Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of PDA and G-PDA NPs
2.2. Quantitation of the Amount of Gentamicin Loading
2.3. Antimicrobial Activity of G-PDA NPs
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PDA NPs
3.3. Synthesis of G-PDA NPs
3.4. Determination of Gentamicin Loading in PDA NPs
3.5. Antimicrobial Activity of Gentamicin Loaded PDA NPs (G-PDA NPs)
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huh:, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef] [PubMed]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [Green Version]
- Khodabandehloo, H.; Zahednasab, H.; Hafez, A.A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev. 2016, 9, e3966. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.Q.; Batul, R.; Bhave, M.; Yu, A.M. Current advances in the utilization of polydopamine nanostructures in biomedical therapy. Biotechnol. J. 2019, 14, 1900080. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Mrowzynski, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 7541–7561. [Google Scholar] [CrossRef]
- Batul, R.; Tamanna, T.; Khaliq, A.; Yu, A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater. Sci. 2017, 5, 1204–1229. [Google Scholar] [CrossRef] [PubMed]
- Im, K.M.; Kim, T.W.; Jeon, J.R. Metal-chelation-assisted deposition of polydopamine on human hair: A ready-to-use eumelanin-based hair dyeing methodology. ACS Biomater. Sci. Eng. 2017, 3, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Tao, G.; He, H.W.; Song, K.; Zuo, H.; Jiang, W.C.; Wang, Y.J. One-step synthesis of silver nanoparticles on polydopamine-coated sericin/polyvinyl alcohol composite films for potential antimicrobial applications. Molecules 2017, 22, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.X.; Zhao, Y.F.; Zhang, H.Y.; Feng, X.; Shi, L.Y.; Fang, J.H. Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J. Mater. Chem. C 2017, 5, 573–581. [Google Scholar] [CrossRef]
- Kong, N.; Deng, M.; Sun, X.N.; Chen, Y.D.; Sui, X.B. Polydopamine-functionalized CA-(PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Front. Pharmacol. 2018, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.Q.; Da, L.Y.; Yang, C.S.; Chen, R.; Gao, L.Z.; Fan, L.; Han, J. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int. J. Nanomed. 2017, 12, 3331–3345. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Jiang, C.H.; Zhang, D.W.; Wang, Y.; Ren, X.Y.; Ai, K.L.; Chen, X.S.; Lu, L.H. Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Acta Biomater. 2017, 47, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, F.Y.; Lei, Z.; Wang, Z.X. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosens. Bioelectron. 2017, 87, 638–645. [Google Scholar] [CrossRef]
- Georgopanos, P.; Eichner, E.; Filiz, V.; Handge, U.A.; Schneider, G.A.; Heinrich, S.; Abetz, V. Improvement of mechanical properties by a polydopamine interface in highly filled hierarchical composites of titanium dioxide particles and poly(vinyl butyral). Compos. Sci. Technol. 2017, 146, 73–82. [Google Scholar] [CrossRef]
- Perikamana, S.K.M.; Lee, J.; Lee, Y.B.; Shin, Y.M.; Lee, E.J.; Mikos, A.G.; Shin, H. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules 2015, 16, 2541–2555. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, Y.; Duan, Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J. Control. Release 2018, 290, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.K.; Huang, X.J.; Tang, J.M.; Han, Y.M.; Chen, H. Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system. J. Nanoparticle Res. 2013, 15, 2144. [Google Scholar] [CrossRef]
- Zavareh, S.; Mahdi, M.; Erfanian, S.; Hashemi-Moghaddam, H. Synthesis of polydopamine as a new and biocompatible coating of magnetic nanoparticles for delivery of doxorubicin in mouse breast adenocarcinoma. Cancer Chemother. Pharmacol. 2016, 78, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.C.; Ding, S.J. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J. Mater. Sci. Mater. Med. 2013, 24, 2381–2390. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Su, M. Polydopamine nanoparticles for combined chemo- and photothermal cancer therapy. Nanomaterials 2017, 7, 160. [Google Scholar] [CrossRef]
- Du, C.; Qian, J.; Zhou, L.; Su, Y.; Zhang, R.; Dong, C.M. Biopolymer-drug conjugate nanotheranostics for multimodal imaging-guided synergistic cancer photothermal-chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 31576–31588. [Google Scholar] [CrossRef]
- De Trizio, A.; Srisuk, P.; Costa, R.R.; Fraga, A.G.; Modena, T.; Genta, I.; Dorati, R.; Pedrosa, J.; Conti, B.; Correlo, V.M.; et al. Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. React. Funct. Polym. 2017, 114, 38–48. [Google Scholar] [CrossRef]
- Barber, M.; Waterworth, P.M. Activity of gentamicin against pseudomonas and hospital staphylococci. BMJ-Br. Med J. 1966, 1, 203. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, S.; Fourmy, D.; Puglisi, J.D. Structural origins of gentamicin antibiotic action. EMBO J. 1998, 17, 6437–6448. [Google Scholar] [CrossRef] [Green Version]
- Hayward, R.S.; Harding, J.; Molloy, R.; Land, L.; Longcroft-Neal, K.; Moore, D.; Ross, J.D.C. Adverse effects of a single dose of gentamicin in adults: A systematic review. Br. J. Clin. Pharmacol. 2018, 84, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Tian, B.; Ke, Q.F.; Zhu, Z.A.; Guo, Y.P. Gentamicin-loaded carbonated hydroxyapatite coatings with hierarchically porous structures: Drug delivery properties, bactericidal properties and biocompatibility. RSC Adv. 2014, 4, 41500–41509. [Google Scholar] [CrossRef]
- Vnuk, D.; Stejskal, M.; Musulin, A.; Maticic, D. Regional intravenous gentamicin administration for treatment of postoperative tarso-metatarsal infection in a dog—A case report. Berl. Und Munch. Tierarztl. Wochenschr. 2012, 125, 172–175. [Google Scholar]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. Aaps Pharmscitech 2008, 9, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, S.M.; Quinn, D.J.; Ingram, R.J.; Gilmore, B.F.; Donnelly, R.F.; Taggart, C.C.; Scott, C.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomed. 2012, 7, 4053–4063. [Google Scholar]
- Ji, J.G.; Hao, S.L.; Wu, D.J.; Huang, R.; Xu, Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr. Polym. 2011, 85, 803–808. [Google Scholar] [CrossRef]
- Francis, L.; Meng, D.C.; Knowles, J.; Keshavarz, T.; Boccaccini, A.R.; Roy, I. Controlled delivery of gentamicin using poly(3-hydroxybutyrate) microspheres. Int. J. Mol. Sci. 2011, 12, 4294–4314. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Physicochemical characterization and antimicrobial evaluation of gentamicin-loaded CaCO3 nanoparticles prepared via microemulsion method. J. Drug Deliv. Sci. Technol. 2016, 35, 16–23. [Google Scholar] [CrossRef]
- Perni, S.; Prokopovich, P. Continuous release of gentamicin from gold nanocarriers. RSC Adv. 2014, 4, 51904–51910. [Google Scholar] [CrossRef] [Green Version]
- Tamanna, T.; Bulitta, J.B.; Landersdorfer, C.B.; Cashin, V.; Yu, A.M. Stability and controlled antibiotic release from thin films embedded with antibiotic loaded mesoporous silica nanoparticles. RSC Adv. 2015, 5, 107839–107846. [Google Scholar] [CrossRef]
- Hong, S.; Na, Y.S.; Choi, S.; Song, I.T.; Kim, W.Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J. Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013, 7, 9384–9395. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Neogi, S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Mater. Res. Express 2017, 4, 095005. [Google Scholar] [CrossRef]
- McManamon, C.; de Silva, J.P.; Delaney, P.; Morris, M.A.; Cross, G.L.W. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 102–108. [Google Scholar] [CrossRef] [PubMed]
- França, R.; Zhang, X.F.; Veres, T.; Yahia, L.; Sacher, E. Core-shell nanoparticles as prodrugs: Possible cytotoxicological and biomedical impacts of batch-to-batch inconsistencies. J. Colloid Interface Sci. 2013, 389, 292–297. [Google Scholar] [CrossRef]
- Kerber, S.J.; Bruckner, J.J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T.L. The nature of hydrogen in x-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A 1996, 14, 1314–1320. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, B.; Ye, W.; Zhou, F. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol. Biosci. 2011, 11, 1227–1234. [Google Scholar] [CrossRef]
- Kumar, P.; Rubies, A.; Companyo, R.; Centrich, F. Hydrophilic interaction chromatography for the analysis of aminoglycosides. J. Sep. Sci. 2012, 35, 498–504. [Google Scholar] [CrossRef]
- El-Shouny, W.A.; Al-Baidani, A.R.H.; Hamza, W.T. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical wound infections. Int. J. Pharm. Med. Sci. 2011, 1, 01–07. [Google Scholar]
- Batul, R.; Yu, A.; Bhave, M.; Khaliq, A. Synthesis of polydopamine nanoparticles for drug delivery applications. Microsc. Microanal. 2018, 24, 1758–1759. [Google Scholar] [CrossRef] [Green Version]
- Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; et al. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9th edition Approved standard. Clin. Lab. Stand. Inst. 2012, 32, M07-A9. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors |
Samples | Atomic Percentages | N/C | O/C | |||
---|---|---|---|---|---|---|
C1s (%) | N1s (%) | O1s (%) | S2p (%) | |||
Gentamicin | 54.96 | 8.54 | 30.62 | 5.88 | 0.16 | 0.55 |
PDA NPs | 73.58 | 7.99 | 18.15 | 0.28 | 0.11 | 0.25 |
G-PDA NPs | 62.33 | 8.51 | 27.18 | 1.97 | 1.14 | 0.44 |
Batch | Hydrodynamic Particle Size (nm) | Zeta Potential (mV) | Particle Yield (%) | Percentage of Loading (%) |
---|---|---|---|---|
PDA NPs | 165 ± 10 | −31.0 ± 0.5 | 11.3 ± 0.9 | ---- |
G-PDA NPs 0.4:1 | 292 ± 13 | −22.5 ± 0.7 | 20.3 ± 0.9 | 60.8 ± 1.6 |
G-PDA NPs 0.6:1 | 375 ± 7 | −13.7 ± 0.8 | 23.5 ± 1.8 | 72.7 ± 0.9 |
G-PDA NPs 0.8:1 | 449 ± 6 | −6.0 ± 0.5 | 32.9 ± 1.4 | 82.7 ± 1.4 |
G-PDA NPs 1:1 | 579 ± 8 | 0.9 ± 0.2 | 33.3 ± 2.9 | 84.1 ± 1.2 |
Bacteria Tested | Batches | Minimum Inhibitory Concentration (MICs) mg/mL | Minimum Bactericidal Concentrations (MBCs) mg/mL |
---|---|---|---|
Staphylococcus aureus (ATCC 25923) | Gentamicin sulphate | 1.95 µg/mL | 3.9 µg/mL |
G-PDA NPs 0.4:1 | 0.625 | 2.5 | |
G-PDA NPs 0.6:1 | 0.625 | 1.25 | |
G-PDA NPs 0.8:1 | 0.312 | 1.25 | |
G-PDA NPs 1:1 | 0.312 | 0.625 | |
Pseudomonas aeruginosa (ATCC 9721) | Gentamicin sulphate | 1.95 µg/mL | 3.9 µg/mL |
G-PDA NPs 0.4:1 | 0.625 | 2.5 | |
G-PDA NPs 0.6:1 | 0.625 | 1.25 | |
G-PDA NPs 0.8:1 | 0.312 | 0.625 | |
G-PDA NPs 1:1 | 0.312 | 0.625 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batul, R.; Bhave, M.; J. Mahon, P.; Yu, A. Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules 2020, 25, 2090. https://doi.org/10.3390/molecules25092090
Batul R, Bhave M, J. Mahon P, Yu A. Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules. 2020; 25(9):2090. https://doi.org/10.3390/molecules25092090
Chicago/Turabian StyleBatul, Rahila, Mrinal Bhave, Peter J. Mahon, and Aimin Yu. 2020. "Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity" Molecules 25, no. 9: 2090. https://doi.org/10.3390/molecules25092090
APA StyleBatul, R., Bhave, M., J. Mahon, P., & Yu, A. (2020). Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules, 25(9), 2090. https://doi.org/10.3390/molecules25092090