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Abstract: Human exhaled breath consists of more than 3000 volatile organic compounds, many of
which are relevant biomarkers for various diseases. Although gas chromatography has been the gold
standard for volatile organic compound (VOC) detection in exhaled breath, recent developments
in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC)
optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution
of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in
exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high
sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques
has to be overcome for translating these techniques into more widespread real-time clinical use.

Keywords: exhaled breath analysis; mid-infrared; MIR; non-invasive diagnostics; point-of-care
(POC); infrared lasers; photoacoustic spectroscopy; quantum cascade lasers; QCL; biomarkers

1. Introduction

Human breath has always been a matrix of interest for disease diagnostics and monitoring owing
to its inherently noninvasive access. Even in ancient times, human beings used to relate the odor of
breath to diseases. Ancient Greek physicians assessed the aroma of human breath for disease diagnosis.
Nebelthau (mid-1800s) identified acetone in the breath of diabetes patients, while Anstie (1874) isolated
ethanol from the breath of alcoholics [1]. Linus Pauling’s work in the 1970s in breath analysis led
to the detection of more than 200 volatile organic compounds (VOCs) in the exhaled human breath
matrix, apart from then known compounds including CO2, O2, H2O, and N2 [2–4]. More recently,
owing to advancements in detection and sensing technologies, researchers have found that more than
3000 VOCs may be present in exhaled human breath. However, trace quantities of gases, including
VOCs, are also found anywhere in our immediate environments [5,6]. Figure 1 shows pathways for
VOCs in the human body and the body pool of VOCs. VOCs are known to be present within the human
body as a result of regular metabolic activity in the body, pathological disorders, and exposure to drugs.
These endogenous VOCs are usually released into the bloodstream, and eventually metabolized or
excreted from the human body by exhalation, skin emission, and urine [7]. On the basis of the analysis
of breath samples collected from healthy and diseased human subjects during various studies, it was
found that VOCs and their concentration in exhaled breath may act as biomarkers of selected diseases
or pathophysiological conditions [8–46]. Despite the advantages of breath analysis as a non-invasive
approach, the challenges with breath analysis remain in the variation in the concentration of target
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compounds from the subject. The variation or accurate quantification of the metabolic markers is
influenced by gender, socio-economic and human demographic factors, use of medications, and dietary
intake. Saturated hydrocarbons such as ethane, pentane, acetone, and aldehydes present in human
exhale are an indication of lipid peroxidation of fatty acids [12,13]. For patients with diabetes, the body
cannot synthesize insulin to break down glucose in the blood to provide energy. Therefore, the body
undergoes lipolysis causing decarboxylation of acetoacetate, leading to the production of significantly
increased concentrations of acetone in the breath, as shown in Figure 1b. Isoprene is formed along the
mevalonic pathway in cholesterol synthesis [14]. Higher levels of breath pentane were also detected for
cases of breast cancer, heart transplant rejection, myocardial infarction, schizophrenia, and rheumatoid
arthritis [15–20].
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Figure 1. (a) Pathways for volatile organic compounds (VOCs) in the human body; (b) Schematic
diagram of the formation of acetoacetate, beta-hydroxybutyrate, and acetone, which takes place in the
mitochondrial matrix of the liver.

Similarly, sulfur-containing compounds in breath are the result of incomplete metabolism of
methionine in the transamination pathway. Moreover, nitrogen-containing compounds are at elevated
levels in human breath for liver impairment or uremia. Nitric oxide has been identified as a biomarker of
airway inflammation such as in asthma, allergic rhinitis, eosinophilic bronchitis, and chronic obstructive
pulmonary disease (COPD) [21–24]. Carbon monoxide is indicative of an increase in oxidative stress
or stimulation by pro-inflammatory cytokines, such as during smoking cessation [25,26].

The list of VOCs and inorganic compounds and their relation to potential disease states, as reported
in various studies, is shown in Table 1. Breath analysis can reduce dependence on invasive diagnostics,
such as bronchial biopsies and bronchoalveolar lavage for preliminary assessments. It can allow online
examination with a shorter time for diagnosis compared with conventional analytical techniques,
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such as blood sample analysis. The research and analysis of VOCs in human breath gas considering
the potential in assessment of environmental exposure to VOCs, as well as clinical diagnosis and
disease state monitoring through evaluation of endogenous VOCs, have seen much interest in the
past few decades. Numerous approaches have been reported for the assessment of VOCs in human
breath. The exhaled breath (EB) matrix predominantly comprises CO2, H2O, O2, and N2 (% levels)
next to much lower concentrated VOCs (ppm–ppt levels), which may mask the presence of other
biomarkers for certain detection techniques. Hence, analysis techniques with pronounced sensitivity
and selectivity are required for identifying and quantifying disease-related biomarkers against the
highly variable breath matrix background.

Table 1. List of biomarkers and their relation to potential disease states.

S. No Disease Potential Source of
Biomarker Biomarker Concentration

(diseased)
Concentration

(healthy) Reference

1 Diabetes Oxidation of
non-osterified fatty acids

Acetone
(CH3)2CO

T1D: >2.2 ppm,
typically >10 ppm 0.39 to 0.85 ppm [1,31]

2 Colorectal cancer

(1) High lipid, low-fat
diet; (2) increased

presence of bile salts;
(3) presence of colonic

anaerobic bacteria

Methane (CH4) 8 to 50 ppm 3 to 8 ppm [8]

3 Non-small cell lung
cancer (NSCLC) Oxidative stress Interleukin-6 9.3 to 9.9 pg/mL 3.3 to 3.7 pg/mL [11]

4 Blood cholesterol
Mevalonate pathway of

lipid (cholesterol)
metabolism

Isoprene - 3.5 to
10.5 nmol/L. [14]

5 Myocardial
infarction

Lipid peroxidation,
leading to the

pathogenesis of tissue
damage

Pentane (C5H12) - 0.3 to 0.8 nmol/L [18–20,32]

6 Obstructive sleep
apnea Oxidative stress

Interleukin-6
(IL-6),

8-isoprostane

8.4 to 9.0 pg/mL
6.7 to 7.1 pg/mL

1.5 to 1.7 pg/mL
4 to 5 pg/mL [10]

7 Smoking Carbon
Monoxide (CO)

2 to 20 ppm
(smokers)

0.4 to 0.8 ppm
(non-smokers) [25,26]

8 Renal failure, oral
cavity disease Lipid peroxidation Ammonia (NH3) 0.25 to 2.9 ppm [9,37]

9 Scleroderma, cystic
fibrosis Ethane (C2H6) 0 to 12 ppb [8,13]

10

Asthma, acute lung
injury, inflammatory
lung diseases, lung

infection, lung
cancer, rhinitis

Nitric oxide synthase Nitric Oxide
(NO) <35 ppb [21–23]

Conventional breath analysis methods are usually based on offline sampling. Gas chromatography
(GC) based separation coupled with mass spectrometry (MS) remains the ‘gold standard technique’
for trace gas analysis. Owing to its historical presence and analytical capabilities, GC–MS capitalizes
on extensively developed libraries, which facilitate rapid compound identification at sensitivities
down to ppt levels. However, these techniques involve manual sampling procedures and sample
preparation [27–31]. Alternative technologies such as selected ion flow tube mass spectrometry
(SIFT–MS), resonance enhanced multiphoton ionization mass spectrometry (REMPI–MS), and proton
transfer reaction mass spectrometry (PTR–MS) provide rapid response times [32–37]. However,
all these techniques involve very high instrumental costs, require highly trained personnel, and are
laboratory-based tools. GC techniques coupled with the mass spectrometry are selective and sensitive,
but cannot perform rapid trace-gas measurements, and precise calibration of the chromatographic
column is required, which are not desirable for single-breath resolved breath analysis.

Alternative techniques like electronic nose sensors have found rapid developmental interest
for their applications in small, affordable, point-of-care systems in breath analysis. Predominately,
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conducting polymer-based and metal–oxide semiconductor (MOS)-based arrays of sensors are used
for determining multiple analytes. However, they are limited in molecular selectivity, high moisture
sensitivity, and power demand [38].

Alternatively, ion mobility spectrometry (IMS) techniques such as those based on time-of-flight
(TOFIMS) and differential ion mobility (DMS) have been reported for the detection of VOCs.
DMS involves the separation of different ion species owing to differences in their ion mobilities
in low and high electric fields. High-frequency asymmetric waveform field is used for the filtering
of other species while selectively allowing ions of a particular species through the filter by tuning
a low amplitude compensation field. DMS has resulted in a cost-effective, compact sensor without
moving parts that allows real-time gas analysis [39–41]. However, owing to the low output current
signal, the signal-to-noise ratio is low. Further, the sensitivity in measurements is also small and varies
with the measurement species. For example, in the case of acetone and hexane, the sensitivity was
estimated to be ≈120 pA per ppm (parts per million) and ≈700 pA/ppm, respectively [42].

Driven by the need for point-of-care (POC) medical instrumentation, laser spectroscopic-based
noninvasive human exhale analysis has drawn increasing attention during the last decades since the
development of new mid-infrared (MIR) laser sources [43–45]. POC instruments can be developed for
monitoring of exhaled breath with high accuracy, sensitivity, detection limits, and reasonable prices.
The major laser spectroscopic techniques under development for breath analysis include tunable
diode laser absorption spectroscopy (TDLAS), cavity ring-down spectroscopy (CRDS), photoacoustic
spectroscopy (PAS), cavity leak-out absorption spectroscopy (CALOS), hollow waveguide (HWG)
absorption spectroscopy, and quartz-enhanced photoacoustic spectroscopy (QEPAS) [46–70].

A basic schematic of the setup for MIR laser absorption spectroscopy is given in Figure 2a.
The VOCs to be measured are usually in the ppm to ppb range, and hence the most sensitive techniques
of absorption measurement have to be adopted for detection. Variations to the conventional laser
spectroscopic method to improve the sensitivity of the sensor system include multi-pass spectroscopy
(MUPASS) and CRDS, which are most widely used for such applications. Simplified schematics of
such experimental systems are presented in Figure 2b,c. Their experimental setup and operation are
detailed in [47–51].

Quantum cascade lasers and interband cascade lasers (QCLs, ICLs) in the MIR range have
potential application, where many molecules relevant in exhaled breath diagnostics exhibit strong
rovibrational absorptions are present. QCLs offer wide tunability and pronounced output power,
leading to molecular selectivity, sensitivity, and improved signal-to-noise ratio for the detection of
trace biomarkers in the exhaled breath matrix. Li et al. have used the ICL-based TDLAS approach
for ethane detection in an exhaled breath at 3.34 µm, which is indicative of lung cancer and asthma.
A detection limit of 1.2 ppbv was achieved at 4 s data acquisition time [52]. Ghorbani et al. have used
an ICL-based TDLAS system for the identification of carbon monoxide (CO) in an exhaled breath
at 4.69 µm using a multi-pass gas cell with a detection limit of 9 ± 5 ppbv at 0.07 s acquisition time,
thereby resolving individual breath cycles (i.e., exhalation and inhalation profiles) [53]. Conventional
spectroscopic methods like direct absorption spectroscopy are limited in sensitivity by the path length,
as longer path length improves the sensitivity of the measurement. In such cases, integrated cavity
output spectroscopy (ICOS), cavity-enhanced absorption spectroscopy (CEAS), and CRDS, allowing a
sufficient path length of many kilometers with sensitivity as small as parts per billion or even parts per
trillion, are used to improve the sensor system [54–56].
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Figure 2. Simplified schematic of (a) mid-infrared (MIR) absorption spectroscopy, (b) cavity ring-down
spectroscopy (CRDS), and (c) multi-pass spectroscopy (MUPASS). (DAQ: Data Acquisition system).

A variation of the CRDS technique is the CALOS, where, in contrast to the CRDS technique,
a continuous wavelength (CW) source is used to tune one of the resonance modes of the cavity, allowing
energy to build up inside the cavity [57–60]. At the time when the laser is turned off, the energy builds
up, leaks out, and is detected by the photodetector. Murtz et al. developed this technique for the
detection of ethylene (C2H4) using the spectral signature in the 10 µm band of the CO2 laser [57].
Later, Halmer et al. from the same group have demonstrated this technique for carbonyl sulfide (OCS)
detection in breath samples with a detection limit of 438± 4.4 ppt. This group has also worked on ethane
(C2H6) detection in breath samples in the 3.34 µm region. They compared the performance of CALOS
with gas chromatography with flame ionization detection (GC–FID). Repeated tests concluded that
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the spectroscopy setup could detect ethane in less than 1 min, making it more suitable for continuous
monitoring of patients, whereas chromatography required 30 to 60 min [58].

Though such techniques offer high sensitivity and can be adopted for continuous real-time
monitoring of patients, such methods need excellent tuning of the cavity length. The optical cavity
or multi-pass cell is also sensitive to mechanical vibration. Even the availability of either tunable
light sources or high reflectance mirrors precisely for a particular wavelength of the target gas sample
limits this technique from being widely used. Moreover, the need for high reflectance mirrors makes it
relatively more expensive when compared with the other optical methods.

Recent advances in MIR waveguide technology have the potential to design advanced and
compact instrumentation for trace gas analysis in this spectral regime. Hollow-core waveguides (HCW)
in this region (3–20 µm) can facilitate the development of highly compact and sensitive trace gas
sensing devices with potential usage in POC scenarios. Hollow-core photonic bandgap waveguides
(HC-PBW) absorption spectroscopy for methane detection in the 3.4 µm region has been demonstrated
by Nikodem et al. with sensitivities at the ppm-level [61]. For higher sensitivities, the length of the HC
waveguide may be increased. However, bending the fiber for maintaining a compact footprint will
cause optical losses.

Recently, a novel concept of substrate-integrated hollow waveguides has been introduced [62–70].
The substrate-integrated hollow waveguide (iHWG) is based on a layered structure with the
light-guiding channels integrated into a rigid solid-state substrate material. The geometry of the
iHWGs studied with a 2.0 mm hollow core edge length and a yin-yang structure is shown in Figure 3a.
The experimental setup and the integration of the iHWG with the detector are shown in Figure 3b
and explained in [62]. The significant advantage of the iHWG is that any low-cost substrate material
combined with a cost-effective fabrication or replication technique, including hot embossing or even
3D printing of iHWGs [68], may enable a device fabrication strategy that is fundamentally different
from conventional fiber optic HWG fabrication technology at a fraction of the cost. The analytical
performance, that is, the energy throughput of iHWG, depends on the channel geometry and the
surface roughness. Superior surface coatings are essential to reduce the reflection losses, and the
iHWG channel length has to be specifically tailored for individual breath gases under study. However,
the detection limits of this technique for breath gas analysis can be further improved when combined
with other analytical methods.
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Alternatively, hollow core waveguides have also been used in fibre enhanced Raman spectroscopy
(FERS) [71,72]. FERS is based on spontaneous Raman scattering (SRS), which is an inelastic scattering
process that can measure multiple gas species with a single laser at a fixed wavelength [73]. Hence,
SRS has potential in exhaled breath analysis for its inherent ability to determine a large number of
species. However, the major disadvantage of SRS in gaseous medium is the low intensity of the
scattered signal, which can be overcome by signal amplification techniques like multi-pass optical
cavities [74,75]. On the other hand, the application of HWGs serving as a miniaturized sample container
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can also improve the sensitivity by increasing the interaction of the propagating light with the molecules
at low sample volumes. The detection limits, spectral characteristics, and laser techniques employed for
significant biomarkers are shown in Table 2. PAS is another technique, where instead of a photodetector
for laser absorption measurement, a microphone is used for acoustic signal measurement. This paper
specifically discusses photoacoustic spectroscopy and its application to breath gas analysis. It also
presents the challenges and perspectives of the suitability of PA-based spectroscopic methods for the
development of point-of-care instruments for breath gas analysis.

Table 2. Spectral fingerprints, laser techniques employed, and detection limit of select few biomarkers.

S. No Biomarker Technique Light Source Wavelength (µm) Detection Limit Reference

1 Nitric Oxide
(NO)

CEAS QCL 5.262961 5 ppb [45]

ICOS QCL 5.22 0.4 ppb [46]

CALOS CO laser 5 7 ppt [47]

TDLAS IV–VI laser 5.2 1.5 ppb [48]

MP absorption spectroscopy QCL 5.2630 0.3 ppb [49]

CEAS QCL 5.2630 30 ppb [50]

2
Carbonyl

Sulphide (OCS)
CALOS CO laser 5 438 ± 4.4 ppt [51]

CEAS QCL 4.8716 0.9 ppb [50]

3 Ethane (C2H6)

CALOS
ECDL 800 nm an d
Nd-YAG 1064 nm

with PPLN
3.34 1–100 ppb [52]

CEAS Tunable laser
system 3.3481 0.3 ppb [50]

TDLAS ICL 3.34 1.2 ppb [53]

4 Methane (CH4)
HCF 3.4 ppm [54]

MP absorption spectroscopy QCL 7.874 1 ppb [49]

5
Acetone

(CO(CH3)2)

WMS DFB-ICL 3.367 0.58 ppm (1 s)
0.12 ppm (60 s) [55]

WMS-MP-Broadband DAS EC-QCL ~7.4 15 ppbv (<10 s) [56]

CEAS QCL 8.22 0.51 ppm [57]

6 Ammonia (NH3)

MP absorption spectroscopy QCL 10.341 0.2 ppb [49]

WMS-MP QCL 9.062 7 ppbv [58]

Pulsed CRDS QCL 10.309 50 ppb [59]

7 Carbon
Monoxide (CO) TDLAS-MP ICL 4.69 9 ± 5 ppbv [60]

8 Ethylene (C2H4)
MP absorption spectroscopy QCL 10.416 0.5 ppb [49]

CALOS CO2 laser 10 [61]

9 Formaldehyde
(HCHO) MP absorption spectroscopy QCL 5.665 0.15 ppb [49]

CEAS: cavity-enhanced absorption spectroscopy, ICOS: integrated cavity output spectroscopy, CALOS: cavity
leak-out absorption spectroscopy, TDLAS: tunable diode laser absorption spectroscopy, MP: multipass, WMS:
wavelength modulation spectroscopy, DAS: direct absorption spectroscopy, CRDS: cavity ring-down spectroscopy,
QCL: quantum cascade laser, ECDL: external cavity diode laser, DFB-ICL: distributed feedback-intracavity laser,
HCF: hollow core fibre, PPLN: periodically poled lithium niobate.

2. Photoacoustic Spectroscopy for Breath Gas Analysis

PAS is a zero-background technique and the PA signal is less affected by scattering. Hence, it has
been widely used for trace gas detection at the part per billion or even part per trillion levels. Figure 4a
shows the schematic of the PA signal generation process.
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In photoacoustic spectroscopy, as the name suggests, light energy is converted into sound energy
in a series of steps. The modulated or pulsed light is focused into a gas cell containing the target
sample to be analyzed. If the frequency of the light source matches with the vibrational frequency of
the gas molecule to be analyzed, the light is absorbed. Periodic amplitude modulation in the light
source causes a periodic acoustic vibration in the gas cell. This acoustic vibration is detected by
the microphone and converted into an electrical signal [76–80]. The general schematic for the PAS
technique is shown in Figure 4b. Mid-IR light sources like QCL and optical parametric oscillator (OPO)
are widely preferred for their narrow linewidths and tunability.

On the other hand, broadband sources matching with broadband spectra of species of interest
can be used, which allows low power based multiple-gas sensing. Recently, QEPAS based on quartz
tuning forks (QTF) as a sound transducer for the PAS technique has been increasingly used for
selective and sensitive sensing [81–92]. The general architecture of a QEPAS system is shown in
Figure 5. Commercially available QTFs are tiny (4 mm × 1.5 mm × 0.35 mm), and hence allow small
sampling volumes.
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2.1. Selected Breath Biomarkers Detected by Photoacoustic Techniques

2.1.1. Ammonia (NH3)

Many studies have shown that ammonia in exhaled breath can be used for detecting chronic
kidney disease (CKD), because, in patients with CKD, the accumulated urea cannot be excreted by the
kidneys, but is degraded by the salivary urease into ammonia, which is exhaled through the breath.
A variety of medical conditions, including liver and kidney disorders [93,94], as well as helicobacter
pylori infections [95], can be detected by exhaled ammonia concentration. Narasimhan et al. have used
a tunable line switched CO2 laser operating in the 9 and 10 µm wavelength range. They were able
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to detect 100 ppb ammonia-detection sensitivity [96]. Lewicki et al. employed an EC-QCL centered
at 10.2 um with an output power of 42 mW using the QEPAS technique for ammonia measurement
in human breath. The detection sensitivity for exhaled ammonia is at <10 ppb level with 1 s time
resolution [97]. On the other hand, Bakhirkin et al. used a CW mid-infrared DFB quantum cascade
laser centered at 10 µm, an output power of 30 mW, and quartz-enhanced photoacoustic spectroscopy
for ammonia detection with a detection sensitivity of 20 ppbv (1σ) at a 0.3 s time resolution [98].

2.1.2. Ethane (C2H6)

Lipid peroxidation that is the reaction between omega-3 fatty acids and reactive oxygen species
releases ethane in the human body, which can be identified in the human breath. Ethane has also
been noted as an indicator of oxidative stress, which in turn has been said to play an essential
role in the pathophysiology of several common diseases. Studies show that cancer, cardiac disease
neurodegenerative disease, psychiatric illness, stroke, and diabetes patients have high oxidative
stress, and hence it has been proposed to have any involvement in the initiation of disease such as in
cancer [99,100]. Moreover, studies on patients with disorders such as attention deficit hyperactivity
(ADH), schizophrenia, asthma, and hypertension during pregnancy show a common underlying factor
of increased oxidative stress and ethane in the exhaled breath [101–103]. However, it is unclear as
to whether systemic lipid peroxidation changes ethane concentrations or whether they are mainly
pulmonary in origin, because, in addition to pulmonary diseases, smoking tobacco has been said to
elevate ethane concentrations [104,105]. Herpen et al. demonstrate a detection limit of 0.01 ppb with a
high power (1.2 W) OPO (tuning range 3–3.8 µm) that is continuously tuned over 24 GHz during the
trace gas measurements [106]. Ethane concentrations in healthy humans range between 0 and 12 ppb,
hence low ppb detection limits are required for such breath gas measurements.

2.1.3. Ethylene (C2H4)

Ethylene, as a biomarker, has been studied in dialysis patients. Studies show a relation between
oxidative stress and fatality in patients with renal failure, especially elderly patients. A conventional
PAS sensor using a CW carbon dioxide laser (10.53 µm) was developed to monitor C2H4 concentration
in elderly patients (age 70–80 years) [107]. The ethylene concentration was found to vary between
0.15 ppm and 0.8 ppm before and after Hemodialysis, respectively. The healthy concentration level
was found to be ~0.007 ppm. QEPAS-based C2H4 sensors were reported previously using a 3.32 µm
DFB laser (1.5 mW) to achieve a minimum detection limit of 63 ppm at 25 s averaging time [108].
Wang et al. used QEPAS-based C2H4 sensor by exploiting the C2H4 spectra near 10.5 µm. The CW
DFB QCL with ~23 mW power output at the target wavelength near 10.5 µm achieved a minimum
detection limit of 50 parts per billion (ppb) at an averaging time of 70 s [109].

2.1.4. Acetone (CO(CH3)2)

For patients with diabetes, the body cannot synthesize insulin to break down glucose in the blood
to provide energy. Therefore, the body undergoes lipolysis, causing decarboxylation of acetoacetate,
leading to the production of significantly increased concentrations of acetone in the breath [110,111].
Hence, the breath of diabetic patients is characterized by the fruity odor of acetone. Tyas et al. have
used a CO2 laser in the 10.6 um range for the detection of acetone. A group of healthy individuals was
studied against a group of patients with type 2 diabetes mellitus (DM). In the group with type 2 DM,
the acetone range was to vary between 101 and 162 ppb, while in healthy individuals, the acetone
range was between 15 and 85 ppb [112].

2.1.5. Nitric Oxide (NO)

Nitric oxide is an important biomarker for chronic obstructive pulmonary disease (COPD).
The patients often exhibit symptoms that alter their performance statuses such as productive cough,
worsening dyspnea, peripheral muscle weakness, and nutritional abnormalities. Measurement of



Molecules 2020, 25, 2227 10 of 17

exhaled nitric oxide (eNO) is a non-invasive method of assessing airway inflammation. In patients with
COPD, the peripheral airway (bronchioles) is the leading site of obstruction and inflammation [113,114],
and the peripheral nitric oxide levels may be more predictive of the disease course and control.
Tittel et al. have designed a 2f wavelength-modulation spectroscopy-based QEPAS detection approach
for NO monitoring in COPD patients. They utilized an EC-QCL source operating at the NO R (6.5)
absorption doublet centered at 1900.08 cm−1 (λ ~ 5.263 µm). The minimum detection limit achievable is
~5 ppbv with a 1 s data acquisition time [115]. The estimated exhaled breath nitric oxide concentrations
are between 0 and 100 ppb in healthy humans.

2.1.6. Methane (CH4)

Methane as a breath gas is of considerable interest because it is considered as a potential biomarker
for stomach inflammatory diseases and colorectal cancer. Various studies demonstrate that high lipid,
low-fat diet, and elevated bile salts, as well as the presence of colonic anaerobic bacteria, are a source of
methane in the intestine, which then traverse the intestinal mucosa and are absorbed into the systemic
circulation. As it has low solubility, it is rapidly excreted by the lungs. Breath methane analysis has
been shown in various studies for the diagnosis of carbohydrate malabsorption syndromes and small
intestinal bacterial overgrowth and, if the exhaled methane is more than one ppm as compared with
ambient levels, the patient is considered a methane producer. Bauer et al. presented the development
of a Raman amplifier system operating at 1651 nm and its application for trace gas sensing with a
miniaturized 3D printed PAS cell. The system exhibited high sensitivity towards methane sensing
with the least detection limit of 17 ppb at a signal acquisition time of 130 s [116].

As the amplitude of the photoacoustic signal is directly proportional to the input power and the
absorption cross-section of the target gas, in recent years, many research groups have used QCL and
ICL in the mid-infrared and THz regions, which are considered as the molecular fingerprint regimes.
Furthermore, the QEPAS technique, along with a QTF, has been used to fabricate small, compact
PAS systems [117]. Petersen et al. developed a QEPAS sensor using an OPO as a light source in the
3.1–3.7 µm region for detecting methane in exhaled breath. A minimum detection limit of 32 ppbv at
190 s integration time was achieved [118]. A broadband photoacoustic technique for CH4 detection
in the 1.65 µm region was developed, where multiple absorption lines of methane were utilized to
produce the photoacoustic signal. A bandpass filter with a full width at half maximum (FWHM) of
12 nm was chosen with a centre wavelength at 1.65 µm where the interference owing to moisture
is minimal, as shown in Figure 6 [119]. A multi-wavelength algorithm can be used to estimate the
cumulative PA signal amplitude analytically and a least detection limit of 0.05 ppm was reported [120].
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3. Challenges and Perspectives

While the potential advantages of breath analysis are apparent, the variability of breath
measurements has been quite high, and thus their potential has not been fully utilized to date.
Though chromatography is considered the gold standard in breath gas analysis, real-time monitoring
is not feasible via such laboratory-based techniques probing discrete samples. On the other hand, laser
spectroscopic methods can be applied to real-time monitoring of breath gases. With the advancement
in MIR lasers, compact handheld devices can be established with high sensitivity, molecular selectivity,
and reproducibility. Even though such laser spectroscopic techniques offer sensitivities in the ppb to
ppt concentration range, there are still several improvements required to render MIR spectroscopy a
useful clinical tool in routine breath gas monitoring. This an issue for all sensing techniques, as MIR
spectroscopies need to deal with the uncertainty on how the presence and/or up/down regulation
of selected biomarkers may be mapped onto specific diseases, disease progression, or therapeutic
interventions. For example, ethane can be indicative of cancer, cardiac disease neurodegenerative
disease, psychiatric illness, stroke, and diabetes. Hence, the pathobiology of the breath compounds
has to be extensively studied for establishing diagnostically relevant and usable correlations between
biomarkers and the disease. As several studies have shown that, indeed, multiple rather than
individual VOCs giving rise to pattern changes may be used to more reliably associate with a particular
condition, MIR diagnostics are certainly at the forefront of multi-component sensing techniques
utilizing fingerprint patters for detecting several VOCs. Appropriate selection of broadly tunable QCL,
ICL, OPO, or supercontinuum light sources enables addressing such complex fingerprints, and may aid
in further lowering detection limits, especially in broadband PAS measurements. In conclusion, even
though more work certainly needs to be done on MIR sensing technologies as well as on establishing
reliable pathobiologically relevant breath biomarker panels, appropriate MIR sensing systems may
differentiate between healthy and diseased individuals in a statistically sound fashion appear to be on
the horizon.
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