M. Octadentate Picolinic Acid-Based Bispidine Ligand for Radiometal Ions. Chem. Eur. J. 2017, 23, 15945–15956. [Google Scholar] [CrossRef]
- Kowalik, M.; Masternak, J.; Barszcz, B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr. Med. Chem. 2019, 26, 729–759. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Sgouros, G.; Sofou, S. Targeted and Nontargeted α-Particle Therapies. Annu. Rev. Biomed. Eng. 2018, 20, 73–93. [Google Scholar] [CrossRef]
- Tsai, W.-T.K.; Wu, A.M. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J. Labelled Compd. Rad. 2018, 61, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Thiele, N.A.; Brown, V.; Kelly, J.M.; Amor-Coarasa, A.; Jermilova, U.; MacMillan, S.N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C.F.; Robertson, A.K.H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. 2017, 56, 14712–14717. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Press, O.W. Whither Radioimmunotherapy: To Be or Not To Be? Cancer Res. 2017, 77, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.M.; Chittamuru, S.; Dhungana, S.; Jacobs, H.K.; Gopalan, A.S.; Crumbliss, A.L. Synthesis and Iron Sequestration Equilibria of Novel Exocyclic 3-Hydroxy-2-pyridinone Donor Group Siderophore Mimics. Inorg. Chem. 2010, 49, 8208–8221. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.S.; Song, H.A.; Ma, X.; Lim, S.; Sun, X.; Mhaske, S.B. Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents. Chem. Commun. 2009, 3011–3013. [Google Scholar] [CrossRef]
- Chong, H.S.; Ma, X.; Lee, H.; Bui, P.; Song, H.A.; Birch, N. Synthesis and Evaluation of Novel Polyaminocarboxylate-Based Antitumor Agents. J. Med. Chem. 2008, 51, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- González-García, J.; Martínez-Camarena, À.; Verdejo, B.; Clares, M.P.; Soriano, S.; García-España, E.; Jiménez, E.H.; Doménech-Carbó, A.; Tejero, T.; Calvo, E.; et al. Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands. J. Inorg. Biochem. 2016, 163, 230–239. [Google Scholar] [CrossRef]
- Marin, C.; Clares, M.P.; Ramírez-Macías, I.; Blasco, S.; Olmo, F.; Soriano, C.; Verdejo, B.; Rosales, M.J.; Gomez-Herrera, D.; Garcia-España, E.; et al. In Vitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis. Eur. J. Med. Chem. 2013, 62, 466–477. [Google Scholar] [CrossRef]
- Olmo, F.; Marin, C.; Clares, M.P.; Blasco, S.; Albelda, M.T.; Soriano, C.; Gutiérrez-Sánchez, R.; Arrebola-Vargas, F.; Garcia-España, E.; Sánchez-Moreno, M. Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model. Eur. J. Med. Chem. 2013, 70, 189–198. [Google Scholar] [CrossRef]
- Cruz, C.; Cairrao, E.; Lourenco, O.; Almeida, P.; Verde, I.; Queiroz, J.A. Polyazamacrocycles as potential antitumor agents for human prostate cancer cells. Chem. Biol. Drug Des. 2013, 81, 517–526. [Google Scholar] [CrossRef]
- Guijarro, L.; Inclán, M.; Pitarch-Jarque, J.; Doménech-Carbó, A.; Chicote, J.U.; Trefler, S.; García-España, E.; García-España, A.; Verdejo, B. Homo- and Heterobinuclear Cu2+ and Zn2+ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics. Inorg. Chem. 2017, 56, 13748–13758. [Google Scholar] [CrossRef]
- Marín, C.; Inclán, M.; Ramírez-Macías, I.; Albelda, M.T.; Cañas, R.; Clares, M.P.; González-García, J.; Rosales, M.J.; Urbanova, K.; García-España, E.; et al. In Vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase. RSC Adv. 2016, 6, 17446–17455. [Google Scholar] [CrossRef]
- Serena, C.; Calvo, E.; Clares, M.P.; Diaz, M.L.; Chicote, J.U.; Beltrán-Debon, R.; Fontova, R.; Rodriguez, A.; García-España, E.; García-España, A. Significant In Vivo Anti-Inflammatory Activity of Pytren4Q-Mn a Superoxide Dismutase 2 (SOD2) Mimetic Scorpiand-Like Mn (II) Complex. PLoS ONE 2015, 10, e0119102. [Google Scholar] [CrossRef] [PubMed]
- Organo, V.G.; Filatov, A.S.; Quartararo, J.S.; Friedman, Z.M.; Rybak-Akimova, E.V. Nickel(II) Complexes of Monofunctionalized Pyridine-Azamacrocycles: Synthesis, Structures, Pendant Arm “On-Off” Coordination Equilibria, and Peroxidase-like Activity. Inorg. Chem. 2009, 48, 8456–8468. [Google Scholar] [CrossRef] [PubMed]
- Subat, M.; Woinaroschy, K.; Anthofer, S.; Malterer, B.; König, B. 1,4,7,10-Tetraazacyclododecane Metal Complexes as Potent Promoters of Carboxyester Hydrolysis under Physiological Conditions. Inorg. Chem. 2007, 46, 4336–4356. [Google Scholar] [CrossRef]
- Bazzicalupi, C.; Bencini, A.; Berni, E.; Bianchi, A.; Fedi, V.; Fusi, V.; Giorgi, C.; Paoletti, P.; Valtancoli, B. Carboxy and Diphosphate Ester Hydrolysis by a Dizinc Complex with a New Alcohol-Pendant Macrocycle. Inorg. Chem. 1999, 38, 4115–4122. [Google Scholar] [CrossRef]
- Kimura, E.; Nakamura, I.; Koike, T.; Shionoya, M.; Kodama, Y.; Ikeda, T.; Shiro, M. Carboxyester Hydrolysis Promoted by a New Zinc(II) Macrocyclic Triamine Complex with an Alkoxide Pendant: A Model Study for the Serine Alkoxide Nucleophile in Zinc Enzymes. J. Am. Chem. Soc. 1994, 116, 4764–4771. [Google Scholar] [CrossRef]
- Kimura, E.; Koike, T. Dynamic anion recognition by macrocyclic polyamines in neutral pH aqueous solution: Development from static anion complexes to an enolate complex. Chem. Commun. 1998, 1495–1500. [Google Scholar] [CrossRef]
- Tseberlidis, G.; Intrieri, D.; Caselli, A. Catalytic Applications of Pyridine-Containing Macrocyclic Complexes. Eur. J. Inorg. Chem. 2017, 2017, 3589–3603. [Google Scholar] [CrossRef]
- Yasuda, M.; Saga, Y.; Tokunaga, T.; Itoh, S.; Aoki, S. Stereoselective aldol reactions of dihydroxyacetone derivatives catalyzed by chiral Zn2+ complexes. Tetrahedron 2019, 75, 757–777. [Google Scholar] [CrossRef]
- Savastano, M.; Arranz-Mascarós, P.; Clares, M.P.; Cuesta, R.; Godino-Salido, M.L.; Guijarro, L.; Gutiérrez-Valero, M.D.; Inclán, M.; Bianchi, A.; García-España, E.; et al. A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd2+ Azamacrocyclic Complex. Molecules 2019, 24, 2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, S.; Wilson, K.R.; Donald, G.; Reinheimer, R.W.; Archibald, S.J.; Prior, T.J.; Ayala, M.A.; Foster, A.L.; Hubin, T.J.; Green, K.N. Increase of Direct C–C Coupling Reaction Yield by Identifying Structural and Electronic Properties of High-Spin Iron Tetra-azamacrocyclic Complexes. Inorg. Chem. 2018, 57, 8890–8902. [Google Scholar] [CrossRef]
- Passaponti, M.; Savastano, M.; Clares, M.P.; Inclán, M.; Lavacchi, A.; Bianchi, A.; García-España, E.; Innocenti, M. MWCNTs-Supported Pd(II) Complexes with High Catalytic Efficiency in Oxygen Reduction Reaction in Alkaline Media. Inorg. Chem. 2018, 57, 14484–14488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savastano, M.; Arranz-Mascarós, P.; Bazzicalupi, C.; Clares, M.P.; Godino-Salido, M.L.; Guijarro, L.; Gutiérrez-Valero, M.-D.; Bianchi, A.; García-España, E.; López-Garzón, R. Polyfunctional Tetraaza-Macrocyclic Ligands: Zn(II), Cu(II) Binding and Formation of Hybrid Materials with Multiwalled Carbon Nanotubes. ACS Omega 2017, 2, 3868–3877. [Google Scholar] [CrossRef] [PubMed]
- Savastano, M.; Arranz-Mascarós, P.; Bazzicalupi, C.; Clares, M.P.; Godino-Salido, M.L.; Gutiérrez-Valero, M.D.; Inclán, M.; Bianchi, A.; García-España, E.; López-Garzón, R. Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles. J. Catal. 2017, 353, 239–249. [Google Scholar] [CrossRef]
- Lodeiro, C.; Pina, F. Luminescent and chromogenic molecular probes based on polyamines and related compounds. Coord. Chem. Rev. 2009, 253, 1353–1383. [Google Scholar] [CrossRef]
- Garau, A.; Bencini, A.; Blake, A.J.; Caltagirone, C.; Conti, L.; Isaia, F.; Lippolis, V.; Montis, R.; Mariani, P.; Scorciapino, M.A. [9]aneN3-based fluorescent receptors for metal ion sensing, featuring urea and amide functional groups. Dalton Trans. 2019, 48, 4949–4960. [Google Scholar] [CrossRef]
- Lvova, L.; Caroleo, F.; Garau, A.; Lippolis, V.; Giorgi, L.; Fusi, V.; Zaccheroni, N.; Lombardo, M.; Prodi, L.; Di Natale, C.; et al. A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Front. Chem. 2018, 6, 258. [Google Scholar] [CrossRef]
- Amatori, S.; Ambrosi, G.; Borgogelli, E.; Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; et al. Modulating the Sensor Response to Halide Using NBD-Based Azamacrocycles. Inorg. Chem. 2014, 53, 4560–4569. [Google Scholar] [CrossRef]
- Burdette, S.C.; Lippard, S.J. The Rhodafluor Family. An Initial Study of Potential Ratiometric Fluorescent Sensors for Zn2+. Inorg. Chem. 2002, 41, 6816–6823. [Google Scholar] [CrossRef] [PubMed]
- Woodroofe, C.C.; Lippard, S.J. A Novel Two-Fluorophore Approach to Ratiometric Sensing of Zn2+. J. Am. Chem. Soc. 2003, 125, 11458–11459. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, S.; Nagano, T.; Urano, Y.; Odani, A.; Kikuchi, K. A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application. J. Am. Chem. Soc. 2002, 124, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Martínez Máñez, R.; Sancenón, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003, 103, 4419–4476. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, D.H.; Hong, J.; Yoon, J. Chemosensors for Pyrophosphate. Acc. Chem. Res. 2009, 42, 23–31. [Google Scholar] [CrossRef]
- Caltagirone, C.; Gale, P.A. Anion receptor chemistry: Highlights from 2007. Chem. Soc. Rev. 2009, 38, 520–563. [Google Scholar] [CrossRef]
- Xu, Z.; Yoon, J.; Spring, D.R. Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 2010, 39, 1996–2006. [Google Scholar] [CrossRef] [Green Version]
- Cotruvo, J.A., Jr.; Aron, A.T.; Ramos-Torresa, K.M.; Chang, C.J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 2015, 44, 4400–4414. [Google Scholar] [CrossRef] [Green Version]
- Nolan, E.M.; Lippard, S.J. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry. Acc. Chem. Res. 2009, 42, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bencini, A.; Bernardo, M.A.; Bianchi, A.; García-España, E.; Giorgi, C.; Luis, S.; Pina, F.; Valtancoli, B. Sensing Cations and Anions by Luminescent Polyamine Receptors in Solution. In Advances in Supramolecular Chemistry; Gokel, G.W., Ed.; Cerberus Press: Miami, FL, USA, 2002; Volume 8, pp. 79–130. [Google Scholar]
- Macedi, E.; Bencini, A.; Caltagirone, C.; Lippolis, V. The design of TACN-based molecular systems for different supramolecular functions. Coord. Chem. Rev. 2020, 407, 213151. [Google Scholar] [CrossRef]
- Mills, C.F. (Ed.) Zinc in Human Biology; Springer: London, UK, 1989. [Google Scholar]
- Bencini, A.; Bianchi, A.; Garcia-España, E.; Micheloni, M.; Ramirez, J.A. Proton coordination by polyamine compounds in aqueous solution. Coord. Chem. Rev. 1999, 188, 97–156. [Google Scholar] [CrossRef]
- Bowman-James, K.; Bianchi, A.; García-España, E. (Eds.) Anion Coordination Chemistry; Wiley-VCH: New York, NY, USA, 2012. [Google Scholar]
- Sessler, J.L.; Gale, P.A.; Cho, W.S. Anion Receptor Chemistry; Monographs in Supramolecular Chemistry Series; Stoddart, J.F., Ed.; RSC Publishing: Cambridge, UK, 2006. [Google Scholar]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Savastano, M.; Bazzicalupi, C.; Giorgi, C.; Gratteri, P.; Bianchi, A. Cation, anion and ion-pair complexes with a G-3 poly(ethylene imine) dedrimer in aqueous solution. Molecules 2017, 22, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateus, P.; Bernier, N.; Delgado, R. Recognition of anions by polyammonium macrocyclic and cryptand receptors: Influence of the dimensionality on the binding behavior. Coord. Chem. Rev. 2010, 254, 1726–1747. [Google Scholar] [CrossRef]
- Garcia-España, E.; Díaz, P.; Llinares, J.M.; Bianchi, A. Anion coordination chemistry in aqueous solution of polyammonium receptors. Coord. Chem. Rev. 2006, 250, 2952–2986. [Google Scholar] [CrossRef]
- Bencini, A.; Bianchi, A.; Burguete, I.; Garcia-España, E.; Luis, S.V.; Ramirez, J.A. A remarkable shape selectivity in the molecular recognition of carboxylate anions in aqueous solution. J. Am. Chem. Soc. 1992, 114, 1919–1920. [Google Scholar] [CrossRef]
- Bencini, A.; Bianchi, A.; Dapporto, P.; Garcia-España, E.; Micheloni, M.; Ramirez, J.A.; Paoletti, P.; Paoli, P. Thermodynamic and structural aspects of the interaction between macrocyclic polyammonium cations and complexed anions. Inorg. Chem. 1992, 31, 1902–1908. [Google Scholar] [CrossRef]
- Bianchi, A.; Bazzicalupi, C.; Giorgi, C.; Savastano, M.; Morales-Lara, F. ATP dephosphorylation can be either enhanced or inhibited by pH-controlled interaction with a dendrimer molecule. Chem. Commun. 2015, 51, 3907–3910. [Google Scholar]
- Arranz-Mascarós, P.; Bazzicalupi, C.; Bianchi, A.; Giorgi, C.; Godino-Salido, M.L.; Gutiérrez-Valero, M.D.; Lopez-Garzón, R.; Valtancoli, B. Binding and recognition of AMP, ADP, ATP and related inorganic phosphate anions by a tren-based ligand containing a pyrimidine functionality. New J. Chem. 2011, 35, 1883–1891. [Google Scholar] [CrossRef]
- Savastano, M.; Bazzicalupi, C.; García-Gallarín, C.; De La Torre, M.D.L.; Bianchi, A.; Melguizo, M. Supramolecular forces and their interplay in stabilizing complexes of organic anions: Tuning binding selectivity in water. Org. Chem. Front. 2019, 6, 75–86. [Google Scholar] [CrossRef]
- Savastano, M.; García-Gallarín, C.; López de la Torre, M.D.; Bazzicalupi, C.; Bianchi, A.; Melguizo, M. Anion-p and lone pair-p interactions with s-tetrazine-based ligands. Coord. Chem. Rev. 2019, 397, 112–137. [Google Scholar] [CrossRef]
- Tei, L.; Bencini, A.; Blake, A.J.; Lippolis, V.; Perra, A.; Valtancoli, B.; Wilson, C.; Schröder, M. Co-ordination chemistry of amino pendant arm derivatives of 1,4,7-triazacyclononane. Dalton Trans. 2004, 1934–1944. [Google Scholar] [CrossRef] [PubMed]
- Savastano, M.; Bazzicalupi, C.; García-Gallarín, C.; Giorgi, C.; López de la Torre, M.D.; Pichierri, F.; Bianchi, A.; Melguizo, M. Halide and hydroxide anion binding in water. Dalton Trans. 2018, 47, 3329–3338. [Google Scholar] [CrossRef] [PubMed]
- Bazzicalupi, C.; Bianchi, A.; Biver, T.; Giorgi, C.; Santarelli, S.; Savastano, M. Formation of Double-Strand Dimetallic Helicates with a Terpyridine-Based Macrocycle. Inorg. Chem. 2014, 53, 12215–12224. [Google Scholar] [CrossRef]
- Fontanelli, M.; Micheloni, M. Proceedings of the I Spanish-Italian Congress on Thermodynamics of Metal Complexes; Diputación de Castellón: Castellón, Spain, 1990; pp. 41–43. [Google Scholar]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 661–671. [Google Scholar] [CrossRef]
- Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi, A.; Giorgi, C.; Valtancoli, B. Anion Binding by Protonated Forms of the Tripodal Ligand Tren. Inorg. Chem. 2009, 48, 2391–2398. [Google Scholar] [CrossRef]
- Schrödinger Release 2019-3; Schrödinger: New York, NY, USA, 2019.
- Niu, W.; Wong, E.H.; Weisman, G.R.; Hill, D.C.; Tranchemontagne, D.J.; Lam, K.-C.; Sommer, R.D.; Zakharovc, L.N.; Rheingold, A.L. Inside or outside a ligand cleft? Synthetic, structural, and kinetic inertness studies of zinc, cadmium, and mercury complexes of crossbridged cyclam and cyclen. Dalton Trans. 2004, 3536–3547. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compound are available from the authors. |
Equilibria | Log K |
---|---|
L + H+ = HL+ | 10.26 (3) |
HL+ + H+ = H2L2+ | 7.45 (2) |
H2L2+ + H+ = H3L3+ | 5.14 (2) |
H3L3+ + H+ = H4L4+ | 1.74 (1) |
Equilibria | Log K |
---|---|
L + Zn2+ = ZnL2+ | 11.695(8) |
ZnL2+ + H+ = ZnHL3+ | 5.86 (3) |
ZnL2++ OH− = ZnL(OH)+ | 3.95 2) |
ZnL2+ +2OH− = ZnL(OH)2 | 6.36 (2) |
Equilibria | Log K |
---|---|
HL+ + HPO42− = HL(HPO4)− | 2.23(6) |
H2L2+ + HPO42− = H2L(HPO4) | 2.77(7) |
H2L2+ + H2PO4− = H2L(H2PO4)+ | 2.83(7) |
H3L3+ + H2PO4− = H3L(H2PO4)2+ | 3.21(6) |
HL+ + Bz− = HLBz | 3.05(3) |
H2L2+ + Bz− = H2LBz+ | 3.74(5) |
H3L3+ + Bz− = H3LBz2+ | 4.22(7) |
H4L4+ + Bz− = H4LBz3+ | 6.41(8) |
H4L4+ + HBz = H4L(HBz)4+ | 3.4(1) |
Equilibria | Log K |
---|---|
ZnL2+ + PO43− = ZnL(PO4) − | 5.12(6) |
ZnL2+ + HPO42− = ZnL(HPO4) | 3.50(7) |
ZnL2+ + H2PO4− = ZnL(H2PO4)+ | 3.12(7) |
ZnHL3+ + H2PO4− = ZnHL(H2PO4)2+ | 3.38(6) |
ZnL2+ + Bz− = ZnLBz+ | 3.81(1) |
ZnHL3+ + Bz− = ZnHLBz2+ | 4.09(3) |
ZnL(OH)+ + Bz− = ZnL(OH)Bz | 3.49(3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savastano, M.; Fiaschi, M.; Ferraro, G.; Gratteri, P.; Mariani, P.; Bianchi, A.; Bazzicalupi, C. Sensing Zn2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail. Molecules 2020, 25, 1355. https://doi.org/10.3390/molecules25061355
Savastano M, Fiaschi M, Ferraro G, Gratteri P, Mariani P, Bianchi A, Bazzicalupi C. Sensing Zn2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail. Molecules. 2020; 25(6):1355. https://doi.org/10.3390/molecules25061355
Chicago/Turabian StyleSavastano, Matteo, Matteo Fiaschi, Giovanni Ferraro, Paola Gratteri, Palma Mariani, Antonio Bianchi, and Carla Bazzicalupi. 2020. "Sensing Zn2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail" Molecules 25, no. 6: 1355. https://doi.org/10.3390/molecules25061355
APA StyleSavastano, M., Fiaschi, M., Ferraro, G., Gratteri, P., Mariani, P., Bianchi, A., & Bazzicalupi, C. (2020). Sensing Zn2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail. Molecules, 25(6), 1355. https://doi.org/10.3390/molecules25061355