Leek or Garlic? A Chemical Evaluation of Elephant Garlic Volatiles
Abstract
:1. Introduction
2. Results
2.1. Headspace Compositions
2.2. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Head-Space Solid Phase Micro-Extraction (HS-SPME)
4.3. Gas Chromatography Coupled with Mass Spectrometry (GC-MS) and Compounds Identification
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guenaoui, C.; Mang, S.; Figliuolo, G.; Neffati, M. Diversity in Allium ampeloprasum: From small and wild to large and cultivated. Genet. Resour. Crop. Evol. 2013, 60, 97–114. [Google Scholar] [CrossRef]
- Bothmer, R.V. Cytological studies in Allium. I. Chromosome numbers and morphology in Allium sect. Allium from Greece. Bot. Not. 1970, 1970, 518–550. [Google Scholar]
- Hirschegger, P.; Jakše, J.; Trontelj, P.; Bohanec, B. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Mol. Phylogenet. Evol. 2010, 54, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Terzaroli, N. Caratterizzazione genetica dell’Aglione (A. ampeloprasum) della Val di Chiana; Università degli Studi di Perugia: Perugia, Italy, 2015. [Google Scholar]
- Figliuolo, G.; Mang, S. Characterization and discrimination of mediterranean bulb-producing garlic. In Garlic Consumption and Health; Pacurar, M., Krejci, G., Eds.; Nova Science Publishers Inc: New York, NY, USA, 2010; pp. 181–197. [Google Scholar]
- Fondazione Slow Food per la Biodiversità Onlus Aglione della Chiana-Arca del Gusto Fondazione Slow Food. Available online: https://www.fondazioneslowfood.com/it/arca-del-gusto-slow-food/aglione-della-chiana/ (accessed on 24 August 2017).
- Guastaldi, A. Aglione di Valdichiana. Available online: http://www.aglione.it/studi.html (accessed on 24 August 2017).
- Rattanachaikunsopon, P.; Phumkhachorn, P. Diallyl Sulfide Content and Antimicrobial Activity against Food-Borne Pathogenic Bacteria of Chives (Allium schoenoprasum). Biosci. Biotechnol. Biochem. 2008, 72, 2987–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, L.D.; Gardner, C.D. Composition, stability, and bioavailability of garlic products used in a clinical trial. J. Agric. Food Chem. 2005, 53, 6254–6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, J.G. Analysis of Garlic Cultivars Using Head Space Solid Phase Microextrac-tion/Gas Chromatography/Mass Spectroscopy. Open Food Sci. J. 2012, 6, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kharazi, P.R. GC and Mass-Spectrometric Comparison of Organo Sulfur Compounds in Two Varieties of Iranian Garlic. Phosphorus. Sulfur. Silicon Relat. Elem. 2005, 180, 1399–1403. [Google Scholar] [CrossRef]
- Block, E.; Naganathan, S.; Putman, D.; Zhao, S.H. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (ramsoms), leek, scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J. Agric. Food Chem. 1992, 40, 2418–2430. [Google Scholar] [CrossRef]
- Block, E.; Naganathan, S.; Putman, D.; Zhao, S.-H. Organosulfur chemistry of garlic and onion: Recent results. Pure Appl. Chem. 1993, 65, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Block, E. Flavorants from Garlic, Onion, and Other Alliums and Their Cancer-Preventive Properties. In Food Phytochemicals for Cancer Prevention I-Fruit and Vegetables; Huang, M.T., Osawa, T., Ho, C.T., Rosen, R.T., Eds.; ACS Symposium Series: Washington, DC, USA, 1993; pp. 84–96. [Google Scholar]
- Devi, P.V.; Brar, J.K. Chemical Science Review and Letters Comparison of Proximate Composition and Mineral Concentration of Allium ampeloprasum (elephant garlic) and Allium sativum (garlic). Chem. Sci. Rev. Lett. 2018, 7, 362–367. [Google Scholar]
- Cai, X.-J.; Uden, P.C.; Block, E.; Zhang, X.; Quimby, B.D.; Sullivan, J.J. Allium chemistry: Identification of natural abundance organoselenium volatiles from garlic, elephant garlic, onion, and Chinese chive using headspace gas chromatography with atomic emission detection. J. Agric. Food Chem. 1994, 42, 2081–2084. [Google Scholar] [CrossRef]
- Lu, X.; Ross, C.F.; Powers, J.R.; Aston, D.E.; Rasco, B.A. Determination of Total Phenolic Content and Antioxidant Activity of Garlic (Allium sativum) and Elephant Garlic (Allium ampeloprasum) by Attenuated Total Reflectance–Fourier Transformed Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 5215–5221. [Google Scholar] [CrossRef] [PubMed]
- Ascrizzi, R.; González-Rivera, J.; Pomelli, C.S.; Chiappe, C.; Margari, P.; Costagli, F.; Longo, I.; Tiné, M.R.; Flamini, G.; Duce, C. Ionic liquids, ultra-sounds and microwaves: An effective combination for a sustainable extraction with higher yields. The cumin essential oil case. React. Chem. Eng. 2017, 2, 577–589. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by gas chromatography/mass spectroscopy; Allured Pub. Corp: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- NIST NIST/EPA/NIH Mass Spectral Library; The NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014.
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas. Chromatography; Academic Press: Pittsburgh, PA, USA, 1982. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Choi, Y.H.; Kim, H.K.; Hazekamp, A.; Erkelens, C.; Lefeber, A.W.M.; Verpoorte, R. Metabolomic Differentiation of Cannabis sativa Cultivars Using 1H NMR Spectroscopy and Principal Component Analysis. J. Nat. Prod. 2004, 67, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Ascrizzi, R.; Flamini, G.; Giusiani, M.; Stefanelli, F.; Deriu, V.; Chericoni, S. VOCs as fingerprints for the chemical profiling of hashish samples analyzed by HS-SPME/GC–MS and multivariate statistical tools. Forensic Toxicol. 2018, 36, 243–260. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | l.r.i. 1 | Relative Abundance ± SD | Interaction Species × Whole/Cut 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Elephant Garlic | Garlic | Leek | |||||||
Whole | Cut | Whole | Cut | Whole | Cut | F | p-Value | ||
methyl thiirane 2 | 637 | 0.8 ± 0.04 B;a | 4.6 ± 0.06 A;b | 0.5 ± 0.01 B;b | 7.9 ± 0.05 A;a | - 3;c | - c | 25,363.06 | <0.0001 |
(E)-1-methylthio-1-propene | 681 | - | 0.4 ± 0.11 | - | - | - | - | ||
allyl methyl sulfide | 696 | - | - | - | 0.3 ± 0.04 | - | - | ||
2-pentanol | 703 | - | - | 0.2 ± 0.21 | - | - | - | ||
(E)-2,3-dimethylthiirane | 746 | - | - | 0.2 ± 0.01 | - | - | - | ||
dimethyl disulfide | 746 | - | 0.3 ± 0.04 | - | - | - | - | ||
1-methylbutyl acetate | 849 | - | - | - | - | 0.3 ± 0.05 | - | ||
diallyl sulfide | 866 | 0.2 ± 0.01 | 1.0 ± 0.03 | 0.2 ± 0.06 | 1.2 ± 0.15 | - | - | ||
allyl propylsulfide | 871 | - | 0.3 ± 0.13 | - | - | - | - | ||
(Z)-allyl(prop-1-en-1-yl)sulfane | 888 | - | 0.1 ± 0.16 | - | - | - | - | ||
methyl-2-propenyl disulfide | 920 | 1.4 ± 0.03 B;b | 11.9 ± 0.02 A;b | 2.1 ± 0.01 B;a | 14.5 ± 0.02 A;a | - c | - c | 161,252.0 | <0.0001 |
methyl propyl disulfide | 927 | 0.5 ± 0.01 | 1.4 ± 0.01 | - | - | 1.8 ± 0.18 | 1.7 ± 0.75 | ||
(E)-methylpropenyl disulfide | 940 | - | 0.4 ± 0.04 | - | - | 0.3 ± 0.04 | 0.1 ± 0.08 | ||
6-methyl-5-hepten-2-one | 985 | 0.1 ± 0.00 | - | - | - | - | - | ||
myrcene | 993 | 0.1 ± 0.00 | - | - | - | - | - | ||
1,8-cineole | 1034 | 1.3 ± 0.03 | - | 1.0 ± 0.01 | - | - | - | ||
n-octanol | 1071 | 2.7 ± 0.04 | - | 0.2 ± 0.01 | - | - | - | ||
diallyl disulfide | 1082 | 38.0 ± 0.74 B;b | 61.4 ± 0.16 A;b | 83.4 ± 0.30 A;a | 75.8 ± 0.11 B;a | - c | - c | 6839.732 | <0.0001 |
1-allyl-2-isopropyl disulfane | 1098 | 20.0 ± 0.35 A;a | 11.6 ± 0.03 B;a | - b | - c | 0.3 ± 0.03 C;b | 0.3 ± 0.08 C;b | 3136.357 | <0.0001 |
(E)-1-allyl-2-(prop-1-en-1-yl) disulfane | 1103 | 5.2 ± 0.06 A;a | 3.3 ± 0.01 B;a | 1.0 ± 0.00 A;b | - B;b | - c | - b | 3031.800 | <0.0001 |
nonanal | 1104 | 0.6 ± 0.01 | - | - | - | - | - | ||
(Z)-1-allyl-2-(prop-1-en-1-yl) disulfane | 1107 | - | - | 0.2 ± 0.01 | - | - | - | ||
dipropyl disulfide | 1110 | 3.0 ± 0.05 A;b | 1.1 ± 0.01 B;b | - c | - b | 67.3 ± 2.52 B;a | 81.4 ± 6.33 A;a | 29.5631 | <0.0001 |
(E)-1-(prop-1-en-1-yl)-2-propyl disulfane | 1118 | 2.3 ± 0.15 A;b | 0.7 ± 0.01 B;b | - c | - b | 11.3 ± 2.01 A;a | 7.8 ± 4.11 A;a | 2.6408 | 0.1121 |
(E,Z)-di-1-propenyl disulfide | 1124 | - | - | - | - | 0.4 ± 0.37 | - | ||
(E,E)-propenyl disulfide | 1129 | 0.1 ± 0.12 | - | - | - | 0.2 ± 0.32 | 0.3 ± 0.27 | ||
methyl allyl trisulfide | 1142 | 0.2 ± 0.05 | 0.4 ± 0.01 | - | - | - | - | ||
methyl pentyl disulfide | 1142 | - | - | - | - | 0.2 ± 0.29 | 0.1 ± 0.10 | ||
camphor | 1143 | - | - | 2.4 ± 0.00 | - | - | - | ||
methylpropyl trisulfide | 1150 | - | - | - | - | 0.6 ± 0.01 | 0.3 ± 0.13 | ||
methyl (E)-propenyl trisulfide | 1169 | - | - | - | - | 0.1 ± 0.20 | - | ||
3-vinyl-1,2-dithiacyclohex-5-ene | 1185 | - | - | 0.2 ± 0.01 | - | - | - | ||
α-terpineol | 1189 | 0.3 ± 0.11 | - | - | - | - | - | ||
dihydro citronellol | 1196 | 0.3 ± 0.07 | - | - | - | - | - | ||
decanal | 1204 | 0.5 ± 0.04 | - | 0.1 ± 0.07 | - | 0.4 ± 0.08 | - | ||
verbenone | 1205 | 0.2 ± 0.03 | - | - | - | - | - | ||
2-vinyl-4H-1,3-dithiine | 1206 | - | - | 0.9 ± 0.04 | - | - | - | ||
n-decanol | 1272 | 3.1 ± 0.13 | - | - | - | - | - | ||
(Z)-3-tridecene | 1284 | 0.1 ± 0.19 | - | - | - | - | - | ||
(E)-3-tridecene | 1285 | 0.1 ± 0.10 | - | - | - | - | - | ||
2-undecanone | 1294 | 0.1 ± 0.19 | - | - | - | 0.4 ± 0.10 | - | ||
diallyl trisulfide | 1297 | 2.0 ± 0.17 A;a | 0.7 ± 0.00 B;a | 0.7 ± 0.10 A;b | - B;s | - c | - a | 185.4874 | <0.0001 |
1-allyl-3-propyl trisulfane | 1314 | 1.1 ± 0.13 | 0.2 ± 0.00 | - | - | - | - | ||
dipropyl trisulfide | 1328 | 0.5 ± 0.16 A;b | - B;b | - b | - b | 5.9 ± 1.51 A;a | 5.3 ± 1.03 A;a | 0.5760 | 0.3093 |
(Z)-1-allyl-3-(prop-1-en-1-yl) trisulfane | 1329 | - | - | - | - | 0.7 ± 0.01 | - | ||
(E)-1-allyl-3-(prop-1-en-1-yl) trisulfane | 1346 | - | - | - | - | 0.7 ± 0.06 | 0.7 ± 0.10 | ||
3,5-diethyl-1,2,4-trithiolane | 1352 | - | - | - | - | 1.7 ± 0.18 | 1.3 ± 0.11 | ||
α-terpinyl acetate | 1352 | 1.2 ± 0.02 | - | 0.5 ± 0.01 | - | - | - | ||
cyclosativene | 1368 | - | - | - | - | 0.1 ± 0.09 | - | ||
α-copaene | 1376 | 0.2 ± 0.04 | - | - | - | - | - | ||
n-tetradecane | 1400 | - | - | - | - | 0.2 ± 0.01 | - | ||
β-caryophyllene | 1420 | 0.4 ± 0.03 | - | 0.2 ± 0.01 | - | 0.1 ± 0.04 | - | ||
β-copaene | 1429 | - | - | 0.1 ± 0.00 | - | - | - | ||
1-(1-(methylthio)propyl)-2-propyl disulfane | 1431 | - | - | - | - | 0.1 ± 0.08 | 0.4 ± 0.52 | ||
(E)-geranyl acetone | 1455 | 0.4 ± 0.01 | - | - | - | - | - | ||
valencene | 1492 | - | - | 0.3 ± 0.04 | - | - | - | ||
n-pentadecane | 1500 | 0.1 ± 0.09 | - | - | - | 0.1 ± 0.08 | - | ||
(E,E)-α-farnesene | 1507 | - | - | - | - | 0.1 ± 0.20 | - | ||
diallyl tetrasulfide | 1540 | - | 0.2 ± 0.01 | - | - | - | - | ||
caryophyllene oxide | 1581 | 0.2 ± 0.06 | - | - | - | - | - | ||
1-(1-(prop-1-en-1ylthio)propyl)-2-propyl disulfane | 1592 | - | - | - | - | - | 0.4 ± 0.55 | ||
n-hexadecane | 1600 | 10.8 ± 0.24 A;a | - B | 5.5 ± 0.28 A;b | - B | 0.1 ± 0.10 A;c | - A | 3447.491 | <0.0001 |
1-tetradecanol | 1676 | - | - | - | - | 0.1 ± 0.11 | - | ||
n-heptadecane | 1700 | - | - | - | - | 0.1 ± 0.18 | - | ||
octyl octanoate | 1779 | 1.1 ± 0.02 | - | - | - | - | - | ||
n-octadecene | 1793 | - | - | - | - | 0.1 ± 0.01 | - | ||
isopropyl tetradecanoate | 1830 | - | - | - | - | 1.4 ± 0.78 | - | ||
hexadecanal | 1842 | - | - | - | - | 0.2 ± 0.01 | - | ||
isoamyl dodecanoate | 1846 | 0.7 ± 0.01 | - | - | - | 0.9 ± 0.55 | - | ||
Monoterpene hydrocarbons | 0.1 ± 0.00 A;a | - B | - b | - | - b | - | 144.0000 | <0.0001 | |
Oxygenated monoterpenes | 3.1 ± 0.20 A;b | - B | 3.9 ± 0.01A;a | - B | - c | - | 1938.579 | <0.0001 | |
Sesquiterpene hydrocarbons | 0.6 ± 0.07 A;a | - B | 0.6 ± 0.05 A;a | - B | 0.3 ± 0.33 A;a | - A | 3.2626 | 0.0739 | |
Oxygenated sesquiterpenes | 0.2 ± 0.06 A;a | - B | - b | - | - b | - | 51.1579 | <0.0001 | |
Apocarotenoids | 0.4 ± 0.01 A;a | - B | - b | - | - b | - | 14161.00 | <0.0001 | |
Sulfur compounds | 75.3 ± 0.42 B;c | 100.0 ± 0.01 A;a | 89.4 ± 0.23 B;b | 99.7 ± 0.00 A;b | 91.6 ± 0.54 B;a | 100 ± 0.01 A;a | 2678.860 | <0.0001 | |
Other non-terpene derivatives | 20.0 ± 0.29 A;a | - B | 5.9 ± 0.41 A;b | - B | 4.4 ± 1.03 A;c | - B | 1005.692 | <0.0001 | |
Total identified (%): | 99.6 ± 0.07 | 100 ± 0.01 | 99.8 ± 0.24 | 99.7 ± 0.00 | 96.3 ± 0.16 | 100 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascrizzi, R.; Flamini, G. Leek or Garlic? A Chemical Evaluation of Elephant Garlic Volatiles. Molecules 2020, 25, 2082. https://doi.org/10.3390/molecules25092082
Ascrizzi R, Flamini G. Leek or Garlic? A Chemical Evaluation of Elephant Garlic Volatiles. Molecules. 2020; 25(9):2082. https://doi.org/10.3390/molecules25092082
Chicago/Turabian StyleAscrizzi, Roberta, and Guido Flamini. 2020. "Leek or Garlic? A Chemical Evaluation of Elephant Garlic Volatiles" Molecules 25, no. 9: 2082. https://doi.org/10.3390/molecules25092082
APA StyleAscrizzi, R., & Flamini, G. (2020). Leek or Garlic? A Chemical Evaluation of Elephant Garlic Volatiles. Molecules, 25(9), 2082. https://doi.org/10.3390/molecules25092082