Development of a Liquid Chromatography–High Resolution Mass Spectrometry Method for the Determination of Free Fatty Acids in Milk
Abstract
:1. Introduction
2. Results and Discussion
2.1. ESI-MS and LC Data
2.2. Method Validation
2.3. Analysis of Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Stock and Working Solutions
3.3. Instrumentation
3.4. Sample Preparation
3.5. Method Validation
3.6. Milk Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- German, J.B.; Dillard, C.J. Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Crit. Rev. Food Sci. Nutr. 2006, 46, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Deeth, H.C.; Fitz-Gerald, C.H. Lipolytic enzymes and hydrolytic rancidity in milk and dairy products. In Advanced Dairy Chemistry; Fox, P.F., Ed.; Chapman and Hall: London, UK, 1995; Volume 2, pp. 247–308. [Google Scholar]
- Antonelli, M.L.; Curini, R.; Scricciolo, D.; Vinci, G. Determination of free fatty acids and lipase activity in milk: Quality and storage markers. Talanta 2002, 58, 561–568. [Google Scholar] [CrossRef]
- Deeth, H.C. Lipoprotein lipase and lipolysis in milk. Int. Dairy J. 2006, 16, 555–562. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; Angel de la Fuente, M. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mannion, D.T.; Furey, A.; Kilcawley, K.N. Free fatty acids quantification in dairy products. Int. J. Dairy Technol. 2016, 69, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. Gas chromatography–mass spectrometry methods for structural analysis of fatty acids. Lipids 1998, 33, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Liua, Z.; Ezernieksa, V.; Rochforta, S.; Cocks, B. Comparison of methylation methods for fatty acid analysis of milk fat. Food Chem. 2018, 261, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Amer, B.; Nebel, C.; Bertram, H.C.; Mortensen, G.; Hermansen, K.; Dalsgaar, T.K. Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry. Int. Dairy J. 2013, 32, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Mannion, D.T.; Furey, A.; Kilcawley, K.N. Development and validation of a novel free fatty acid butyl ester gas chromatography method for the determination of free fatty acids in dairy products. J. Agric. Food Chem. 2019, 67, 499–506. [Google Scholar] [CrossRef] [PubMed]
- La Nasa, J.; Degano, I.; Brandolini, L.; Modugno, F.; Bonaduce, I. A novel HPLC-ESI-Q-ToF approach for the determination of fatty acids and acylglycerols in food samples. Anal. Chim. Acta 2018, 1013, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Leng, J.; Peng, Y.; Zhang, L.; Guo, Y. Mass spectrometric analysis of free fatty acids in infant milk powders by frozen pretreatment coupled with isotope-labeling derivatization. J. Sep. Sci. 2016, 39, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, M.C.; Sergi, M.; Pepe, A.; Mattocci, E.; Martino, G.; Compagnone, D. Determination of free fatty acids in cheese by means of matrix solid-phase dispersion followed by ultra-high performance liquid chromatography and tandem mass spectrometry analysis. Food Anal. Methods 2018, 11, 2961–2968. [Google Scholar] [CrossRef]
- World Health Organization. Draft Guidelines on Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children. Public Consultation May to June 2018. Available online: https://extranet.who.int/dataform/upload/surveys/183439/files/Public-Consultation-on-the-Draft-Global-Strategy-on-Digital-Health.pdf (accessed on 10 February 2020).
- Astrup, A.; Bertram, H.C.S.; Bonjour, J.-P.; de Groot, L.C.P.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Otto, M.C.; Lemaitre, R.N.; Song, X.; King, I.B.; Siscovick, D.S.; Mozaffarian, D. Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: The cardiovascular health study. Am. J. Clin. Nutr. 2018, 108, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Fretts, A.; Marklund, M.; Ardisson Korat, A.V.; Yang, W.-S.; Lankinen, M.; Qureshi, W.; Helmer, C.; Chen, T.-A.; Wong, K.; et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018, 15, e1002670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Not applicable. |
Compound | Structure | Theoretical Mass [M − H]− | Measured Mass [M − H]− | Mass Error (ppm) |
---|---|---|---|---|
Caproic acid | 115.0765 | 115.0764 | 0.87 | |
Caprylic acid | 143.1078 | 143.1075 | 2.10 | |
Capric acid | 171.1391 | 171.1390 | 0.58 | |
Lauric acid | 199.1704 | 199.1703 | 0.50 | |
Myristoleic acid | 225.1850 | 225.1849 | 0.44 | |
Myristic acid | 227.2017 | 227.2016 | 0.44 | |
Pentadecanoic acid | 241.2173 | 241.2171 | 0.83 | |
Palmitic acid | 255.2330 | 255.2326 | 1.57 | |
9-Palmitoleic acid | 253.2173 | 253.2168 | 1.97 | |
Margaric acid | 269.2486 | 269.2485 | 0.37 | |
10-Z-Heptedecenoic acid | 267.2330 | 267.2331 | 0.37 | |
Stearic acid | 283.2643 | 283.2641 | 0.71 | |
Oleic acid | 281.2486 | 281.2485 | 0.36 | |
Linoleic acid | 279.2330 | 279.2330 | 0.00 | |
Linolenic acid | 277.2173 | 277.2175 | 0.72 | |
Arachidic acid | 311.2956 | 311.2955 | 0.32 | |
Bishomo-γ-linolenic acid | 305.2486 | 305.2487 | 0.33 | |
Arachidonic acid | 303.2330 | 303.2330 | 0.00 | |
5,8,11,14,17-Z-Eicosapentaenoic acid | 301.2173 | 301.2174 | 0.33 | |
7,10,13,16,19-Docosapentaenoic acid | 329.2486 | 329.2485 | 0.30 | |
4,7,10,13,16,19-Docosahexaenoic acid | 327.2330 | 327.2327 | 0.92 | |
Lignoceric acid | 367.3582 | 367.3583 | 0.27 |
Analyte | Range (ng/mL) | Calibration Εquations | Linearity (R2) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
Caproic acid | 10–500 | y = 2 x + 10 | 0.997 | 0.5 | 1.5 |
Caprylic acid | 10–500 | y = 34 x − 1773 | 0.99 | 0.5 | 1.1 |
Capric acid | 10–500 | y = 93 x − 3009 | 0.991 | 0.5 | 1.7 |
Lauric acid | 10–700 | y = 63 x + 2375 | 0.999 | 0.6 | 1.8 |
Myristic acid | 10–700 | y = 101 x + 2396 | 0.998 | 0.6 | 1.8 |
Myristoleic acid | 10–700 | y = 107 x − 683 | 0.999 | 0.6 | 1.8 |
Pentadecanoic acid | 10–700 | y = 78 x + 1319 | 0.998 | 0.8 | 2.4 |
Palmitic acid | 10–1300 | y = 55 x + 93651 | 0.993 | 0.9 | 2.3 |
9-Palmitoleic acid | 10–700 | y = 194 x + 716 | 0.999 | 1.6 | 4.8 |
Margaric acid | 10–700 | y = 93 x + 1668 | 0.997 | 0.8 | 2.4 |
10-Z-Heptedecenoic acid | 10–700 | y = 192 x − 922 | 0.999 | 0.8 | 2.4 |
Stearic acid | 10–1300 | y = 65 x + 98565 | 0.993 | 0.9 | 2.8 |
Oleic acid | 10–1300 | y = 167 x + 8786 | 0.997 | 0.7 | 2.3 |
Linoleic acid | 10–700 | y = 349 x − 2572 | 0.998 | 0.6 | 1.8 |
Linolenic acid | 10–700 | y = 282 x − 2587 | 0.99 | 0.6 | 1.8 |
Arachidic acid | 10–500 | y = 77 x − 461 | 0.994 | 0.8 | 2.4 |
bishomo-γ-Linolenic acid | 10–500 | y = 627 x − 3622 | 0.999 | 0.6 | 1.8 |
Arachidonic acid | 10–500 | y = 855 x − 2450 | 0.996 | 0.6 | 1.8 |
Eicosapentanoic acid | 10–500 | y = 825 x − 7182 | 0.998 | 0.6 | 1.8 |
7,10,13,16,19-Docosapentaenoic acid | 10–500 | y = 71 x − 238 | 0.996 | 0.4 | 1.2 |
4,7,10,13,16,19-Docosahexaenoic acid | 10–500 | y = 563 x − 6428 | 0.996 | 0.4 | 1.2 |
Lignoceric acid | 10–500 | y = 141x + 6107 | 0.996 | 0.6 | 1.8 |
Analyte | tR (min) | Spike Level (ng/mL) | Recovery (%) | RSDr (%) | RSDR (%) |
---|---|---|---|---|---|
Caproic acid | 2.2 | 50 300 500 | 84 85 93 | 5.82 2.23 6.56 | 6.55 3.15 7.89 |
Caprylic acid | 3.4 | 50 300 500 | 83 83 93 | 2.61 0.52 15.47 | 4.21 1.26 16.68 |
Capric acid | 4.3 | 50 300 500 | 82 82 94 | 6.25 1.00 14.31 | 8.21 2.36 15.21 |
Lauric acid | 5.0 | 50 300 700 | 93 95 96 | 5.50 5.95 0.47 | 6.12 6.33 1.54 |
Myristic acid | 5.8 | 50 300 700 | 97 98 101 | 5.97 7.96 12.40 | 6.12 8.31 13.01 |
Myristoleic acid | 5.2 | 50 300 700 | 90 91 91 | 1.25 0.33 3.07 | 1.98 1.35 3.81 |
Pentadecanoic acid | 6.1 | 50 300 700 | 94 95 95 | 3.10 3.41 5.41 | 2.93 3.50 6.02 |
Palmitic acid | 6.4 | 50 300 700 | 94 95 95 | 1.00 0.49 1.50 | 1.33 1.15 2.34 |
9-Palmitoleic acid | 5.9 | 50 300 700 | 90 90 92 | 1.21 0.31 3.50 | 1.65 1.63 4.21 |
Margaric acid | 6.6 | 50 300 700 | 94 95 101 | 0.85 0.80 3.69 | 1.11 1.23 4.81 |
10-Z-Heptedecenoic acid | 6.2 | 50 300 700 | 90 90 93 | 4.31 5.33 3.69 | 5.12 6.48 4.12 |
Stearic acid | 6.9 | 50 300 700 | 94 95 102 | 3.41 10.08 6.12 | 4.71 12.47 6.52 |
Oleic acid | 6.5 | 50 300 700 | 95 95 95 | 2.50 2.72 5.80 | 3.89 4.57 6.33 |
Linoleic acid | 6.1 | 50 300 700 | 90 90 94 | 3.74 4.06 4.51 | 4.99 5.24 5.18 |
Linolenic acid | 5.7 | 50 300 700 | 94 94 94 | 4.55 4.37 3.43 | 5.12 6.41 5.78 |
Arachidic acid | 7.3 | 50 300 500 | 97 98 100 | 7.52 8.07 15.64 | 8.33 9.12 16.01 |
Bishomo-γ-linolenic acid | 6.2 | 50 300 500 | 97 97 98 | 6.21 5.36 15.67 | 7.46 6.91 16.01 |
Arachidonic acid | 6.0 | 50 300 700 | 92 93 96 | 4.51 4.19 3.97 | 7.01 6.31 5.96 |
Eicosapentanoic acid | 5.6 | 50 300 500 | 91 92 94 | 6.21 3.10 18.51 | 8.74 3.41 19.12 |
7,10,13,16,19- Docosapentaenoic acid | 6.1 | 50 300 500 | 90 90 93 | 5.33 4.98 14.55 | 6.87 5.01 17.81 |
4,7,10,13,16,19- Docosahexaenoic acid | 5.9 | 50 300 500 | 93 94 96 | 2.55 0.41 11.26 | 5.02 2.51 12.26 |
Lignoceric acid | 8.0 | 50 300 500 | 94 95 101 | 3.21 2.23 6.56 | 6.87 2.45 7.81 |
Cow Milk (n = 13) | Goat Milk (n = 7) | |||||
---|---|---|---|---|---|---|
Fatty Acid | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) | Minimum Value (μg/mL) | Maximum Value (μg/mL) | Mean Value ± SD (μg/mL) |
C6:0 | 0.5 | 2.3 | 1.2 ± 0.4 | 1.4 | 2.8 | 2.0 ± 0.5 |
C8:0 | 0.7 | 1.9 | 1.1 ± 0.3 | 2.2 | 4.9 | 3.3 ± 0.9 |
C10:0 | 0.6 | 2.8 | 1.4 ± 0.6 | 3.0 | 5.8 | 4.7± 1.5 |
C12:0 | 1.6 | 8.8 | 3.9 ± 2.0 | 1.8 | 5.3 | 3.4 ± 1.4 |
C14:0 | 3.5 | 10.5 | 6.0 ± 1.8 | 1.2 | 5.2 | 3.4 ± 1.3 |
C14:1 (n-5) | 0.1 | 1.6 | 0.5 ± 0.4 | <LOQ | <LOQ | <LOQ |
C15:0 | 0.2 | 0.8 | 0.5 ± 0.2 | 0.2 | 0.3 | 0.3 ± 0.0 |
C16:0 | 26.7 | 55.1 | 33.1 ± 8.2 | 20.6 | 24.1 | 22.8 ± 1.8 |
C16:1 (n-7) | 0.5 | 2.9 | 1.4 ± 0.7 | 0.02 | 0.4 | 0.2 ± 0.1 |
C17:0 | 0.5 | 0.9 | 0.6 ± 0.1 | 0.1 | 0.2 | 0.2 ± 0.0 |
C17:1 (n-7) | 0.3 | 0.4 | 0.4 ± 0.0 | 0.3 | 0.3 | 0.3 ± 0.0 |
C18:0 | 7.1 | 26.0 | 16.5 ± 5.3 | 8.6 | 16.9 | 12.7 ± 2.8 |
C18:1 (n-9) | 9.3 | 19.8 | 14.8 ± 3.8 | 13.1 | 13.4 | 13.3 ± 0.3 |
C18:2 (n-6) | 0.1 | 4.1 | 2.0 ± 1.2 | 1.2 | 2.4 | 1.8 ± 0.6 |
C18:3 (n-3) and (n-6) | 0.1 | 0.9 | 0.4 ± 0.3 | 0.3 | 0.8 | 0.6 ± 0.2 |
C20:0 | 0.3 | 0.6 | 0.4 ± 0.1 | 0.2 | 0.3 | 0.2 ± 0.0 |
C20:3 (n-6) | 0.1 | 0.1 | 0.1 ± 0.0 | <LOQ | <LOQ | <LOQ |
C20:4 (n-6) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
C20:5 (n-3) | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
C22:5 (n-3) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
C22:6 (n-3) | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
C24:0 | 0.6 | 0.9 | 0.8 ± 0.1 | 0.3 | 0.4 | 0.3 ± 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokotou, M.G.; Mantzourani, C.; Kokotos, G. Development of a Liquid Chromatography–High Resolution Mass Spectrometry Method for the Determination of Free Fatty Acids in Milk. Molecules 2020, 25, 1548. https://doi.org/10.3390/molecules25071548
Kokotou MG, Mantzourani C, Kokotos G. Development of a Liquid Chromatography–High Resolution Mass Spectrometry Method for the Determination of Free Fatty Acids in Milk. Molecules. 2020; 25(7):1548. https://doi.org/10.3390/molecules25071548
Chicago/Turabian StyleKokotou, Maroula G., Christiana Mantzourani, and George Kokotos. 2020. "Development of a Liquid Chromatography–High Resolution Mass Spectrometry Method for the Determination of Free Fatty Acids in Milk" Molecules 25, no. 7: 1548. https://doi.org/10.3390/molecules25071548
APA StyleKokotou, M. G., Mantzourani, C., & Kokotos, G. (2020). Development of a Liquid Chromatography–High Resolution Mass Spectrometry Method for the Determination of Free Fatty Acids in Milk. Molecules, 25(7), 1548. https://doi.org/10.3390/molecules25071548