Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum
Abstract
:1. Introduction
2. Results
2.1. Chemical Profiles of Essential Oils
2.2. In Vitro Antifungal Activity of Essential Oils
2.3. Insecticidal Activity of the Test Oils
3. Discussion
4. Materials and Methods
4.1. Plant Material and Essential Oils Distillation
4.2. Gas Chromatography–Mass Spectrometry (GC–MS)
4.3. Antifungal Activity
4.3.1. Fungal Isolates
4.3.2. Microdilution Test
4.4. Insecticidal Activity
4.4.1. Tested Insects and Rearing Conditions
4.4.2. Repellent Activity
4.4.3. Contact Toxicity: Topical Application Bioassay
4.4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Abdel-Kawy, M.A.; Michel, C.G.; Kirollos, F.N.; Hussien, R.A.A.; Al-Mahallawi, A.M.; Sedeek, M.S. Chemical composition and potentiation of insecticidal and fungicidal activities of Citrus trifoliata L. fruits essential oil against Spodoptera littoralis, Fusarium oxysporum and Fusarium solani via nano-cubosomes. Nat. Prod. Res. 2019, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rezgui, M.; Majdoub, N.; Mabrouk, B.; Baldisserotto, A.; Bino, A.; Ben Kaab, L.B.; Manfredini, S. Antioxidant and antifungal activities of marrubiin, extracts and essential oil from Marrubium vulgare L. against pathogenic dermatophyte strains. J. Mycol. Med. 2020, 30, 100927. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Zorzetto, C.; Sánchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef]
- Benelli, G.; Maggi, F.; Canale, A.; Mehlhorn, H. Lyme disease is on the rise—How about tick repellents? A global view. Entomol. Gen. 2019, 39, 61–72. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef]
- Ramezani, S.; Rahmanian, M.; Jahanbin, R.; Mohajeri, F.; Reza Rezaei, M.; Solaimani, B. Diurnal Changes in Essential Oil Content of Coriander (Coriandrum sativum L.) Aerial Parts from Iran. Res. J. Biol. Sci. 2009, 4, 277–281. [Google Scholar]
- Mishra, R.; Gupta, A.K.; Kumar, A.; Lal, R.K.; Saikia, D.; Chanotiya, C.S. Genetic diversity, essential oil composition, and in vitro antioxidant and antimicrobial activity of Curcuma longa L. germplasm collections. J. Appl. Res. Med. Aromat. Plants 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Santos, V.M.C.S.; Pinto, M.A.S.; Bizzo, H.; Deschamps, C. Seasonal variation of vegetative growth, essential oil yield and composition of menthol mint genotypes at southern brazil. Biosci. J. 2012, 28, 790–798. [Google Scholar]
- Noroozisharaf, A.; Kaviani, M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants 2018, 24, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Dunkić, V.; Kremer, D.; Jurišić Grubešić, R.; Vuković Rodríguez, J.; Ballian, D.; Bogunić, F.; Stešević, D.; Kosalec, I.; Bezić, N.; Stabentheiner, E. Micromorphological and phytochemical traits of four Clinopodium L. species (Lamiaceae). South African J. Bot. 2017, 111, 232–241. [Google Scholar]
- Castilho, P.; Liu, K.; Rodrigues, A.I.; Feio, S.; Tomi, F.; Casanova, J. Composition and antimicrobial activity of the essential oil of Clinopodium ascendens (Jordan) Sampaio from Madeira. Flavour Fragr. J. 2007, 22, 139–144. [Google Scholar] [CrossRef]
- Moattar, F.S.; Sariri, R.; Giahi, M.; Yaghmaee, P. Essential oil composition and antioxidant activity of Calamintha officinalis Moench. J. Appl. Biotechnol. Rep. 2018, 5, 55–58. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Libera, J.L.; Santos, J.A.; LaFont, F.; Castellanos, C.; Palomino, A.; Román, M. Essential oils in Calamintha sylvatica Bromf. ssp. ascendens (Jordan) P.W. Ball: Wild and cultivated productions and antifungal activity. J. Essent. Oil Res. 2002, 14, 68–71. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, X.C.; Chen, X.B.; Liu, Q.Z.; Liu, Z.L. Chemical composition and insecticidal activities of the essential oil of Clinopodium chinense (Benth.) kuntze aerial parts against Liposcelis bostrychophila Badonnel. J. Food Prot. 2015, 78, 1870–1874. [Google Scholar] [CrossRef]
- Motti, R.; Ippolito, F.; Bonanomi, G. Folk Phytotherapy in Paediatric Health Care in Central and Southern Italy: A Review. Hum. Ecol. 2018, 46, 573–585. [Google Scholar] [CrossRef]
- Khodja, N.K.; Boulekbache, L.; Chegdani, F.; Dahmani, K.; Bennis, F.; Madani, K. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L. J. Complement. Integr. Med. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Božović, M.; Ragno, R. Calamintha nepeta (L.) Savi and its main essential oil constituent Pulegone: Biological activities and chemistry. Molecules 2017, 22, 290. [Google Scholar] [CrossRef]
- Baldovini, N.; Ristorcelli, D.; Tomi, F.; Casanova, J. Intraspesific variability of the essential oil of Calamintha nepeta from Corsica (France). Flavour Fragr. J. 2000, 15, 50–54. [Google Scholar] [CrossRef]
- Araniti, F.; Lupini, A.; Sorgonà, A.; Statti, G.A.; Abenavoli, M.R. Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi. Nat. Prod. Res. 2013, 27, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Mancini, E.; De Martino, L.; Malova, H.; De Feo, V. Chemical composition and biological activities of the essential oil from Calamintha nepeta plants from the wild in southern Italy. Nat. Prod. Commun. 2013, 8, 139–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitic, D.; Jovanovic, T.; Ristic, M.; Palic, R.; Stojanovic, G. Chemical composition and antimicrobial activity of the essential oil of Calamintha nepeta (L.) Savi ssp. glandulosa (Req.) P.W. Ball from Montenegro. J. Essent. Oil Res. 2002, 14, 150–152. [Google Scholar] [CrossRef]
- Sarac, N.; Ugur, A. The In Vitro Antimicrobial Activities of the Essential Oils of Some Lamiaceae Species from Turkey. J. Med. Food 2009, 12, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Božovic, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball-New approaches. Molecules 2017, 22, 1–12. [Google Scholar]
- Popović, A.; Šućur, J.; Orčić, D.; Štrbac, P. Effects Of Essential Oil Formulations On The Adult Insect Tribolium Castaneum (Herbst) (Col., Tenebrionidae). J. Cent. Eur. Agric. 2013, 14, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Marrelli, M.; Statti, G.; Menichini, F.; Uzunov, D.; Solimene, U.; Menichini, F. Comparative chemical composition and antioxidant activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Nyman and Calamintha grandiflora (L.) Moench (Labiatae). Nat. Prod. Res. 2012, 26, 91–97. [Google Scholar] [CrossRef]
- Ambrico, A.; Trupo, M.; Martino, M.; Sharma, N. Essential oil of Calamintha nepeta (L.) Savi subsp. nepeta is a potential control agent for some postharvest fruit diseases. Org. Agric. 2019, 10, 35–48. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. Studies on Seed Germination and Micropropagation of Clinopodium nepeta: A medicinal and aromatic plant. HortScience 2019, 54, 1558–1564. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Goncalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae). Nat. Prod. Res. 2010, 24, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Arantes, S.M.; Piçarra, A.; Guerreiro, M.; Salvador, C.; Candeias, F.; Caldeira, A.T.; Martins, M.R. Toxicological and pharmacological properties of essential oils of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). Food Chem. Toxicol. 2019, 133, 110747. [Google Scholar] [CrossRef] [PubMed]
- Kitic, D.; Stojanovic, G.; Palic, R.; Randjelovic, V. Chemical Composition and Microbial Activity of the Essential Oil of Calamintha nepeta (L.) Savi ssp. nepeta var. subisodonda (Borb.) Hayek from Serbia. J. Essent. Oil Res. 2005, 17, 701–703. [Google Scholar] [CrossRef]
- Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 2011, 22, 896–902. [Google Scholar] [CrossRef]
- Ćavar, S.; Vidic, D.; Maksimović, M. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013, 93, 1758–1764. [Google Scholar] [CrossRef]
- Ristorcelli, D.; Tomi, F.; Casanova, J. Essential oils of Calamintha nepeta subsp. nepeta and subsp. glandulosa from Corsica (France). J. Essent. Oil Res. 1996, 8, 363–366. [Google Scholar] [CrossRef]
- Şanli, A.; Karadoğan, T. Geographical Impact on Essential Oil Composition of Endemic Kundmannia Anatolica HUB.-MOR. (Apiaceae). African J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14, 131–137. [Google Scholar] [CrossRef]
- De Pooter, L.H.; Goetghebeur, P.; Schamp, N. Variability in composition of the essential oil of Calamintha nepeta. Phytochemistry 1987, 26, 3355–3356. [Google Scholar] [CrossRef]
- Fraternale, D.; Giamperi, L.; Ricci, D.; Manunta, A. Composition of essential oil as a taxonomic marker for Calamintha nepeta (L.) Savi ssp. nepeta. J. Essent. Oil Res. 1998, 10, 568–570. [Google Scholar] [CrossRef]
- Alan, S.; Kürkçüoglu, M.; Can Baser, K.H. Composition of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta and Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) P.W. Ball. Asian J. Chem. 2011, 23, 2357–2360. [Google Scholar]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod. 2011, 34, 802–817. [Google Scholar] [CrossRef]
- Jilani, G.; Su, H.C.F. Laboratory Studies on Several Plant Materials as Insect Repellants for Protection of Cereal Grains. J. Econ. Entomol. 1983, 76, 154–157. [Google Scholar] [CrossRef]
- Drapeau, J.; Fröhler, C.; Touraud, D.; Kröckel, U.; Geier, M.; Rose, A.; Kunz, W. Repellent studies with Aedes aegypti mosquitoes and human olfactory tests on 19 essential oils from Corsica, France. Flavour Fragr. J. 2009, 24, 160–169. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Morshedloo, M.R.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef] [PubMed]
- Božović, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: Biological activities and chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef] [Green Version]
- Wink, M.; Schimmer, O. Modes of Action of Defensive Secondary Metabolites; Wink, M., Ed.; CRC: Boca Raton, FL, USA, 1999; pp. 17–133. [Google Scholar]
- Tripathi, A.K.; Prajapati, V.; Ahmad, A.; Aggarwal, K.K.; Khanuja, S.P.S. Piperitenone Oxide as Toxic, Repellent, and Reproduction Retardant toward Malarial Vector Anopheles stephensi (Diptera: Anophelinae). J. Med. Entomol. 2004, 41, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Wayne, P.A. Clinical and Laboratory Standards Institute (CLSI): Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2008; pp. M38–A2. [Google Scholar]
- Wayne, P.A. Clinical and Laboratory Standards Institute (CLSI): Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; Allured publishing corporation: Carol Stream, IL, USA, 2008; pp. M27–A3. [Google Scholar]
- McDonald, L.L.; Guy, R.H.; Speirs, R.D. Preliminary Evaluation of New Candidate Materials as Toxicants, Repellents and Attractants Against Stored Product Insects, Marketing Research Report; Agricultural Research Service, United State Department of Agriculture: Washington, DC, USA, 1970.
- Liu, Z.L.; Ho, S.H. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J. Stored Prod. Res. 1999, 35, 317–328. [Google Scholar] [CrossRef]
- Abbott, W.S. A method for computing the effectiveness of an insecticidee. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Taxon | Species Abbreviation | Harvesting Place | Harvesting Period (2016) | Voucher Specimen |
---|---|---|---|---|
Clinopodium nepeta (L.) Kuntze subsp. nepeta | CNN | Béni-M’tir | October | [LAM./Cal.n.n./Kroumiria/BM.13/27102016] |
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts | CNG1 | Béni-M’tir | October | [LAM./Cal.n.g./Kroumiria/BM.25/27102016] |
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts | CNG2 | Bizerte | July | [LAM./Cal.n.g./NE/Bizerta. 03/10082016] |
No. | RI Calc | RI LIT | Compounds | Content (%) | ||
---|---|---|---|---|---|---|
CNN | CNG1 | CNG2 | ||||
1 | 932 | 932 | α-Pinene | 0.23 | 0.2 | 0.1 |
2 | 975 | 974 | β-Pinene | 0.3 | 0.3 | 0.1 |
3 | 991 | 988 | Myrcene | - | 0.1 | tr |
4 | 995 | 994 | 3-Octanol | 0.6 | 0.7 | 0.7 |
5 | 1000 | 1000 | Decane | tr | - | |
6 | 1024 | 1024 | o-Cymene | tr | ||
7 | 1024 | 1022 | p-Cymene | - | 0.3 | - |
8 | 1028 | 1024 | Limonene | 1.9 | 4.2 | 1.4 |
9 | 1030 | 1026 | 1,8-cineole | 0.4 | 0.2 | 0.1 |
10 | 1058 | 1054 | γ-Terpinene | tr | 0.2 | tr |
11 | 1066 | 1070 | cis-4-Thujanol | - | 0.1 | - |
12 | 1100 | 1095 | Linalool | 0.7 | 0.6 | 0.5 |
13 | 1120 | 1119 | trans-p-Mentha-2,8-dien-1-ol | - | 0.1 | tr |
14 | 1164 | 1165 | Borneol | - | 0.3 | 0.4 |
15 | 1176 | 1174 | Terpinen-4-ol | - | 1.1 | 0.1 |
16 | 1184 | 1179 | p-Cymen-8-ol | - | 0.6 | 0.2 |
17 | 1189 | 1186 | α-Terpineol | 0.4 | 0.4 | 0.4 |
18 | 1197 | 1196 | Methyl chavicol | - | 0.3 | - |
19 | 1211 | 1220 | 4,7-dimethylbenzofuran | - | 0.2 | tr |
20 | 1215 | 1221 | 8,9-Dehydrothymol | - | 0.3 | 0.4 |
21 | 1239 | 1238 | Cumin aldehyde | - | 2.0 | 0.1 |
22 | 1243 | 1239 | Carvone | - | 0.2 | tr |
23 | 1253 | 1249 | Piperitone | - | - | 19.5 |
24 | 1255 | 1253 | Piperitone oxide | 51.7 | 23.5 | 16.3 |
25 | 1268 | 1274 | Pseudodiosphenol | - | - | 0.2 |
26 | 1271 | 1277 a | p-Mentha-1,8-dien-3-one | - | 0.5 | 0.6 |
27 | 1286 | 1287 | Bornyl acetate | 0.3 | 0.3 | 0.2 |
28 | 1289 | 1298 | p-Mentha-1,4-dien-7-al | - | 1.0 | 0.2 |
29 | 1292 | 1289 | Thymol | 3.6 | 1.6 | 4.0 |
30 | 1299 | 1305 | Diosphenol | 0.6 | - | 1.1 |
31 | 1302 | 1308 | 6-Hydroxycarvotanacetone | 0.7 | 5.1 | 1.2 |
32 | 1340 | 1340 | Piperitenone | 0.2 | 0.4 | 0.5 |
33 | 1366 | 1366 | Piperitenone oxide | 23.4 | 39.3 | 27.8 |
34 | 1376 | 1374 | α-Copaene | - | 0.6 | 0.3 |
35 | 1385 | 1387 | β-Bourbonene | - | 0.4 | 0.2 |
36 | 1400 | 1400 | Tetradecane | 0.2 | 0.9 | 1.8 |
37 | 1419 | 1417 | (E)-Caryophyllene | 0.3 | 1.4 | 0.6 |
38 | 1454 | 1452 | α-Humulene | tr | 0.1 | tr |
39 | 1458 | 1454 | (E)-β-Farnesene | - | 0.1 | tr |
40 | 1481 | 1484 | Germacrene D | - | 0.3 | tr |
41 | 1524 | 1522 | δ-Cadinene | - | 0.2 | tr |
42 | 1578 | 1577 | Spathulenol | tr | - | 0.2 |
43 | 1583 | 1582 | Caryophyllene oxide | 2.0 | 2.7 | 2.3 |
44 | 1600 | 1600 | Hexadecane | - | tr | - |
45 | 1613 | 1608 | Humulene epoxide II | tr | 0.2 | 0.2 |
46 | 1689 | 1687 | Eudesma-4(15),7-dien-1β-ol | - | 0.3 | 0.2 |
47 | 1848 | 1844 | Phytone | tr | - | tr |
Oxygenated monoterpenes | 82.0 | 77.6 | 73.4 | |||
Monoterpene hydrocarbons | 2.5 | 5.3 | 2.3 | |||
Oxygenated sesquiterpenes | 2.1 | 3.1 | 2.8 | |||
Sesquiterpene hydrocarbons | 0.4 | 3.1 | 1.2 | |||
Others | 1.0 | 2.1 | 2.7 | |||
Total identified components | 88.0 | 91.2 | 82.4 |
Fungal Strains | Essential Oils | ||
---|---|---|---|
CNN | CNG1 | CNG2 | |
Aspergillus flavus | 2 | 2 | >2 |
Aspergillus terreus | 0.4 | 0.4 | 0.4 |
Candida albicans | 0.2 | 0.2 | 0.4 |
Microsporum canis | 0.4 | 0.4 | 0.4 |
Microsporum gypseum | 0.2 | 0.4 | 0.4 |
Trichophyton mentagrophytes | 0.2 | 0.04 | 0.4 |
Essential Oils Plant Source | Exposure Duration (min) | Repellency (%) | Mortality (%) | ||
---|---|---|---|---|---|
T. confusum | S. zeamais | T. confusum | S. zeamais | ||
CNN | 15 | 52.5 ± 9.57 a | 22.5 ± 9.57 a | ||
30 | 52.5 ± 5.00 a | 40 ± 8.16 a | |||
60 | 55 ± 5.77 a | 57.5 ± 9.57 a | 35 ± 5.00 b | 32.5 ± 5.00 a | |
120 | 57.5 ± 18.92 a | 57.5 ± 9.57 a | |||
CNG1 | 15 | 82.5 ± 9.57 b | 60 ± 11.54 b | ||
30 | 85 ± 10.00 b | 62.5 ± 9.57 b | 17.5 ± 8.00 a | 100 ± 0.00 b | |
60 | 92.5 ± 5.00 b | 92.5 ± 9.57 b | |||
120 | 95 ± 5.77 b | 92.5 ± 5.00 b | |||
CNG2 | 15 | 80 ± 18.25 b | 87.5 ± 18.92 b | ||
30 | 80 ± 8.16 b | 87.5 ± 5.00 c | 17.5 ± 5.00 a | 97.5 ± 5.00 b | |
60 | 82.5 ± 9.57 b | 90 ± 0.00 b | |||
120 | 87.5 ± 5.00 b | 92.5 ± 9.57 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debbabi, H.; El Mokni, R.; Chaieb, I.; Nardoni, S.; Maggi, F.; Caprioli, G.; Hammami, S. Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum. Molecules 2020, 25, 2137. https://doi.org/10.3390/molecules25092137
Debbabi H, El Mokni R, Chaieb I, Nardoni S, Maggi F, Caprioli G, Hammami S. Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum. Molecules. 2020; 25(9):2137. https://doi.org/10.3390/molecules25092137
Chicago/Turabian StyleDebbabi, Haïfa, Ridha El Mokni, Ikbal Chaieb, Simona Nardoni, Filippo Maggi, Giovanni Caprioli, and Saoussen Hammami. 2020. "Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum" Molecules 25, no. 9: 2137. https://doi.org/10.3390/molecules25092137
APA StyleDebbabi, H., El Mokni, R., Chaieb, I., Nardoni, S., Maggi, F., Caprioli, G., & Hammami, S. (2020). Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum. Molecules, 25(9), 2137. https://doi.org/10.3390/molecules25092137