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Abstract: The flow of nanofluid over a curved Riga surface is a topic of interest in the field of fluid
dynamics. A literature survey revealed that the impacts of freezing temperature and the diameter
of nanoparticles on the heat transfer over a curved Riga surface have not been examined so far.
Therefore, the flow of nanoparticles, which comprises the influences of freezing temperature and
nanoparticle diameter in the energy equation, was modeled over a curved Riga surface. The model
was reduced successfully in the nondimensional version by implementing the feasible similarity
transformations and effective models of nanofluids. The coupled nonlinear model was then examined
numerically and highlighted the impacts of various flow quantities in the flow regimes and heat
transfer, with graphical aid. It was examined that nanofluid velocity dropped by increasing the flow
parameters γ and S, and an abrupt decrement occurred at the surface of the Riga sheet. The boundary
layer region enhances for larger γ. The temperature distribution was enhanced for a more magnetized
nanofluid, and the thermal boundary layer increased with a larger R parameter. The volume fraction
of the nanoparticles favors the effective density and dynamic viscosity of the nanofluids. A maximum
amount of heat transfer at the surface was observed for a more magnetized nanofluid.

Keywords: curved Riga surface; Al2O3 nanoparticles; thermal conductivity; freezing temperature;
curvature; heat transfer

1. Introduction

Heat transfer investigation in nanofluids is a rich research direction in the field of fluid dynamics.
Nanofluids have rich heat transfer characteristics in comparison with regular liquids. Therefore,
in industries, the use of nanofluids in engineering and technological processes is preferable. For different
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industrial products, a huge amount of heat transfer required. Regular fluids like ethylene glycol,
engine oil, kerosene oil and water fail to provide remarkable heat transfer amounts to accomplish the
process of production. Due to high heat transfer characteristics, nanofluids are used instead of regular
fluids. The roots of nanofluids are spread across the fields of electrical engineering, biotechnology,
electronics and in computer chips.

The idea of heat transfer improvement in the regular liquids was raised in late 18th century.
The researchers, scientists and engineers focused on such a significant idea which overcame the issues
of industrialists and engineers. Finally, they added newly developed fluids in the list of fluids which
are called nanofluids. Nanofluids are composed of a mixture of regular liquids and nano sized particles
of various oxides and metals (γAl2O3, CuO, Ag, Cu, Fe3O4, MWCNTs, SWCNTs, Al2O3) which are
thermally compatible. The regular liquids in nanofluids are known as base or host fluids. Due to
high heat transfer characteristics, nanofluids became very popular among the researchers, scientists
and engineers.

For the heat transfer enhancement in the nanofluids, thermal conductivities of the nanosized
material and host liquid play the role of a backbone. Hamilton [1] proposed a thermal conductivity
model, and nanoparticle shape factors emerged in the model. They considered three different shaped
nanoparticles depending upon the shape factor. Koo and Kleinstreuer [2,3] introduced thermal
conductivity correlations for ethylene glycol (EG) and oil saturated by CuO nanoparticles. Moreover,
to enhance the heat transfer rate, they ingrained the temperature effects in the correlations. Thermal
conductivity correlation for spherical shaped nanomaterials was introduced by Bruggemann [4].
They proposed the model at a high volume fraction of the nanoparticles. The extended thermal
conductivity correlation considering n = 3 (shape factor) was introduced by Wasp [5]. A unique
thermal conductivity correlation for H2O saturated by Al2O3 nanoparticles was discussed by Li and
Peterson [6]. For better enhancement of heat transfer, they incorporated the influences of temperature
and fraction factor into the model.

A thermal conductivity model which is reliable for oxides and metallic nanoscaled particles was
discussed by Patel et al. [7] in 2010. They introduced the influences of the diameter of nanoparticles
and temperature in the correlation. In 2010, Godson et al. [8] proposed a thermal conductivity model
which is suitable for Ag/H2O composition. Thermal conductivity correlation for H2O saturated
by Al2O3 nanoparticles was proposed by Corcione [9]. They considered the impacts of freezing
temperature in the model and found fascinating results. Nanofluids became very popular among the
engineers, scientists and industrialists. Researchers started to analyze the behavior of different thermal
conductivity models on the heat transfer rate.

In 2019, Ahmed et al. [10] investigated the flow of magnetized nanofluid over a curved geometry.
For mathematical analysis of the model, they utilized numerical techniques and presented the results
for the flow regimes, heat transfer rate, and skin friction coefficient. Lately, Afridi et al. [11] reported
the nanofluid flow over a curved surface, and for novelty of the analysis they incorporated the viscous
dissipation phenomenon in the energy equation and examined significant variations in the temperature
profile of the nanofluid. Ahmed et al. [12] reported the rotating flow of nanofluid squeezed between
two parallel plates. They considered the composition of two fluids, namely water and ethylene glycol
(EG) saturated by γAl2O3 nanoparticles. They presented fascinating results for the flow regimes and
the local rate of heat transfer. The role of KKL thermal conductivity model in the heat transfer rate
described by Sheikholeslami et al. [13] in 2016. Furthermore, they incorporated the magnetic field
phenomenon in the momentum equation and observed interesting behaviors of the nanofluid’s velocity
and temperature profiles. Abbas et al. [14] explored the flow of nanofluid over a curved Riga geometry.
They made the study fascinating by incorporating the phenomenon of magnetic field in the momentum
equation. A mathematical analysis of the model numerical scheme has been adopted, and results are
reported for the flow regimes, nusselt number, and skin friction coefficient.

Nanofluids composed of host liquids and carbon nanotubes are very familiar among researchers.
Xu [15] discussed the nanofluid model by considering carbon nanotubes. Ramzan et al. [16] reported
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a Bioconvection model together with entropy phenomena over a vertical cone. They modeled the
governing equations by incorporating the carbon nanotubes’ effects. The results for density motile,
velocity, mass and temperature are pictured and discussed comprehensively. Lu et al. [17] examined
the nanofluid flow over a thin film composed of carbon nanotubes. The influences of Cattaneo Christov
heat flux and entropy generation are also ingrained in the governing nanofluid model. The heat
transfer analysis in the nanofluid composed of carbon nanotubes and host liquid between opening
and narrowing channel reported by Khan et al. [18] in 2017. They found fascinating results for the
flow field and heat transfer characteristics. Ahmed et al. [19] examined the heat transfer phenomenon
by incorporating thermal radiation effects in the energy equation between Riga plates. For thermal
enhancement, they used the Xue thermal conductivity model for carbon nanotubes. The flow of
nanofluid over a curved surface is reported by Saba et al. [20] in 2018.

A literature survey reveals that the heat transfer investigation in H2O composed of carbon
nanotubes and the influences of freezing temperature and nanoparticles diameter over a curved Riga
surface have not been reported so far. This analysis presents the heat transfer phenomenon in the
nanofluids by altering different flow quantities.

2. Physical Interpretation of the Results

2.1. The Velocity and Temperature Distribution

This subsection highlights the behavior of nanofluid motion, F’(η) and thermal transport, β(η) for
the parameters ingrained in the model. Figures 1–3 are presented for this purpose.
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2.1.1. Effects of γ and S on F’(η)

Figure 1 shows the velocity behavior of the nanofluid for partial slip flow parameter γ and
parameter S. It is perceived that the velocity F’(η) declines at the Riga surface abruptly for more slippery
surfaces. Physically, the force of friction near the surface becomes stronger for the fluid particles
adjacent to the Riga surface which resists the fluid particle motion. Therefore, the velocity F’(η) declines.
Furthermore, the boundary layer thickness rises for more slippery surfaces. The behavior of F’(η) is very
prominent in the locality of the Riga surface. These influences are shown in Figure 1a. The alterations
in the nanofluid velocity F’(η) against growing values of the parameter S are shown in Figure 1b.
From this, decrement in the nanofluid velocity F’(η) is examined at the surface. The boundary layer
region starts beyond η > 2.5. Further, it was found that the velocity drops slowly for S in comparison
with the velocity for γ.
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2.1.2. Effects of k and n on F’(η)

Figure 2a shows the behavior of nanofluid velocity against curvature of the Riga surface.
It is perceived that larger curvature resists the nanofluid motion. The physical relevance of these effects
is the increment in force of friction between the fluid particles and the Riga sheet. It is evident that by
increasing the curvature of the sheet, the surface area increases, which causes more free space to be
available for the flowing fluid. The fluid over the surface expanded and the force of friction enhances
due to the larger surface, therefore, the nanofluid motion drops. The abrupt decreasing behavior of
the nanofluid motion is perceived at the Riga surface because the force of friction is stronger in this
region. On the other side, due to the larger curvature, the momentum boundary layer region increases.
Figure 2b demonstrates the flowing behavior of the nanofluid for parameter n. The rapid increment in
the nanofluid motion is examined near the surface for larger n. In this case, the boundary layer of the
nanofluid decreases.
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2.1.3. Effects of R and M on β(η)

The thermal profile β(η) against stretching parameter R is shown in Figure 3a. The more stretched
Riga surface opposes the temperature of the nanofluid. Physically, when the surface is stretched,
the nanofluid motion drops. Due to the decrement in the fluid motion, collision between the fluid
particles drops as a result of the temperature β(η) declining. Furthermore, it was found that for more
stretched surfaces, the thermal boundary was enhanced. The behavior of nanofluid temperature β(η)
against an induced magnetic field is shown in Figure 3b. The temperature β(η) increases the more
magnetized the nanofluid. Near the region η = 0, an abrupt increment in the temperature β(η) is
noticed. Further, more magnetized nanofluid resists the thermal boundary layer region in comparison
with stretched parameter R.
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2.2. Streamlines Profile

The behavior of the streamlines pattern due to varying different flow parameters like S, n, R and
curvature parameter k is presented graphically in this subsection. From Figure 4, it is clear that for
smaller values of S, the flow pattern is more parabolic at the middle. As the values of S upturns,
the flow pattern increases. The streamlined behavior is very fascinating for growing values of n.
It can be seen that at the middle area of the pattern, the streamlines are more curved and of parabolic
shaped and the curve expanded away from central curves. These effects are portrayed in Figure 5 for
increasing values of n. Figures 6 and 7 portray the pattern of streamlines for growing values of R and
the curvature of the Riga sheet k, respectively.
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2.3. Isotherms Profile

The pattern of isotherms for the volumetric fraction of nanoparticles φ, R, S and γ are presented
in Figures 8–11, respectively. It is investigated that the isotherms’ pattern is more curved for
volume fraction φ, R and S parameters. These alterations in isotherms are examined in Figures 8–10.
The behavior of isotherms is fascinating for curvature parameter k and is depicted in Figure 11.
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2.4. Thermophysical Characteristics

The dynamic viscosity, effective density and heat capacity of the nanofluids is of great significance
in the colloidal analysis. The fraction factor φ significantly alters the characteristics of these
quantities. Figure 12 is shown for this purpose. The fraction factor domain is taken between 0–0.2.
It is perceived that the effective characteristics of the nanofluids enhances by altering the fraction factor.
The enhancement of these quantities significantly alters the flow characteristics such as the nanofluid
motion, thermal transport, wall shear stresses and local heat transfer rate over the Riga surface.
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2.5. Nusselt Number and Skin Friction

Figure 13 reflects the transportation of the local heat transfer rate for the magnetic field, curvature
and fraction factor at the Riga surface. It is perceived that there is more heat transport at the surface
due to the stronger magnetic field. Physically, the induced magnetic field resists the fluid motion due
to the fluid particles which come closer to each other and consequently, increase heat transfer at the
surface. On the other side, larger curvature opposes the heat transportation. By increasing the surface
curvature, the fluid particles scatter at the surface, which causes a decrement in fluid motion. Therefore,
the rate of local heat transfer drops. Similarly, influences of fraction factor on the heat transfer rate are
shown. The influences of fraction factor, curvature and S, on the shear stresses at the Riga surface are
shown in Figure 14.
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2.6. Reliability of the Study

Our nanofluid model is more general. However, under certain restrictions on the flow parameters,
the results for −ResCF are compared with existing scientific literature. By setting R1 = 1, γ = 0, S = 0,
ω = 0, β* = 0, θ = 0, φ = 0, the following tabulated results are computed. From Table 1, it is perceived
that our results are more reliable with the existing science literature, which proves the reliability of the
presented analysis.
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Table 1. Reliability of the Study.

k Sajid et al. [21] Present

5 0.75763 0.757631
10 0.87349 0.873489
20 0.93561 0.93561
30 0.95686 0.970198
40 0.96759 0.942587
50 0.97405 0.974049

3. Materials and Methods

3.1. Model Formulation

3.1.1. Statement and Geometry of the Model

The viscous incompressible flow of H2O by considering the freezing temperature and nanoparticles
diameter effects over a curved Riga surface is under consideration. The Riga surface is placed in the
curvilinear coordinates system. It is assumed that the host liquid and nanoparticles are thermally
compatible. The Riga surface is capable of stretching. The curvilinear coordinates are denoted by s
and r, and radius of the curve is taken as r. The flow of nanofluids over a curved Riga surface is shown
in Figure 15.
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3.1.2. Governing Model and Similarity Transformations

The governing flow of nanofluid in light of aforementioned assumptions over a curved Riga
surface is as follows [14]:

∂
∂r

(V∗(r + R∗)) + R∗
∂U∗

∂S
= 0 (1)
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∂
∂r

(
H∗1(r + R∗)

)
+ R∗

∂H∗2
∂S

= 0 (2)

U∗2

r + R∗
−

1
ρ∗n f

∂p∗

∂r
= 0 (3)

V∗ ∂U∗
∂r + R∗U∗

r+R
∂U∗
∂S + V∗U∗

r+R∗ +
1
ρ∗n f

(
R

r+R∗
)∂p∗

∂s =

(
µ∗n f
ρ∗n f

+ k
ρ∗n f

)(
∂2U∗
∂r2 −

U∗

(r+R∗)2 +
1

r+R∗
∂U∗
∂r

)
−

K∗1
ρ∗n f

∂N∗
∂r +

πJ∗0M∗0
8ρ∗n f

e−
π
a r +

µ∗e
4πρe

((
R∗H∗1
r+R∗

)
∂H∗1
∂s + H∗2

∂H∗1
∂r +

H∗1H∗2
r+R∗

) (4)

(
R∗

r+R∗
)(

U∗
∂H∗1
∂s

)
+

H∗1H∗2
r+R∗ + V∗

∂H∗1
∂r −

(
R∗H∗1
r+R∗

∂U∗
∂S + V∗U∗

r+R∗ + H∗2
∂V∗
∂r

)
= µ∗e

(
∂2H∗1
∂r2 −

H∗1
(r+R∗)2 +

1
r+R∗

∂H∗1
∂r

) (5)

V∗
∂N∗

∂r
+

R∗U∗

r + R∗
∂N∗

∂s
=

1
ρ∗n f

(
µ∗n f +

K∗1
2

)(
1

r + R∗
∂N∗

∂r
+
∂2N∗

∂r2

)
−

K∗1
2ρ∗n f

(
∂U∗

∂r
+ 2N∗ +

U∗

r + R∗

)
(6)

R∗U∗

r + R∗
∂T∗

∂s
+ V∗

∂T∗

∂r
=

k∗n f(
ρcp

)
n f

(
1

r + R∗
∂T∗

∂r
+
∂2T∗

∂r2

)
(7)

In the governing nanofluid model, ρ∗n f , k∗n f , µ
∗

n f and (ρcp)nf are effective density, thermal conductivity,
dynamic viscosity and specific heat capacitance, respectively. The conditions at the Riga surface and
far from this, considering that the velocity slip and thermal jump are defined in the following way:

At surface r→ 0
V∗ = 0

U∗ = alExp
(

s
l

)
+ L

(
kN∗ + U∗

r+R∗ +
∂U∗
∂r

)
T∗ = T∗w +

λ∗1k∗n f
k f

∂T∗
∂r

∂H∗1
∂r = H∗2 = 0
N∗ = −n ∂U∗

∂r
Away from ther→∞

U∗ → 0
H∗1 → He(s) = H∗0lExp

(
s
l

)
T∗ → T∗∞
N∗ → 0



(8)

In Equation (8), velocity slip is represented by L, thermal slip is λ∗1, T∗w is the temperature at the
Riga surface, T∗∞ denotes the temperature away from the Riga surface and n denotes the microgyration
of micropolar nanofluid. The feasible invertible transformations under consideration for the nanofluid
model are defined in the following manner:

T∗ = T∗w + (T∞ − Tw)β(η)

η =
√

a
ν f

r

U∗ = alExp
(

s
l

)
F′(η)

V∗ = −
(

R∗
r+R∗

)
1
l
√aν f Exp

(
s
l

)
F(η)

N∗ =
√aν f Exp

(
s
l

)
H(η)

P∗ = ρ∗l2Exp
(

2s
l

)
p(η)

H∗1 = H∗0lExp
(

s
l

)
G′(η)

H∗2 = −H∗0
(

R∗
r+R∗

)
Exp(s/l)

√
ν f
a G(η)



(9)
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3.1.3. Effective Nanofluid Models

In order to improve thermal enhancement in the nanofluids, the following models are considered
in this particular study [22]:

ρ∗n f =

[
(1−φ) +

φρp

ρ f

]
ρ f (10)

(
ρCp

)
n f

=

(1−φ) + φ
(
ρCp

)
p(

ρCp
)

f

(ρCp
)

f
(11)

µ∗n f = µ f

1− 34.87
(dparticle

d f luid

)−0.3

φ1.03


−1

(12)

k∗n f = k f

1 + 4.4Re0.4
b

0.66
Pr

(
T

T f reezing

)10( kp

k f

)0.03

φ0.66

 (13)

In Equation (13), Reynolds number is Reb, due to the effects of brownian motion, and defined in
the following formula:

Reb
(
µ f

)
= dpρ f ub (14)

The velocity of brownian motion in Equation (14) calculated by the formula below:

ub =
2Tkb(
πd2

pµ f
) (15)

In Equation (15), Stefan Boltzmann coefficient is denoted by kb and is equal to 1.380648× 10−23 (JK−1)
and the molecular diameter of the nanoparticles dp is calculated by the following formula [23]:

d f = 6M∗
(
N∗ρ fπ

)−1
(16)

The molecular weight of the host fluid and Avogadro number are represented by M* and N*,
respectively. Further, the value of df is calculated as

d f =

(
6× 0.01801528

998.62× (6.022× 1023) ×π

) 1
3

= 3.85× 10−10m (17)

The thermophysical characteristics [22] of the tiny particles and host liquid given in Table 2:

Table 2. Thermophysical Characteristics T = 310 K [22].

Properties dp (nm) ρ (kg/m3) β (1/k) Cp (J/kg K) µf (kg/ms) k (W/mk) σ (S/m)

H2O 0.385 993 36.2 × 105 4178 695 × 106 0.628 0.005
Al2O3 33 3970 0.85 × 105 765 ——— 40 0.05 × 106

3.1.4. Nondimensional Nanofluid Model

After implementing the similarity transformations embedded in Equation (9), effective nanofluid
models described in Equations (10)–(13), and appropriate partial derivatives in the governing model
as described in Equations (1)–(7), with conditions at the surface of the Riga sheet and away from as
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embedded in Equation (8), the following nanofluid model comprising of the freezing temperature and
the influence of nanoparticle diameter is attained:

1(
1−φ+ φρs

ρ f

)
 1

1−34.87
(

dparticle
d f luid

)−0.3

φ1.03

+ K∗1


(
F′′′′ + 2F′′′

(k+η) +
F′

(k+η)3 −
F′′

(k+η)2

)
+

R1k
(k+η) (FF′′ − F′′F′) + R1

(k+η)2

(
FF′′ − F′2

)
−

R1k
(k+η)3 FF′ − 1(

1−φ+ φρs
ρ f

)R1K∗1H′−

ω∗Θ exp(−ω∗η) + β∗

(k+η)

(
G′G′′ + GG′

(k+η)2 −GG′′ − G′G′+GG′′
(k+η)

)
= 0

(18)

λ∗
(
G′′′ + G′′

(k+η) −
G′

(k+η)2

)
+ R1

(
k

(k+η)G′F′ − k2

(k+η)3 GF + k2

(k+η)2 GF′ − k
(k+η)2 FF′−

R1

(
k

(k+η)G′F′ − k
(k+η)2 GG′ − k

(k+η)FG′′
))

= 0
(19)

1(
1−φ+ φρs

ρ f

)
 1

1−34.87
(

dparticle
d f luid

)−0.3

φ1.03

+
K∗1
2


(
H′′ + H′

(k+η)

)
−

R1
2

K∗1
(k+η)F′H + R1

2
K∗1

(k+η)H′F−

1(
1−φ+ φρs

ρ f

) R1K∗1
2

(
2H + F′′ + F′

(k+η)

)
= 0

(20)

(1 + 4.4Re0.4
b

0.66
Pr

(
T

T f reezing

)10( kp
k f

)0.03
φ0.66)

(1−φ) +
φ(ρcp)s

(ρcp) f

(
β′′ +

1
(k + η)

β′
)
+

kR1

(k + η)
β′F−

kR1

(k + η)
β = 0 (21)

The dimensional boundary conditions reduced into the following dimensionless form:

At η = 0
F′(η) = 1 + γ

(
1
k F′(η) + F′′ (η)(1− n)

)
F(η) = S

H(η) = F′′ (η)n
G(η) = 0

G′′ (η) = 0

β(η) = 1 +
M

1+4.4Re0.4
b

0.66
Pr

(
T

T f reezing

)10(
kp
k f

)0.03

φ0.66


k f

β(η)

At η→∞
F′(η) = 0
F′′ (η) = 0
H(η) = 0
G′(η) = 1
β(η) = 0



(22)

In Equations (18)–(21), K∗1 represents the microgyration number, φ is the fraction factor, θ is the
modified Hartmann number, ω* is a dimensionless quantity, k is the dimensionless surface curvature,
λ* is the reciprocal magnetic Prandtl number, Pr is the Prandtl number, M is the thermal slip parameter,
γ denotes the partial slip parameter, and R1 is the stretching parameter.
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3.1.5. Significant Quantities from Engineering Aspects

Quantities like skin friction coefficient and local nusselt number are very popular among the
researchers and engineers. The dimensional formulas for the aforementioned quantities are as follows:

CF =
τrs

ρ∗n f u2
w

(23)

Nu =
qws

kn f (T∗w − T∗∞)
(24)

The shear stresses and heat flux are defined as

τrs =
1(

1−φ+
φρs
ρ f

)
 1

1− 34.87
(

dparticle
d f luid

)−0.3
φ1.03

+ K∗1


(
∂u
∂r

+
u

R + r
+ kN∗

)
↓r = 0 (25)

qw = −

1 + 4.4Re0.4
b

0.66
Pr

(
T

T f reezing

)10( kp

k f

)0.03

φ0.66)

(∂T∗

∂r

)
↓r = 0 (26)

By incorporating the shear stresses and heat flux described in Equations (25), (26) in
Equations (23), (24), the following self-similar forms for skin friction and local nusselt number
are obtained:

√
Res CF =

1(
1−φ+

φρs
ρ f

)
 1

1− 34.87
(

dparticle
d f luid

)−0.3
φ1.03

+ K∗1


(
F′′ (η) +

F′(η)
k
− nK∗1F′′ (η)

)
↓ η = 0 (27)

√
Res Nu = −

1 + 4.4Re0.4
b

0.66
Pr

(
T

T f reezing

)10( kp

k f

)0.03

φ0.66)

β′(η) ↓ η = 0 (28)

where Res =
aU∗w
ν f

and is known as local Reynold number.

3.2. Mathematical Analysis

After further consideration, the nanofluid model comprising the set of Equations (18)–(21) is
coupled with a system of a nonlinear nature. The closed form solutions are inconvenient for such
a model. Therefore, a numerical approach to tackle the model is best. Thus, the Runge–Kutta
scheme and the shooting method [24,25] are implemented for the solution purpose. For this, a set
of ordinary differential equations with feasible conditions are required. The system of higher order
ordinary differential equations (ODEs) is transformed into a system of first order ODEs via following
transformations:

b∗1 = F, b∗2 = F′, b∗3 = F′′ , b∗4 = F′′′

b∗5 = G, b∗6 = G′, b∗7 = G′′

b∗8 = H, b∗9 = H′

b∗10 = β, b∗11 = β′

 (29)

From Equation (29), we obtained:

b∗1′ = F′, b∗2′ = F′′, b∗3′ = F′′′ , b∗4′ = F′′′′

b∗5′ = G′, b∗6′ = G′′, b∗7′ = G′′′

b∗8′ = H′, b∗9′ = H′′

b∗10′ = β′, b∗11′ = β′′

 (30)
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Plugging the values from Equation (29) in Equation (30), we reached the following:

b∗1
′ = b∗2, b∗2

′ = b∗3, b∗3
′ = b∗4, b∗4′ = F′′′′

b∗5
′ = b∗6, b∗6

′ = b∗7, b∗7′ = G′′′

b∗8
′ = b∗9, b∗9′ = H′′

b∗10
′ = b∗11, b∗11′ = β′′

 (31)

After incorporating these transformations into the model given in Equations (18)–(21) and
supporting boundary conditions given in Equation (22), a system of first order initial value problems is
attained. The accuracy of the scheme is fixed at 10−6 and the process of calculation is repeated unless
the desired accuracy is obtained.

4. Conclusions

The colloidal analysis of Al2O3-H2O over a magnetized curved Riga surface is presented.
The results for multiple flow parameters are shown over the region of interest. From the study, it is
perceived that

• The flowing region increases for larger curvatures of the Riga surface which resists the
nanofluid motion.

• The momentum boundary layer region increases for stretched Riga surface.
• The thermal behavior β(η) enhances near the Riga surface abruptly for more magnetized colloidal

mixtures of Al2O3-H2O.
• More heat transportation at the Riga surface is perceived for a stronger induced magnetic field.
• The wall shear stresses decline for larger values of parameter S.
• Al2O3-H2O nanofluids are better to use for industrial uses regarding thermal transportation in the

occurrence of magnetic field.
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Nomenclature

U* the velocity along s direction
V* the velocity along r direction
p* pressure
µ∗n f dynamic viscosity
ρ∗n f effective density
k∗n f thermal conductivity of the colloidal suspension
(ρcp)nf heat capacitance of the colloidal suspension
nf stands for nanofluid
λ∗1 slip parameter
ρp particles density
ρf host fluid density
µf dynamic viscosity of host liquid
kp tiny particles thermal conductivity
kf host liquid thermal conductivity
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dfluids molecular diameter
dparticles tiny particles diameter
φ volume fraction factor
kb Stefan Boltzmann constant
K∗1 micropolar parameter
n microgyration parameter
M thermal slip number
γ partial slip number
θ modified Hartmann number
ω* nondimensional parameter
λ* reciprocal magnetic Prandtl number
η similarity variable
F’(η) dimensionless velocity
β(η) dimensionless temperature
Res local Reynolds number
M* molecular weight
N* Avogadro number
Pr Prandtl number
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