Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. A. membranacea Essential Oil Composition
2.2. Cytotoxic Activity
2.3. Induction of Cell Apoptosis
2.4. Perturbation of the Cell Cycle
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Hydrodistillation of the Essential Oil
4.3. Gas Chromatography–Mass Spectrometry Analyses and Compounds Identification
4.4. Chemicals and Reagents
4.5. Cell Culture
4.6. Cytotoxicity Assay
4.7. Induction of Apoptosis Assay
4.8. Perturbation of the Cell Cycle
4.9. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Kwan, Y.P.; Saito, T.; Ibrahim, D.; Al-Hassan, F.M.; Ein Oon, C.; Chen, Y.; Jothy, S.L.; Kanwar, J.R.; Sasidharan, S. Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm. Biol. 2016, 54, 1223–1236. [Google Scholar] [PubMed] [Green Version]
- Iannuzzi, A.M.; Camero, C.M.; D’Ambola, M.; D’Angelo, V.; Amira, S.; Bader, A.; Braca, A.; De Tommasi, N.; Germanò, M.P. Antiangiogenic Iridoids from Stachys ocymastrum and Premna resinosa. Planta Med. 2019, 85, 1034–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsik, P.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosynthese. Planta Med. 2005, 71, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Sarıkürkçü, C.; Aktümsek, A.; Ceylan, R. Antioxidant potential and inhibition of key enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. Endemic to Turkey. Rec. Nat. Prod. 2015, 10, 195–206. [Google Scholar]
- De Andrade, T.U.; Brasil, G.A.; Endringer, D.C.; Da Nóbrega, F.R.; De Sousa, D.P. Cardiovascular activity of the chemical constituents of essential oils. Molecules 2017, 22, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Winiarczyk, K.; Kowalski, R. Essential oil from Arnica montana L. Achenes: Chemical characteristics and anticancer activity. Molecules 2019, 24, 4158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attallah, O.A.; Shetta, A.; Elshishiny, F.; Mamdouh, W. Essential oil loaded pectin/chitosan nanoparticles preparation and optimization: Via Box-Behnken design against MCF-7 breast cancer cell lines. RSC Adv. 2020, 10, 8703–8708. [Google Scholar] [CrossRef] [Green Version]
- Joyce Nirmala, M.; Durai, L.; Gopakumar, V.; Nagarajan, R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 2019, 14, 6439–6450. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, E.; Bernath, J. Biological Activities of Yarrow Species (Achillea spp.). Curr. Pharm. Des. 2008, 14, 3151–3167. [Google Scholar] [CrossRef]
- Jarić, S.; Popović, Z.; Mačukanović-Jocić, M.; Djurdjević, L.; Mijatović, M.; Karadžić, B.; Mitrović, M.; Pavlović, P. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef]
- Kültür, Ş. Medicinal plants used in Kırklareli Province (Turkey). J. Ethnopharmacol. 2007, 111, 341–364. [Google Scholar] [CrossRef] [PubMed]
- Aburjai, T.; Hudaib, M.; Tayyem, R.; Yousef, M.; Qishawi, M. Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J. Ethnopharmacol. 2007, 110, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Lev, E. Reconstructed materia medica of the Medieval and Ottoman al-Sham. J. Ethnopharmacol. 2002, 80, 167–179. [Google Scholar] [CrossRef]
- Al-Eisawi, D.M. List of Jordan Vascular Plants. Mitt. Bot. Staatssamml. München 1982, 18, 79–182. [Google Scholar]
- Arabaci, T.; Yildiz, B. Taxonomy and threatened categories of three Achillea L. (Asteraceae-Anthemideae) Species Previously cited in the Data Deficient (DD) category. Turk. J. Bot. 2008, 32, 311–317. [Google Scholar]
- Bader, A.; Panizzi, L.; Cioni, P.; Flamini, G. Achillea ligustica: Composition and antimicrobial activity of essential oils from the leaves, flowers and some pure constituents. Open Life Sci. 2007, 2, 206–212. [Google Scholar] [CrossRef]
- Özek, T.; Tabanca, N.; Demirci, F.; Wedge, D.E.; Başer, H.C. Enantiomeric distribution of some linalool containing essential oils and their biological activities. Rec. Nat. Prod. 2010, 4, 180–192. [Google Scholar]
- Çakır, A.; Özer, H.; Aydın, T.; Kordali, Ş.; Çavuşoglu, A.T.; Akçin, T.; Mete, T.E.; Akçin, A. Phytotoxic and insecticidal properties of essential oils and extracts of four Achillea species. Rec. Nat. Prod. 2015, 10, 154–167. [Google Scholar]
- Chagas-Paula, D.; Oliveira, T.; Faleiro, D.; Oliveira, R.; Da Costa, F. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase. Planta Med. 2015, 81, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, U.K.; Aka, C.; Oz, M.G. Plants used in Anatolian traditional medicine for the treatment of hemorrhoid. Rec. Nat. Prod. 2017, 11, 235–250. [Google Scholar]
- Trifunović, S.; Isaković, A.; Isaković, A.; Vučković, I.; Mandić, B.; Novaković, M.; Vajs, V.; Milosavljević, S.; Trajković, V. Isolation, Characterization, and In Vitro Cytotoxicity of New Sesquiterpenoids from Achillea clavennae. Planta Med. 2014, 80, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Haïdara, K.; Zamir, L.; Shi, Q.-W.; Batist, G. The flavonoid Casticin has multiple mechanisms of tumor cytotoxicity action. Cancer Lett. 2006, 242, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Bader, A.; Abdallah, Q.; Abdelhady, M.; De Tommasi, N.; Malafronte, N.; Shaheen, U.; Bkhaitan, M.; Cotugno, R. Cytotoxicity of Some Plants of the Asteraceae Family: Antiproliferative Activity of Psiadia punctulata Root Sesquiterpenes. Rec. Nat. Prod. 2019, 13, 307–315. [Google Scholar] [CrossRef]
- Abdallah, Q.; Al-Deeb, I.; Bader, A.; Hamam, F.; Saleh, K.; Abdulmajid, A. Anti-angiogenic activity of Middle East medicinal plants of the Lamiaceae family. Mol. Med. Rep. 2018, 18, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Bader, A.; Flamini, G.; Cioni, P.L.; Morelli, I. Essential oil composition of Achillea santolina L. and Achillea biebersteinii Afan. collected in Jordan. Flavour Fragr. J. 2003, 18, 36–38. [Google Scholar] [CrossRef]
- Chizzola, R. Composition of the Essential Oil from the Flower Heads of Achillea tomentosa L. J. Essent. Oil Bear. Plants 2018, 21, 535–539. [Google Scholar] [CrossRef]
- Yordanova, Z.P.; Rogova, M.A.; Zhiponova, M.K.; Georgiev, M.I.; Kapchina-Toteva, V.M. Comparative determination of the essential oil composition in Bulgarian endemic plant Achillea thracica Velen. during the process of ex situ conservation. Phytochem. Lett. 2017, 20, 456–461. [Google Scholar] [CrossRef]
- Farajpour, M.; Ebrahimi, M.; Baghizadeh, A.; Aalifar, M. Phytochemical and Yield Variation among Iranian Achillea millefolium Accessions. HortScience 2017, 52, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Darmanin, S.; Wismayer, P.S.; Camilleri Podesta, M.T.; Micallef, M.J.; Buhagiar, J.A. An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat. Prod. Res. 2009, 23, 561–571. [Google Scholar] [CrossRef]
- Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N.; et al. Antitumor effect of 1, 8-cineole against colon cancer. Oncol. Rep. 2013, 30, 2647–2652. [Google Scholar] [CrossRef] [Green Version]
- Abu-Dahab, R.; Kasabri, V.; Afifi, F.U. Evaluation of the volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae) on breast cancer cell line models. Rec. Nat. Prod. 2014, 8, 136–147. [Google Scholar]
- Duymuş, H.G.; Çiftçi, G.A.; Yıldırım, Ş.U.; Demirci, B.; Kırımer, N. The cytotoxic activity of Vitex agnus castus L. essential oils and their biochemical mechanisms. Ind. Crops Prod. 2014, 55, 33–42. [Google Scholar] [CrossRef]
- Kumar, D.; Sukapaka, M.; Babu, G.D.K.; Padwad, Y. Chemical Composition and In Vitro Cytotoxicity of Essential Oils from Leaves and Flowers of Callistemon citrinus from Western Himalayas. PLoS ONE 2015, 10, e0133823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017, 65, 802–812. [Google Scholar]
- Tundis, R.; Iacopetta, D.; Sinicropi, M.S.; Bonesi, M.; Leporini, M.; Passalacqua, N.G.; Ceramella, J.; Menichini, F.; Loizzo, M.R. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). Food Chem. Toxicol. 2017, 106, 155–164. [Google Scholar] [PubMed]
- Sampath, S.; Veeramani, V.; Krishnakumar, G.S.; Sivalingam, U.; Madurai, S.L.; Chellan, R. Evaluation of in vitro anticancer activity of 1,8-Cineole–containing n-hexane extract of Callistemon citrinus (Curtis) Skeels plant and its apoptotic potential. Biomed. Pharmacother. 2017, 93, 296–307. [Google Scholar] [CrossRef]
- Harassi, Y.; Tilaoui, M.; Idir, A.; Frédéric, J.; Baudino, S.; Ajouaoi, S.; Mouse, H.A.; Zyad, A. Phytochemical analysis, cytotoxic and antioxidant activities of Myrtus communis essential oil from Morocco. J. Complement. Integr. Med. 2019, 16, 20180100. [Google Scholar] [CrossRef]
- Lee, C.C.; Houghton, P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J. Ethnopharmacol. 2005, 100, 237–243. [Google Scholar] [CrossRef]
- Pereira, J.M.; Peixoto, V.; Teixeira, A.; Sousa, D.; Barros, L.; Ferreira, I.C.F.R.; Vasconcelos, M.H. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis. Food Chem. Toxicol. 2018, 118, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, C.; Ascrizzi, R.; Tani, C.; Bottoni, M.; Maleci Bini, L.; Flamini, G.; Fico, G. Salvia uliginosa Benth.: Glandular trichomes as bio-factories of volatiles and essential oil. Flora 2017, 233, 12–21. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995; ISBN 0-931710-85-5. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Chahrour, O.; Abdalla, A.; Lam, F.; Midgley, C.; Wang, S. Synthesis and biological evaluation of benzyl styrylsulfonyl derivatives as potent anticancer mitotic inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 3066–3069. [Google Scholar] [CrossRef] [Green Version]
- Gouda, A.M.; Abdelazeem, A.H.; Abdalla, A.N.; Ahmed, M. Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities. Acta Pharm. 2019, 68, 251–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, U.; Ragab, E.A.; Abdalla, A.N.; Bader, A. Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry 2018, 145, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Attalah, K.M.; Abdalla, A.N.; Aslam, A.; Ahmed, M.; Abourehab, M.A.S.; ElSawy, N.A.; Gouda, A.M. Ethyl benzoate bearing pyrrolizine/indolizine moieties: Design, synthesis and biological evaluation of anti-inflammatory and cytotoxic activities. Bioorg. Chem. 2020, 94, 103371. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: The starting plant material is available from the authors. |
Constituents | l.r.i.a | Relative Abundance (%) |
---|---|---|
(E)-2-hexenal | 855 | 1.7 |
1-hexanol | 868 | 0.4 |
heptanal | 900 | 0.4 |
(E,E)-2,4-hexadienal | 910 | tr b |
α-thujene | 931 | tr |
α-pinene | 939 | 0.7 |
camphene | 953 | tr |
(Z)-2-heptenal | 959 | 0.2 |
benzaldehyde | 961 | 0.8 |
1-heptanol | 969 | tr |
sabinene | 976 | tr |
1-octen-3-ol | 978 | 0.2 |
6-methyl-5-hepten-2-one | 985 | 0.7 |
2,3-dehydro-1,8-cineole | 991 | 1.3 |
octanal | 1002 | 1.6 |
α-phellandrene | 1005 | 0.4 |
(E,E)-2,4-heptadienal | 1015 | 0.4 |
α-terpinene | 1018 | 0.2 |
p-cymene | 1027 | 0.3 |
1,8-cineole | 1035 | 21.7 |
(Z)-β-ocimene | 1041 | tr |
3-octen-2-one | 1042 | tr |
phenyl acetaldehyde | 1045 | 1.5 |
(E,E)-3,5-octadien-2-one | 1090 | 0.4 |
linalool | 1099 | 1.1 |
α-thujone | 1102 | 2.3 |
cis-p-menth-2-en-1-ol | 1123 | 2 |
α-campholenal | 1127 | tr |
cis-p-mentha-2,8-dien-1-ol | 1139 | tr |
trans-pinocarveol | 1140 | 3.1 |
camphor | 1145 | 1.6 |
(E)-2-nonenal | 1162 | 0.7 |
pinocarvone | 1164 | 1.0 |
borneol | 1166 | 4.3 |
4-terpineol | 1178 | 0.9 |
p-cymen-8-ol | 1185 | 0.3 |
cryptone | 1186 | tr |
α-terpineol | 1190 | 1.4 |
(Z)-4-decenal | 1194 | 2.2 |
myrtenal | 1195 | 0.8 |
safranal | 1200 | 0.4 |
decanal | 1205 | 2.5 |
trans-carveol | 1219 | tr |
β-cyclocitral | 1223 | 0.3 |
isobornyl formate | 1233 | 0.3 |
piperitone | 1254 | 2.1 |
linalyl acetate | 1258 | 0.7 |
cis-chrysanthenyl acetate | 1263 | tr |
geranial | 1272 | tr |
isobornyl acetate | 1286 | 0.3 |
thymol | 1291 | 0.3 |
carvacrol | 1300 | 0.4 |
(E,E)-2,4-decadienal | 1316 | 0.2 |
methyl decanoate | 1326 | tr |
hexyl tiglate | 1333 | 0.7 |
trans-piperitol acetate | 1346 | tr |
α-terpinyl acetate | 1351 | tr |
eugenol | 1358 | tr |
neryl acetate | 1367 | tr |
α-copaene | 1376 | tr |
(E)-β-damascenone | 1382 | 0.9 |
n-tetradecane | 1400 | 0.2 |
methyl eugenol | 1403 | tr |
dodecanal | 1408 | tr |
β-caryophyllene | 1418 | 0.4 |
(E)-α-ionone | 1428 | 0.3 |
cabreuva oxide A | 1447 | tr |
(E)-geranyl acetone | 1454 | 1.7 |
β-santalene | 1462 | 1.2 |
cabreuva oxide D | 1480 | 0.8 |
germacrene D | 1485 | 0.9 |
(E)-β-ionone | 1485 | 0.6 |
cis-β-guaiene | 1492 | 0.9 |
bicyclogermacrene | 1494 | 0.4 |
n-pentadecane | 1500 | tr |
tridecanal | 1518 | 0.3 |
myristicin | 1520 | 3.3 |
7-epi-a-selinene | 1522 | 0.3 |
α-cadinene | 1538 | 2.6 |
ledol | 1565 | 0.3 |
trans-nerolidol | 1566 | 0.5 |
spathulenol | 1576 | 2.7 |
caryophyllene oxide | 1581 | 0.8 |
n-hexadecane | 1600 | 0.4 |
β-oplopenone | 1606 | 0.4 |
dill apiole | 1621 | 0.6 |
τ-cadinol | 1641 | 0.4 |
β-eudesmol | 1649 | 0.7 |
intermedeol | 1667 | 0.3 |
n-heptadecane | 1700 | tr |
pentadecanal | 1717 | 0.2 |
hexahydrofarnesylacetone | 1845 | tr |
(3Z)-cembrene A | 1959 | 0.4 |
linoleic acid ethyl ester | 2160 | 2.3 |
1-pentacosene | 2400 | 3.8 |
n-pentacosane | 2500 | 0.6 |
Monoterpene hydrocarbons | 1.6 | |
Oxygenated monoterpenes | 45.9 | |
Sesquiterpene hydrocarbons | 6.7 | |
Oxygenated sesquiterpenes | 6.9 | |
Diterpene hydrocarbons | 0.4 | |
Apocarotenes | 4.2 | |
Phenylpropanoids | 3.9 | |
Other non-terpene derivatives | 22.4 | |
Total identified (%) | 92.0 |
MCF7 | A2780 | HT29 | MRC5 |
---|---|---|---|
50.86 ± 10.14 | 12.99 ± 2.96 | 14.02 ± 4.89 | 49.25 ± 1.27 |
A2780 | MRC5 | |
---|---|---|
1,8-Cineole | 0.26 ± 0.04 | 10.50 ± 1.70 |
doxorubicin | 0.14 ± 0.02 | 0.21 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, A.N.; Shaheen, U.; Abdallah, Q.M.A.; Flamini, G.; Bkhaitan, M.M.; Abdelhady, M.I.S.; Ascrizzi, R.; Bader, A. Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells. Molecules 2020, 25, 1582. https://doi.org/10.3390/molecules25071582
Abdalla AN, Shaheen U, Abdallah QMA, Flamini G, Bkhaitan MM, Abdelhady MIS, Ascrizzi R, Bader A. Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells. Molecules. 2020; 25(7):1582. https://doi.org/10.3390/molecules25071582
Chicago/Turabian StyleAbdalla, Ashraf N., Usama Shaheen, Qasem M. A. Abdallah, Guido Flamini, Majdi M. Bkhaitan, Mohamed I. S. Abdelhady, Roberta Ascrizzi, and Ammar Bader. 2020. "Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells" Molecules 25, no. 7: 1582. https://doi.org/10.3390/molecules25071582
APA StyleAbdalla, A. N., Shaheen, U., Abdallah, Q. M. A., Flamini, G., Bkhaitan, M. M., Abdelhady, M. I. S., Ascrizzi, R., & Bader, A. (2020). Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells. Molecules, 25(7), 1582. https://doi.org/10.3390/molecules25071582