Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product
Abstract
:1. Introduction
2. Results
2.1. The Chemical Composition and Mineral Profile of the Walnut Oilcake Powder
2.2. Fatty Acids Methyl Esters Content and Volatile Compounds of Walnut Oilcake Powder
2.3. The Effect of Walnut Oilcake Addition on Physicochemical Composition and Nutritional Quality of Modified Macarons
2.3.1. Chemical Composition for Modified Macarons with Walnut Oilcake and Their Textural Profile Analyses
2.3.2. Mineral Content of Macarons with Walnut Oilcake
2.4. The Effect of Walnut Oilcake Addition on Fatty Acids Methyl Esters Content of Modified Macarons
2.5. The Effect of Walnut Oilcake Addition on Volatile Compounds Content of Modified Macarons
2.6. Pearson’s Correlation
2.7. The Effect of Walnut Oilcake Addition on Sensory Analysis of Modified Macarons
3. Materials and Methods
3.1. Supply of Raw Materials and Storage Conditions
3.2. Walnut Oilcake Powder Preparation
3.3. Modified Macarons Making Process
3.4. Proximate Composition Analysis of the Walnut Oilcake Powder and Modified Macarons
3.4.1. Analysis of Macro and Microelements by Atomic Absorption Spectrophotometry
3.4.2. Total Phenolic Content (TPC) and Antioxidant Capacity
3.5. Determination of Fatty Acid Composition
3.5.1. Total Lipid Determination
3.5.2. Fatty Acids Profile by GC-MS Analysis
3.6. Extraction and Analysis of Volatile Compounds by ITEX/GS-MS
3.7. Texture Profile Analysis for Macaron Samples
3.8. Sensory Evaluation
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, M.J. Mom’s French Cookie Good Macaron; Chung Publisher: Seoul, Korea, 2013; pp. 11–68. [Google Scholar]
- Kim, J.I. Physicochemical Properties of Macaroon Prepared with Eclipta Alba. Master’s Thesis, Hansung University, Gwangju, Korea, 2015. [Google Scholar]
- Kim, M.; Sim, K.H. Quality Characteristics and Antioxidative Activities of Macaron with the Addition of Egg White Powder. Korean J. Food Nutr. 2017, 30, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.W.; Choi, S.Y.; Yoo, K.M.; Lim, S.Y.; Jung, W.S.; Hwang, I.K. Development of value-added macaroonè with Perilla frutescens powders and their physiological characteristics. Korean J. Food Nutr. 2015, 28, 66–72. [Google Scholar] [CrossRef]
- Palczak, J.; Giboreauc, A.; Rogeaux, M.; Delarue, J. How do pastry and culinary chefs design sensory complexity? Int. J. Gastron. Food Sci. 2020, 19, 100182. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, Y.S.; Hong, M.S.; Yook, H.S. Quality characteristics of meringue cookies added with tomato powder. J. Korean Soc. Food Sci. Nutr. 2016, 45, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.I. Meringue, powerful combination of sugar and egg white powder. Bakery 2006, 3, 139–140. [Google Scholar]
- Yadav, N.K.; Vadehra, D.V. Mechanism of egg white resistance to bacterial growth. J. Food Sci. 1977, 42, 97–99. [Google Scholar] [CrossRef]
- Radványi, D.; Juhász, R.; Németh, C.; Suhajda, Á.; Balla, C.; Barta, J. Evaluation of the Stability of Whipped Egg White. Czech J. Food Sci. 2012, 30, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Messeni, P.A.; Savino, T. Search, recombination, and innovation: Lessons from haute cuisine. Long. Range Plan. 2014, 47, 224–238. [Google Scholar] [CrossRef]
- Bakkalbasi, E.; Raciye Meral, R.; Dogan, I.S. Bioactive compounds, physical and sensory properties of cake made with walnut press-cake. J. Food Qual. 2015, 38, 422–430. [Google Scholar] [CrossRef]
- Vanhanen, L.P.; Savage, G.P. The use of peroxide value as a measure of quality for walnut flour stored at five different temperatures using three different types of packaging. Food Chem. 2006, 99, 64–69. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Diaconeasa, Z.M. Introductory Chapter: From Waste to New Resources. In Food Preservation and Waste Exploitation; IntechOpen: London, UK, 2019; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bochkarev, M.S.; Egorova, E.Y.; Reznichenkoc, I.Y.; Poznyakovskiy, V.M. Reasons for the ways of using oilcakes in food industry. Foods Raw Mater. 2016, 4, 4–12. [Google Scholar] [CrossRef]
- Ros, E.; Mataix, J. Fatty acid composition of nuts—Implication for cardiovascular health. Br. J. Nutr. 2006, 96, S29–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, P.; Valacchi, G.; Pagnin, E.; Shao, Q.; Gross, H.B.; Calo, L.; Yokoyamaz, W. Walnuts reduce aortic ET-1 mRNA levels in hamsters fed a high-fat, atherogenic diet. J. Nutr. 2006, 136, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.S.; Alves, M.; Seabra, R.; Oliveira, B. Vitamin E composition of walnuts (Juglans regia L.): A 3-year comparative study of ifferent cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef]
- Tarek-Tilistyáka, J.; Juhász-Román, M.; Jekőa, J.; Máthé, E. Short-term storability of oil seeds and walnut cake-microbiological aspect. Acta Aliment. 2014, 43, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Montrimaitė, K.; Moščenkova, E. Possibilities of usage of oilcakes from non-traditional oil plants for development of health-friendly functional food products. Food Sci. Appl. Biotech. 2018, 1, 154–164. [Google Scholar] [CrossRef]
- Martínez, M.L.; Penci, M.C.; Ixtaina, V.; Ribotta, P.D.; Maestri, D. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT Food Sci. Technol 2013, 51, 44–50. [Google Scholar]
- Farcas, A.C.; Mudura, E.; Socaci, S.A.; Dulf, F.V.; Tofana, M. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Grosu, C. Mineral Ccomposition of Walnut Kernel and Walnut Oil Cake; Academia de Studii Economice a Moldovei: Iasi, Romania, 2017; pp. 225–226. Available online: https://ibn.idsi.md/sites/default/files/imag_file/225-226.pdf (accessed on 31 January 2020).
- Özcan, M.M.; İman, C.; Arslan, D. Physico-chemical properties, fatty acid and mineral content of some walnuts (Juglans regia L.) types. Agric. Sci. 2010, 1, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Çağlarırmak, N. Biochemical and physical properties of some walnut genotypes (Juglans regia L.). Nahrung. Food 2003, 47, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Rajiv, J.; Lobo, S.; Jyothi Lakshmi, A.; Venkateswara Rao, G. Influence of Green Gram Flour (Phaseolus aureus) on the Rheology, Microstructure and Quality of Cookies. J. Texture Stud. 2012, 43, 350–360. [Google Scholar] [CrossRef]
- Chis, M.S.; Pop, A.; Păucean, A.; Socaci, S.A.; Ersilia Alexa, E.; Man, S.M.; Monica Bota, M.; Muste, M. Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles. Molecules 2020, 25, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makinde, F.M.; Adeyemi, A.T. Quality characteristics of biscuits produced from composite flours of wheat, corn, almond and coconut. Annu. Food Sci. Technol. 2018, 19, 216–225. [Google Scholar]
- Rolls, B.J.; Drewnowski, A.; Ledikwe, J.H. Changing the Energy Density of the Diet as a Strategy for Weight Management. J. Am. Diet. Assoc. 2005, 105, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; David, R.; Jacobs Jr, D.R. Health benefits of nuts: Potential role of antioxidants. Br. J. Nutr. 2006, 96, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans regia L.). Food Res. Int. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Tofană, M.; Mureşan, C.; Mudura, E.; Salanţă, L.; Scrob, S. Nutritional Properties and Volatile Profile of Brewer’s Spent Grain Supplemented Bread. Rom. Biotech. Let. 2014, 19, 9705–9714. [Google Scholar]
- Lavedrine, F.; Ravel, A.; Villet, A.; Ducros, V.; Alary, J. Mineral composition of two walnut cultivars originating in France and California. Food Chem. 2000, 68, 347–351. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Baciu, A.; Achim, G.; Botu, M.; Trandafir, I. Mineral Composition of Fruits in Different Walnut (Juglans regia L.) Cultivars. Not. Bot. Hort. Agrobot. Cluj 2009, 37, 156–160. [Google Scholar] [CrossRef]
- Moodley, R.; Kindness, A.; Jonnalagadda, S.B. Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia, and walnut) consumed in Southern Africa. J. Env. Sci. Health Part B 2007, 42, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.P.; Astrup, A.; Cocaul, A.; Ellis, P. The nutritional and health benefits of almonds: A healthy food choice. Food Sci. Tech. Bul. Funct. Foods 2009, 6, 41–50. [Google Scholar] [CrossRef]
- Rodushkin, I.; Engström, E.; Sörlin, D.; Baxter, D. Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Sci. Total Environ. 2008, 392, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Estruch, R. Nut consumption and age-related disease. Maturitas 2016, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Socaci, S.A.; Socaciu, C.; Mureşan, C.; Fǎrcaş, A.; Tofanǎ, M.; Vicaş, S.; Pintea, A. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochem. Anal. 2014, 25, 161–169. [Google Scholar] [CrossRef]
- Li, J.; Dong, M.; Liu, Y.L.; Zhang, L.; Zhang, Y.; Ren, J.N.; Pan, S.Y.; Fan, G. Effect of Food Emulsifiers on Aroma Release. Molecules 2016, 21, 511. [Google Scholar] [CrossRef] [Green Version]
- Elmore, J.S.; Nisyrios, I.; Mottram, D.S. Analysis of the headspace aroma compounds of walnuts (Juglans regia L.). Flavour Fragr. J. 2005, 20, 501–506. [Google Scholar] [CrossRef]
- Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of α- and β-pinene into flavor compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar]
- Sun, J.D. Limonene: Safety and Clinical Applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar] [PubMed]
- Bail, S.; Stuebiger, G.; Unterweger, H.; Buchbauer, G.; Krist, S. Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MS. Eur. J. Lipid Sci. Technol. 2009, 111, 170–182. [Google Scholar] [CrossRef]
- Park, S.H.; Lim, H.S.; Hwang, S.Y. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder. Food Sci. Technol. Int. 2012, 18, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Luna Solai. Available online: https://www.lunasolai.com/ (accessed on 31 January 2020).
- Choi, S.Y.; Lim, S.Y.; Jung, W.S.; Yoo, K.M.; Hwang, I.K. Studies on Quality Characteristics and Biological Activities of Macaroons supplemented with GABA (γ-Aminobutyric Acid) Rice Powder and Xylose. J. East. Asian Soc. Diet. Life 2015, 25, 822–829. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; Methods 38–12; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Li, L.; Tsao, R.; Yang, R.; Liu, C.; Zhu, H.; Young, J.C. Polyphenolic profiles and antioxidant activities of heratnut (Juglans ailanthifolia var. Cordiformis) and persian walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54, 8033–8040. [Google Scholar] [CrossRef]
- Chiș, M.S.; Păucean, A.; Stan, L.; Mureșan, V.; Vlaic, R.A.; Man, S.; Biriș-Dorhoi, E.S.; Muste, S. Lactobacillus plantarum ATCC 8014 in quinoa sourdough adaptability and antioxidant potential. Rom. Biotechnol. Lett. 2018, 23, 13581–13591. [Google Scholar]
- Paucean, A.; Man, S.M.; Chis, M.S.; Muresan, V.; Pop, C.R.; Socaci, S.A.; Muresan, C.C.; Muste, S. Use of Pseudocereals Preferment Made with Aromatic Yeast Strains for Enhancing Wheat Bread Quality. Foods 2019, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Pyo, Y.H.; Lee, T.C.; Logendra, L.; Rosen, R.T. Antioxidant activity and phenolic compounds of swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 2004, 85, 19–26. [Google Scholar] [CrossRef]
- Duca, A.; Alexa, E.; Dehelean, C.A.; Șoica, C.; Danciu, C.; Popescu, I.; Cocan, I.; Lalescu, D.; Muntean, D.M. Assessment of lipid profile of eight propolis samples from western Romania. Farmacia 2019, 1, 126–132. [Google Scholar] [CrossRef]
- The Pherobase Data base of Pheromones and Semio Chemicals. Available online: https://www.pherobase.com/ (accessed on 10 December 2019).
- Flavornet and human odor space. Available online: http://www.flavornet.org (accessed on 10 December 2019).
- Dong, L.; Piao, Y.; Zhang, X.; Zhao, C.; Hou, Y.; Shi, Z. Analysis of volatile compounds from a malting process using headspace solid-phase micro-extraction and GC–MS. Food Res. Int. 2013, 51, 783–789. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | (WP) |
---|---|
Proximate composition, % f.w. | |
Moisture content, | 5.95 ± 0.57 |
Protein, | 10.30 ± 0.28 |
Oil, | 21.93 ± 0.19 |
Crude fiber, | 6.79 ± 0.28 |
Ash, | 5.28 ± 0.13 |
Carbohydrates, | 49.75 ± 0.74 |
TPC, mgGAE/100 g dw. | 136.33 ± 4.04 |
DPPH, % | 53.00 ± 2.65 |
Minerals, mg/100 g f.w. | |
K | 506.88 ± 0.20 |
P | 267.37 ± 0.47 |
Mg | 128.24 ± 0.85 |
Ca | 105.30 ± 1.11 |
Fe | 2.98 ± 0.18 |
Zn | 2.29 ± 0.14 |
Mn | 1.77 ± 0.25 |
Cu | 1.70 ± 0.21 |
Cd | 0.070 ± 0.01 |
Cr | 0.034 ± 0.01 |
Ni | 0.18 ± 0.04 |
Fatty Acids | (WP) | ||
Shorthand Nomenclature | Fatty Acid Name | Type | (%) |
C 6:0 | Caproic | SFA | 0.29 ± 0.04 |
C 8:0 | Caprylic | SFA | 0.60 ± 0.03 |
10:0 | Capric | SFA | 0.11 ± 0.06 |
12:0 | Lauric | SFA | 1.02 ± 0.12 |
14:0 | Myristic | SFA | 0.22 ± 0.06 |
16:0 | Palmitic | SFA | 5.06 ± 0.32 |
18:1(n-9) | Oleic | MUFA, ω-9 | 30.20 ± 0.98 |
18:3(n-3) | Linolenic | PUFA ω-3 | 10.64 ± 0.53 |
18:2(n-6) | Linoleic | PUFA ω-3 | 54.43 ± 0.49 |
∑SFAs | - | - | 7.30 ± 0.17 |
∑PUFAs | - | - | 65.07 ± 0.13 |
∑UFAs | - | - | 95.27 ± 0.54 |
∑SFAs/∑ UFAs n-6/n-3 | - - | - - | 0.07 ± 0.04 5.11 ± 0.42 |
Volatile profile | (WP) | ||
Volatile Compounds | RI (Retention Indices) | Characteristic Odour * | Conc. (% of Total Peak Area) |
Alcohols | |||
Pentan-1-ol | 759 | Malty, alcoholic whiskey | 0.92 ± 0.04 |
Hexan-1-ol | 851 | Ethereal, oil, alcohol, green, fruity, sweet, woody, floral | 0.23 ± 0.05 |
Aldehyde | |||
Hexanal | 801 | Fresh, green, fatty, aldehydic, grass, leafy, fruity, sweaty | 9.69 ± 0.03 |
Benzaldehyde | 958 | Almond, burnt sugar | 0.53 ± 0.12 |
Ketone | |||
1-Phenylethanone | 1042 | Almond, floral | 1.61 ± 0.09 |
Terpenes and Terpenoids | |||
α-Pinene | 939 | Fresh, sweet, green, woody, earthy | 0.42 ± 0.06 |
β-Pinene | 982 | Pine, resin, turpentine | 9.20 ± 0.77 |
β-Myrcene | 992 | Tropical, fruity with mango shades, grassy | 1.45 ± 0.07 |
p-Cymene | 1028 | Citrus, sweet, herbal, spicy | 0.41 ± 0.05 |
d-Limonene | 1031 | Citrus, mint | 11.02 ± 0.20 |
Acids | |||
Benzoic Acid | 1277 | Balsamic | 0.94 ± 0.05 |
Esters | |||
2-Methylpropyl acetate | 778 | Fruity, flowery, banana, pear | 19.93 ± 0.95 |
Pentyl acetate | 916 | Herbal | 0.38 ± 0.06 |
Methyl hexanoate | 1000 | Fruity, fresh, sweet | 0.28 ± 0.04 |
Ethyl hexanoate | 1001 | Apple, fruity | 11.55 ± 0.08 |
Hexyl acetate | 1012 | Fruity, herbal | 23.73 ± 0.07 |
Ethyl octanoate | 1042 | Orange | 3.87 ± 0.07 |
Others | |||
Nonane | 900 | Alkane | 3.64 ± 0.10 |
N.D. | - | - | 0.18 ± 0.02 |
Parameters | M0 (Control) | M10 | M25 | M50 |
---|---|---|---|---|
Proximate composition, % f.w. | ||||
Moisture content | 6.34 ± 0.50 a | 7.16 ± 0.31 b | 8.08 ± 0.23 c | 10.63 ± 0.42 d |
Protein | 7.13 ± 0.27 a | 7.30 ± 0.20 a | 7.81 ± 0.26 a | 7.61 ± 0.14 a |
Oil | 8.74 ± 0.40 a | 8.97 ± 0.13 a | 8.85 ± 0.45 a | 9.03 ± 0.10 a |
Crude fiber | 4.38 ± 055 a | 4.86 ± 0.21 ab | 5.79 ± 0.32 c | 6.79 ± 0.40 d |
Ash | 1.67 ± 0.25 a | 1.73 ± 0.33 a | 1. 88 ± 0.28 a | 1.91 ± 0.07 a |
Carbohydrates | 72.88 ± 0.35 d | 69.98 ± 1.15 c | 68.06 ± 0.66 b | 64.03 ± 0.28 a |
Energy, kcal/100 g | 350.44 d | 342.71 c | 336.10 b | 322.73 a |
TPC, mgGAE/100 g d.w. | 20.33 ± 2.40 a | 35.66 ± 4.93 b | 42.33 ± 3.06 c | 62.66 ± 4.03 d |
DPPH, % | 31.04 ± 2.62 a | 35.06 ± 3.52 b | 38.10 ± 1.51 c | 49.97 ± 2.53 d |
Texture parameters | ||||
Hardness, g | 276 ± 55 d | 261 ± 15 c | 248 ± 38 b | 56 ± 12 a |
Total work, mJ | 4.57 ± 1 b | 4.5 ± 1.3 b | 4.5 ± 1.2 b | 1.6 ± 0.6 a |
Samples | K | P | Mg | Ca | Fe | Zn | Mn | Cu | Cd | Cr | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
mg/100 g f.w. | |||||||||||
M0 (Control) | 577.49 ± 0.53 d | 363.19 ± 0.16 d | 206.24 ± 0.80 d | 201.74 ± 0.45 d | 2.79 ± 0.59 a | 2.07 ± 0.04 a | 1.71 ± 0.51 a | 0.73 ± 0.12 a | 0.083 ± 0.01 a | 0.039 ± 0.02 a | 0.19 ± 0.03 a |
M10 | 575.32 ± 0.11 c | 361.75 ± 0.45 c | 202.17 ± 0.26 c | 197.12 ± 0.23 c | 2.87 ± 0.35 b | 2.35 ± 0.38 b | 1.85 ± 0.31 b | 0.78 ± 0.21 a | 0.077 ± 0.03 a | 0.037 ± 0.03 a | 0.17 ± 0.04 a |
M25 | 573.26 ± 0.19 b | 359.12 ± 0.44 b | 197.03 ± 0.40 b | 190.08 ± 0.93 b | 3.01 ± 0.32 c | 2.78 ± 0.13 c | 1.99 ± 0.43 c | 0.85 ± 0.18 ab | 0.067 ± 0.03 a | 0.036 ± 0.02 a | 0.16 ± 0.04 a |
M50 | 540.67 ± 0.35 a | 356.73 ± 0.80 a | 191.82 ± 0.48 a | 179.07 ± 0.27 a | 3.25 ± 0.42 d | 3.05 ± 0.66 d | 2.27 ± 0.38 b | 0.96 ± 0.31 b | 0.063 ± 0.03 a | 0.033 ± 0.01 a | 0.15 ± 0.04 a |
Shorthand Nomenclature | Fatty Acid Name | Type | M0 (Control) | M10 | M25 | M50 |
---|---|---|---|---|---|---|
6:0 | Caproic | SFA | 0.12 ± 0.04 a | 0.14 ± 0.04 a | 0.23 ± 0.05 ab | 0.31 ± 0.06 b |
8:0 | Caprylic | SFA | 0.03 ± 0.03 a | 0.18 ± 0.03 b | 0.21 ± 0.08 ab | 0.28 ± 0.08 b |
10:0 | Capric | SFA | 0.04 ± 0.03 a | 0.08 ± 0.05 a | 0.16 ± 0.06 a | 0.18 ± 0.05 a |
12:0 | Lauric | SFA | 0.12 ± 0.06 a | 0.62 ± 0.11 b | 0.14 ± 0.06 a | 0.04 ± 0.03 a |
14:0 | Myristic | SFA | 0.18 ± 0.05 a | 0.61 ± 0.15 d | 0.46 ± 0.07 c | 0.31 ± 0.06 b |
16:0 | Palmitic | SFA | 11.96 ± 0.65 c | 11.83 ± 0.20 c | 11.50 ± 0.50 b | 9.24 ± 0.21 a |
18:1(n-9) | Oleic | MUFA, ω-9 | 43.29 ± 0.73 a | 52.47 ± 0.50 b | 56.77 ± 0.35 c | 58.11 ± 0.65 d |
18:3(n-3) | Linolenic | PUFA ω-3 | 2.53 ± 0.17 a | 3.06 ± 0.11 b | 3.35 ± 0.38 b | 4.51 ± 0.18 c |
18:2(n-6) | Linoleic | PUFA, ω−6 | 25.35 ± 0.44 a | 25.75 ± 0.59 a | 28.46 ± 0.49 b | 36.29 ± 0.44 c |
∑SFAs | - | - | 12.45 ± 0.49 b | 13.46 ± 0.37 c | 12.70 ± 0.55 b | 10.36 ± 0.30 a |
∑PUFAs | - | - | 27.88 ± 0.62 a | 28.81 ± 0.23 b | 31.81 ± 0.21 c | 40.08 ± 0.38 d |
∑UFAs | - | - | 71.17 ± 0.16 a | 81.28 ± 0.73 b | 87.58 ± 0.26 c | 98.19 ± 0.62 d |
∑SFAs/∑UFAs | - | - | 0.17 ± 0.04 a | 0.16 ± 0.04 a | 0.14 ± 0.05 a | 0.10 ± 0.03 a |
n-6/n-3 | - | - | 10.80 ± 0.28 c | 8.41 ± 0.37 b | 8.49 ± 0.15 b | 8.04 ± 0.61 a |
Volatile Compounds | RI (Retention Indices) | Characteristic Odor * | M0 (Control) | M10 | M25 | M50 |
---|---|---|---|---|---|---|
Alcohols | ||||||
3-Methylbutan-1-ol | 736 | Malty, alcoholic whiskey, | 5.33 ± 0.30 c | 0.59 ± 0.04 a | 2.53 ± 0.16 b | 2.51 ± 0.17 b |
Pentan-1-ol | 759 | Fruity, sweet, | - | - | - | 0.35 ± 0.14 |
Hexan-1-ol | 851 | Ethereal, oil, alcohol, green, fruity, sweet, woody, floral | 0.95 ± 0.08 a | - | 0.66 ± 0.05 a | 0.82 ± 0.11 a |
Aldehyde | ||||||
Hexanal | 801 | Fresh, green, fatty, aldehydic, grass, leafy, fruity, sweaty | 2.43 ± 0.11 b | 1.84 ± 0.10 a | 2.45 ± 0.18 b | 4.09 ± 0.22 c |
Benzaldehyde | 960 | Almond, string, sharp, sweet, bitter, cherry | 4.42 ± 0.15 bc | 4.11 ± 0.21 ab | 4.88 ± 0.13 c | 3.63 ± 0.35 a |
Ketone | ||||||
1-(4-Propan-2-yl- phenyl)ethanone | 895 | Fruity, spicy, sweet herbal, coconut woody | 6.33 ± 0.16 | - | - | - |
1-Phenylethanone | 1042 | Almond, floral | 0.27 ± 0.08 a | 0.25 ± 0.08 a | 0.24 ± 0.03 a | 0.17 ± 0.04 a |
Terpenes and terpenoids | ||||||
α-Pinene | 939 | Fresh, sweet, green, woody, earthy | 1.64 ± 0.04 ab | 2.10 ± 0.24 b | 1.34 ± 0.35 a | 1.49 ± 0.15 a |
β-Pinene | 982 | Pine, resin, turpentine | 7.01 ± 0.19 b | 9.90 ± 0.14 c | 5.77 ± 0.13 a | 6.19 ± 0.21 a |
β-Myrcene | 992 | Tropical, fruity with mango shades, grassy | 7.98 ± 0.12 a | 8.52 ± 0.13 b | 8.45 ± 0.07 b | 8.82 ± 0.20 c |
α-Phellandrene | 1006 | Mint, spicy, citrus, fruity, herbal | 1.56 ± 0.08 a | 1.83 ± 0.04 b | 1.95 ± 0.10 bc | 2.08 ± 0.15 c |
β-Phellandrene | 1051 | Mint, fruity, herbal, turpentine | 14.37 ± 0.13 a | 18.35 ± 0.16 b | 19.08 ± 0.09 c | 19.29 ± 0.06 c |
p-Cymene | 1028 | Citrus, sweet, herbal, spicy | 3.05 ± 0.10 a | 3.78 ± 0.04 b | 3.68 ± 0.11 b | 3.49 ± 0.06 ab |
Trans-β-Ocimene | 1037 | Sweet, herbal | 1.02 ± 0.04 a | 1.41 ± 0.05 ab | 1.66 ± 0.06 b | 1.16 ± 0.09 ab |
d-Limonene | 1031 | Citrus, mint | 36.24 ± 0.13 a | 39.94 ± 0.62 d | 37.43 ± 0.10 b | 38.37 ± 0.06 c |
β-Terpinene | 1074 | Citrus, tropical, fruity, oily, woody | 1.63 ± 0.05 ab | 2.16 ± 0.08 b | 1.44 ± 0.08 a | 1.52 ± 0.10 a |
γ-Terpinene | 1074 | Citrus, tropical, fruity, oily, woody | 1.53 ± 0.05 a | 1.73 ± 0.10 a | 3.02 ± 0.13 b | 1.63 ± 0.12 a |
1,3,8-p-Mentha- triene | 1110 | Woody, citrus, grassy | - | 0.60 ± 0.08 a | 1.21 ± 0.08 b | 0.75 ± 0.11 ab |
1-Methyl-4-(1-methyl- ethenyl)benzene, | 1284 | Spicy, balsamic, nutty, terpenic | 0.88 ± 0.04 ab | 0.43 ± 0.08 a | 1.28 ± 0.10 b | 0.79 ± 0.09 ab |
Acids | ||||||
Benzoic acid | 1277 | Balsamic | 1.27 ± 0.09 a | 0.91 ± 0.07 a | 2.10 ± 0.10 b | 0.70 ± 0.03 a |
Esters | ||||||
Ethyl hexanoate | 1001 | Fruity, sweet, apple | 0.53 ± 0.04 | - | - | - |
Hexyl acetate | 1011 | Fruity, spicy, herbal, citrus, green | 1.14 ± 0.08 b | 0.54 ± 0.11 a | 0.73 ± 0.05 a | 1.15 ± 0.08 b |
Others | ||||||
Toluene | 775 | Solvent | 0.42 ± 0.07 a | 0.33 ± 0.10 a | 0.43 ± 0.06 a | 0.30 ± 0.02 a |
N.D. | - | - | - | 0.67 ± 0.05 a | 1.07 ± 0.08 b | 0.75 ± 0.09 a |
Macaron Samples | Appearance | Flavor | Taste | Texture | Overall Acceptability |
---|---|---|---|---|---|
M0 (Control) | 8.40 ± 0.42 bc | 8.18 ± 0.20 b | 8.05 ± 0.35 c | 8,63 ± 0.39 c | 8.30 ± 0.57 c |
M10 | 8.58 ± 0.46 c | 8.40 ± 0.14 b | 8.20 ± 0.42 c | 8.78 ± 0.18 c | 8.40 ± 0.42 c |
M25 | 8.10 ± 0.71 b | 8.53 ± 0.39 b | 7.23 ± 0.11 b | 7.65 ± 0.21 b | 7.65 ± 0.64 b |
M50 | 7.20 ± 0.14 a | 6.38 ± 0.31 a | 6.90 ± 1.14 a | 6.03 ± 0.53 a | 6.70 ± 0.28 a |
Mixing Ratio | Components (g) | M0 (Control) | M10 | M25 | M50 |
---|---|---|---|---|---|
Tant pour tant (TPT) | Almond powder (AP) | 300 | 270 | 225 | 150 |
Walnut oilcake powder (WP) | - | 30 | 75 | 150 | |
Sugar powder | 300 | 300 | 300 | 300 | |
Egg white-1 | 110 | 110 | 110 | 110 | |
Meringue | Sugar | 300 | 300 | 300 | 300 |
Water | 75 | 75 | 75 | 75 | |
Egg white-2 | 115 | 115 | 115 | 115 | |
Soybean protein isolate | 10.2 | 10.2 | 10.2 | 10.2 | |
Citric acid | 3.4 | 3.4 | 3.4 | 3.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, A.; Păucean, A.; Socaci, S.A.; Alexa, E.; Man, S.M.; Mureșan, V.; Chiş, M.S.; Salanță, L.; Popescu, I.; Berbecea, A.; et al. Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product. Molecules 2020, 25, 2214. https://doi.org/10.3390/molecules25092214
Pop A, Păucean A, Socaci SA, Alexa E, Man SM, Mureșan V, Chiş MS, Salanță L, Popescu I, Berbecea A, et al. Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product. Molecules. 2020; 25(9):2214. https://doi.org/10.3390/molecules25092214
Chicago/Turabian StylePop, Anamaria, Adriana Păucean, Sonia Ancuța Socaci, Ersilia Alexa, Simona Maria Man, Vlad Mureșan, Maria Simona Chiş, Liana Salanță, Iuliana Popescu, Adina Berbecea, and et al. 2020. "Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product" Molecules 25, no. 9: 2214. https://doi.org/10.3390/molecules25092214
APA StylePop, A., Păucean, A., Socaci, S. A., Alexa, E., Man, S. M., Mureșan, V., Chiş, M. S., Salanță, L., Popescu, I., Berbecea, A., & Muste, S. (2020). Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product. Molecules, 25(9), 2214. https://doi.org/10.3390/molecules25092214