Formation of Phases in Reactively Sintered TiAl3 Alloy
Abstract
:1. Introduction
2. Results
2.1. Thermal Analysis
2.2. Phase Composition and Microstructure of Alloys Heated at Various Heating Rates
2.3. Formation of Phases in Samples Annealed at Temperatures Below Melting Point of Al
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High. Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kimura, M.; Suyama, R. Alloy design of gamma titanium aluminide intermetallic compound. In Nippon Steel Technical Report; Nippon Steel Corporation: Tokyo, Japan, 1994; Volume 62. [Google Scholar]
- Li, X.-W.; Sun, H.-F.; Fang, W.-B.; Ding, Y.-F. Structure and morphology of Ti-Al composite powders treated by mechanical alloying. Trans. Nonferr. Metals Soc. 2011, 21, s338–s341. [Google Scholar] [CrossRef]
- Kattner, U.R.; Lin, J.-C.; Chang, Y.A. Thermodynamic Assessment and Calculation of the Ti-Al System. Metall. Trans. A 1992, 23, 2081–2090. [Google Scholar] [CrossRef]
- Yang, W.Y.; Weatherly, G.C. A study of combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1996, 31, 3707–3713. [Google Scholar] [CrossRef]
- Yi, H.C.; Petric, A.; Moore, J.J. Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1992, 27, 6797–6806. [Google Scholar] [CrossRef]
- Wang, T.; Lu, Y.X.; Zhu, M.L.; Zhang, J.S.; Ji, S.J. DSC Research on Critical Temperature in Thermal Explosion Synthesis Reaction Ti+3Al→TiAl3. J. Therm. Anal. Calorim. 2002, 67, 605–611. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, Q.; Zhang, J.; Shi, J.; Xiao, G.; Gu, M. Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system. J. Wuhan Univ. Technol. 2008, 23, 381–385. [Google Scholar] [CrossRef]
- Agote, I.; Coleto, J.; Gutiérrez, M.; Sargsyan, A.; García de Cortazar, M.; Lagos, M.A.; Borovinskaya, I.P.; Sytschev, A.E.; Kvanin, V.L.; Balikhina, N.T.; et al. Microstructure and mechanical properties of gamma TiAl based alloys produced by combustion synthesis+compaction route. Intermetallics 2008, 16, 1310–1316. [Google Scholar] [CrossRef]
- Whitney, M.; Corbin, S.F.; Gorbet, R.B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 2008, 56, 559–570. [Google Scholar] [CrossRef]
- Bertolino, N.; Monagheddu, M.; Tacca, A.; Giuliani, P.; Zanotti, C.; Anselmi Tamburini, U. Ignition mechanism in combustion synthesis of Ti–Al and Ti–Ni systems. Intermetallics 2003, 11, 41–49. [Google Scholar] [CrossRef]
- Sujata, M.; Bhargava, S.; Sangal, S. On the formation of TiAl3 during reaction between solid Ti and liquid Al. J. Mater. Sci. Lett. 1997, 16, 1175–1178. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Chung, S.-L. A study of combustion synthesis reaction in the Ti + C/Ti + Al system. J. Mater. Sci. 2004, 39, 2073–2080. [Google Scholar] [CrossRef]
- Peng, L.M.; Wang, J.H.; Li, H.; Zhao, J.H.; He, L.H. Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scripta Mater. 2005, 52, 243–248. [Google Scholar] [CrossRef]
- Školáková, A.; Leitner, J.; Salvetr, P.; Novák, P.; Deduytsche, D.; Kopeček, J.; Detavernier, C.; Vojtěch, D. Kinetic and thermodynamic description of intermediary phases formation in Ti-Al system during reactive sintering. Mater. Chem. Phys. 2019, 230, 122–130. [Google Scholar] [CrossRef]
- Školáková, A.; Salvetr, P.; Novák, P.; Leitner, J.; Deduytsche, D. Mechanism of the Intermediary Phase Formation in Ti-20 wt. % Al Mixture during Pressureless Reactive Sintering. Materials 2019, 12, 2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massalski, T.B. Binary alloy phase diagrams. ASM Int. 1992, 3, 2874. [Google Scholar]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Adeli, M.; Seyedein, S.H.; Aboutalebi, M.R.; Kobashi, M.; Kanetake, N. A study on the combustion synthesis of titanium aluminide in the self-propagating mode. J. Alloy Compd. 2010, 497, 100–104. [Google Scholar] [CrossRef]
- Arakawa, Y.; Kobashi, M.; Kanetake, N. Foaming behavior of long-scale Al–Ti intermetallic foam by SHS mode combustion reaction. Intermetallics 2013, 41, 22–27. [Google Scholar] [CrossRef]
- Mirjalili, M.; Soltanieh, M.; Matsuura, K.; Ohno, M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics 2013, 32, 297–302. [Google Scholar] [CrossRef]
- Školáková, A.; Salvetr, P.; Novák, P.; Vojtěch, D. Formation of Ti-Al phases during SHS process. Acta Phys. Pol. A 2018, 134, 743–747. [Google Scholar] [CrossRef]
- Feng, G.-J.; Li, Z.-R.; Liu, R.-H.; Feng, S.-C. Effects of Joining Conditions on Microstructure and Mechanical Properties of Cf/Al Composites and TiAl Alloy Combustion Synthesis Joints. Acta Metall. Sin.-Engl. 2015, 28, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.Y.; Li, S.-C.; Zhang, L. Microstructure evolution of Al–Ti liquid–solid interface. Trans. Nonferr. Metals Soc. 2013, 23, 3545–3552. [Google Scholar] [CrossRef]
- Sina, H.; Iyengar, S. Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures. J. Therm. Anal. Calorim. 2015, 122, 689–698. [Google Scholar] [CrossRef]
- Yu, S.; Zhipeng, W.; Lianxi, H.; Binghua, W.; Taiqing, D. Characterization on Solid Phase Diffusion Reaction Behavior and Diffusion Reaction Kinetic of Ti/Al. Rare Metal. Matal Eng. 2017, 46, 2080–2086. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds TiAl63 (in wt.%) are available from the authors. |
Heating Rates (°C/min) | Tonset (°C) | Tmaximum (°C) | Toffset (°C) |
---|---|---|---|
19 | 662 | 705 | 680 |
59 | 735 | 770 | 778 |
89 | 777 | 817 | 828 |
102 | 791 | 833 | 848 |
Heating Rate (°C/min) | Ti (wt.%) | Al (wt.%) |
---|---|---|
59 | 78.1 ± 0.8 | 21.9 ± 0.8 |
89 | 77.3 ± 0.7 | 22.7 ± 0.7 |
102 | 77.1 ± 0.5 | 22.9 ± 0.5 |
Ti (wt. %) | Al (wt. %) | |
---|---|---|
Al area | 6.6 ± 3.9 | 93.4 ± 3.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Školáková, A.; Salvetr, P.; Leitner, J.; Lovaši, T.; Novák, P. Formation of Phases in Reactively Sintered TiAl3 Alloy. Molecules 2020, 25, 1912. https://doi.org/10.3390/molecules25081912
Školáková A, Salvetr P, Leitner J, Lovaši T, Novák P. Formation of Phases in Reactively Sintered TiAl3 Alloy. Molecules. 2020; 25(8):1912. https://doi.org/10.3390/molecules25081912
Chicago/Turabian StyleŠkoláková, Andrea, Pavel Salvetr, Jindřich Leitner, Tomáš Lovaši, and Pavel Novák. 2020. "Formation of Phases in Reactively Sintered TiAl3 Alloy" Molecules 25, no. 8: 1912. https://doi.org/10.3390/molecules25081912
APA StyleŠkoláková, A., Salvetr, P., Leitner, J., Lovaši, T., & Novák, P. (2020). Formation of Phases in Reactively Sintered TiAl3 Alloy. Molecules, 25(8), 1912. https://doi.org/10.3390/molecules25081912