Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Conditions
2.1.1. The Effect of Hydrolysis Time
2.1.2. Effect of Hydrolysis Temperature
2.1.3. Effect of Solvent Type on Extraction
2.1.4. Effect of Solvent Volume on Extraction
2.2. Type and Amount of Purification Adsorbents
2.3. Method Validation
2.3.1. Linear Equations, Detection Lines, and Limits of Quantification
2.3.2. Recovery, Intra-Day and Inter-Day Precision
2.3.3. Matrix Effect
2.4. Method Application
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. UHPLC-MS/MS Analysis
3.3.1. Liquid Chromatography
3.3.2. MS Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in China. Crop J. 2017, 5, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Groenbaek, M.; Tybirk, E.; Kristensen, H.L. Glucosinolate and carotenoid content of white- and yellow-flowering rapeseed grown for human consumption as sprouts and seedlings under light emitting diodes. Eur. Food Res. Technol. 2018, 244, 1121–1131. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Berhow, M.A. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind. Crops Prod. 2005, 21, 193–202. [Google Scholar] [CrossRef]
- Matusheski, N.V.; Swarup, R.; Juvik, J.A.; Mithen, R.; Bennett, M.; Jeffery, E.H. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J. Agric. Food Chem. 2006, 54, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Song, J.G.; Cao, C.; Li, J.; Xu, Y.J.; Liu, Y. Development and validation of a QuEChERS-LC-MS/MS method for the analysis of phenolic compounds in rapeseed oil. J. Agric. Food Chem. 2019, 67, 4105–4112. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Kostov, R.V. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 2012, 18, 337–347. [Google Scholar] [CrossRef]
- Śmiechowska, A.; Bartoszek, A.; Namieśnik, J. Determination of glucosinolates and their decomposition products—indoles and isothiocyanates in cruciferous vegetables. Crit. Rev. Anal. Chem. 2010, 40, 202–216. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, Q. Natural sulforaphane as a functional chemopreventive agent: Including a review of isolation, purification and analysis methods. Crit. Rev. Biotechnol. 2012, 32, 218–234. [Google Scholar] [CrossRef]
- Li, Y.; Palliyaguru, D.L.; Kensler, T.W. Frugal chemoprevention: Targeting Nrf2 with foods rich in sulforaphane. Semin. Oncol. 2016, 43, 146–153. [Google Scholar]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Kostov, R.V.; Kensler, T.W. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci. Tech. 2017, 69, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhou, S.; Guo, H.; Zhang, J.; Ma, T.; Zheng, Y.; Zhang, Z.; Cai, L. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metab. Clin. Exp. 2020, 102, 154002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egner, P.A.; Chen, J.G.; Wang, J.B.; Wu, Y.; Sun, Y.; Lu, J.H.; Zhu, J.; Zhang, Y.H.; Chen, Y.S.; Friesen, M.D.; et al. Bioavailability of sulforaphane from two broccoli sprout beverages: Results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev. Res. 2011, 4, 384–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, T.; Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol. Biomarkers Prev. 2001, 10, 501–508. [Google Scholar] [PubMed]
- Sarkar, F.H.; Li, Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat. Rev. 2009, 35, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Chen, M.; Lee, J.D.; Zhang, J.; Lin, S.Y.; Fu, T.M.; Chen, H.; Ishikawa, T.; Chiang, S.Y.; Katon, J.; et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019, 364, eaau0159. [Google Scholar] [CrossRef]
- Marconett, C.N.; Singhal, A.K.; Sundar, S.N.; Firestone, G.L. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol. Cell Endocrinol. 2012, 363, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Kalra, N.; Shukla, Y. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol. Appl. Pharm. 2005, 202, 237–243. [Google Scholar] [CrossRef]
- Megna, B.W.; Carney, P.R.; Nukaya, M.; Geiger, P.; Kennedy, G.D. Indole-3-carbinol induces tumor cell death: Function follows form. J. Surg. Res. 2016, 204, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Licznerska, B.; Baer-Dubowska, W. Anti-inflammatory Nutraceuticals and Chronic Diseases, 1st ed.; Springer: Cham, Switzerland, 2016; pp. 131–154. [Google Scholar]
- Kokotou, M.G.; Revelou, P.K.; Pappas, C.; Constantinou-Kokotou, V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem. 2017, 237, 566–573. [Google Scholar] [CrossRef]
- Han, D.; Row, K.H. Separation and purification of sulforaphane from broccoli by solid phase extraction. Int. J. Mol. Sci. 2011, 12, 1854–1861. [Google Scholar] [CrossRef] [Green Version]
- Fusari, C.M.; Ramirez, D.A.; Camargo, A.B. Simplified analytical methodology for glucosinolate hydrolysis products: A miniaturized extraction technique and multivariate optimization. Anal. Methods 2019, 11, 309–316. [Google Scholar] [CrossRef]
- Liang, H.; Li, C.; Yuan, Q.; Vriesekoop, F. Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal. J. Agric. Food Chem. 2008, 56, 7746–7749. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jubete, L.; Smyth, T.J.; Valverde, J.; Rai, D.K.; Barry-Ryan, C. Simultaneous determination of sulphoraphane and sulphoraphane nitrile in Brassica vegetables using ultra-performance liquid chromatography with tandem mass spectrometry. Phytochem. Anal. 2014, 25, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trac-Trend Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Musarurwa, H.; Chimuka, L.; Pakade, V.E.; Tavengwa, N.T. Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J. Food Compos. Anal. 2019, 84, 103314. [Google Scholar] [CrossRef]
- Benzekri, R.; Bouslama, L.; Papetti, A.; Snoussi, M.; Benslimene, I.; Hamami, M.; Limam, F. Isolation and identification of an antibacterial compound from diplotaxis harra (Forssk.) Boiss. Ind. Crop. Prod. 2016, 80, 228–234. [Google Scholar] [CrossRef]
- Ito, H.; Kimura, M. Pre-harvest effects on naturally occurred isothiocyanates (ITCs) of cruciferous sprouts. In Proceedings of the ivth International Conference on Maging Quality in Chains, Vols 1 and 2: The Integrated View on Fruits and Vegetables Quality, Bankok, Thailand, 30 June 2006; pp. 497–504. [Google Scholar]
- Khoobchandani, M.; Ojeswi, B.K.; Ganesh, N.; Srivastava, M.M.; Gabbanini, S.; Matera, R.; Iori, R.; Valgimigli, L. Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chem. 2010, 120, 217–224. [Google Scholar] [CrossRef]
- Chiang, W.C.K.; Pusateri, D.J.; Leitz, R.E.A. Gas chromatography mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli. J. Agric. Food Chem. 1998, 46, 1018–1021. [Google Scholar] [CrossRef]
- Kamal, M.M.; Nazzal, S. Development and validation of a HPLC-UV method for the simultaneous detection and quantification of paclitaxel and sulforaphane in lipid based self-microemulsifying formulation. J. Chromatogr. Sci. 2020, 57, 931–938. [Google Scholar] [CrossRef]
- Vieites-Outes, C.; López-Hernández, J.; Lage-Yusty, M.A. Modification of glucosinolates in turnip greens (Brassica rapa subsp. rapa L.) subjected to culinary heat processes. Cyta J. Food 2016, 14, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Yuan, Q.; Liu, M. Simultaneous determination of glucoraphanin and sulforaphane in Brassica oleracea seeds by high-performance liquid chromatography with evaporative light-scattering detector. Nat. Prod. Res. 2013, 27, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Determination of indole-3-carbinol and indole-3-acetonitrile in Brassica vegetables using high-performance liquid chromatography with fluorescence detection. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 249–252. [Google Scholar] [CrossRef]
- Sun, J.; Charron, C.S.; Novotny, J.A.; Peng, B.; Yu, L.; Chen, P. Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chem. 2020, 309, 125660. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Lopez, V.; Perez, P.; Martinvillamil, R.; Rodriguez, J.G. Progress towards a generalized solvent polarity scale-the solvatochromism of 2-(dimethylamino)-7-nitrofluorene and its homomorph 2-fluoro-7-nitrofluorene. Liebigs Annalen 1995, 241–252. [Google Scholar] [CrossRef]
- Wu, R.; Ma, F.; Zhang, L.; Li, P.; Li, G.; Zhang, Q.; Zhang, W.; Wang, X. Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes. Food Chem. 2016, 204, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, L.; Xu, Y.; Qi, X.; Wang, X.; Wang, X.; Zhang, Q.; Li, P. Optimization of an ultrasound-assisted extraction for simultaneous determination of antioxidants in sesame with response surface methodology. Antioxidants (Basel) 2019, 8, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ares, A.M.; Bernal, J.; Martín, M.T.; Bernal, J.L.; Nozal, M.J. Optimized formation, extraction, and determination of sulforaphane in broccoli by liquid chromatography with diode array detection. Food Anal. Methods 2013, 7, 730–740. [Google Scholar] [CrossRef]
- Nakagawa, K.; Umeda, T.; Higuchi, O.; Tsuzuki, T.; Suzuki, T.; Miyazawa, T. Evaporative light-scattering analysis of sulforaphane in broccoli samples: Quality of broccoli products regarding sulforaphane contents. J. Agric. Food Chem. 2006, 54, 2479–2483. [Google Scholar] [CrossRef]
- Sivakumar, G.; Aliboni, A.; Bacchetta, L. HPLC screening of anti-cancer sulforaphane from important European Brassica species. Food Chem. 2007, 104, 1761–1764. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | Linear Range (μg/kg) | Regression Equation | Correlation Coefficient | LOD (μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|---|
Sulforaphane | 0.1–800 | Y = 458,317X − 133,901 | 0.9999 | 0.05 | 0.15 |
Indole-3-carbinol | 15–1000 | Y = 42.3285X + 397.599 | 0.9986 | 5 | 15 |
Compound | Spiked Concentration (µg/kg) | Recovery (%) | Intra-Day Precision (N = 3, %) | Inter-Day Precision (N = 5, %) |
---|---|---|---|---|
Sulforaphane | 1/5/25 | 76.5/91.3/96.4 | 4.9/5.9/4.1 | 9.4/9.0/11.3 |
Indole-3-carbinol | 20/50/100 | 80.2/92.3/97.3 | 10.3/8.9/7.7 | 9.9/10.6/9.8 |
Rapeseed Tissue (N = 50) | Sulforaphane | Indole-3-Carbinol | ||||
---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | |
Stems | 415.3 ± 4.7 | ND b | 68.5 ± 15.9 | 131.3 ± 11.8 | ND | 41.9 ± 12.4 |
Leaves | 1621.8 ± 28.1 | 14.6 ± 6.7 | 287.3 ± 24.8 * | 879.5 ± 27.9 | 36.4 ± 5.9 | 285.4 ± 18.7 * |
Matrix | Analytes | Extraction Step | Determination Technique | Analyzed Time (min) | Linear Range | LOD (µg/kg) | Ref. |
---|---|---|---|---|---|---|---|
Broccoli | SFN | LLE | UHPLC–HR MS | 20 | - | 770 | [20] |
I3C | 420 | ||||||
Broccoli | SFN | SPE | HPLC-UV | 20 | 5–100 | 20 | [21] |
Brassicaceae | SFN | DLLME | LC-DAD | 30 | - | 100 | [22] |
I3C | 500 | ||||||
Broccoli | SFN | LLE | UHPLC-MS/MS | 3 | 1.8–897.1 | 0.53 | [24] |
Chinese cabbage, mustard | I3C | LLE | HPLC-DAD | 65 | 15–1000 | 5 | [34] |
Rapeseed | SFN | QuEChERS | UHPLC-MS/MS | 8 | 0.1–800 | 0.05 | This work |
I3C | 15–1000 | 5 |
Compound | R.T (min) | Quantitative Ion Pair | CE (eV) | Qualitative Ion pairs | CE (eV) | I.P. a |
---|---|---|---|---|---|---|
Sulforaphane | 3.014 | 178.3 > 114.2 | 19 | 178.3 > 72.1 | 20 | 4 |
Indole-3-carbinol | 2.017 | 148.2 > 118.2 | 15 | 148.2 > 91.1 | 30 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ma, F.; Zhang, L.; Li, P. Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules 2020, 25, 2149. https://doi.org/10.3390/molecules25092149
Yu X, Ma F, Zhang L, Li P. Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules. 2020; 25(9):2149. https://doi.org/10.3390/molecules25092149
Chicago/Turabian StyleYu, Xu, Fei Ma, Liangxiao Zhang, and Peiwu Li. 2020. "Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS" Molecules 25, no. 9: 2149. https://doi.org/10.3390/molecules25092149
APA StyleYu, X., Ma, F., Zhang, L., & Li, P. (2020). Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules, 25(9), 2149. https://doi.org/10.3390/molecules25092149