Crystal Structure and Hirshfeld Surface Analysis of Acetoacetanilide Based Reaction Products
Abstract
:1. Introduction
2. Results and Discussions
2.1. Chemical Context
2.2. X-ray Analysis, Molecular, and Supramolecular Features and Hirshfeld Surface Analysis of 2, 4, and 9
3. Materials and Methods
3.1. Synthesis of 2, 4, and 9
3.2. X-ray Structure Determination
3.3. Computations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Shiro, M.; Koyama, K. Pyridone Alkaloids from a Marine-Derived Fungus, Stagonosporopsis cucurbitacearum, and Their Activities against Azole-Resistant Candida albicans. J. Nat. Prod. 2013, 76, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Donner, C.D.; Gill, M.; Tewierik, L.M. Synthesis of pyran and pyranone natural products. Molecules 2004, 9, 498–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartsev, V.G. Natural Compounds in Drug Discovery: Biological Activity and New Trends in the Chemistry of Isoquinoline Alkaloids. Med. Chem. Res. 2004, 13, 325–336. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jaina, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv. 2017, 7, 36977–36999. [Google Scholar] [CrossRef] [Green Version]
- Chennamaneni, N.K.; Arif, J.; Frederick, S.; Buckner, F.S.; Gelb, M.H. Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents. Bioorganic Med. Chem. Lett. 2009, 19, 6582–6584. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, M.P.; Couladouros, E.A.; Delitheos, A.K. Synthesis and Antimicrobial Properties of 2H-pyran-3(6H)-one Derivatives and Related Compounds. J. Pharm. Sci. 1992, 81, 1126–1131. [Google Scholar] [CrossRef]
- Novais, J.S.; Campos, V.R.; Silva, A.C.J.A.; de Souza, M.C.B.V.; Ferreira, V.F.; Keller, V.G.L.; Ferreira, M.O.; Dias, F.R.F.; Vitorino, M.I.; Sathler, P.C.; et al. Synthesis and antimicrobial evaluation of promising 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and their halogenated amino compounds for treating Gram-negative bacterial infections. RSC Adv. 2017, 7, 18311–18320. [Google Scholar] [CrossRef] [Green Version]
- Xuana, T.D.; Minha, T.N.; Khanh, T.D. Isolation and biological activities of 3-hydroxy-4(1H)-pyridone. J. Plant Interact. 2016, 11, 94–100. [Google Scholar] [CrossRef]
- Hammouda, H.A.; El-Reedy, A.M.; Hussain, S.M. Reactions with α-Substituted Cinnamonitriles. A Novel Synthesis of Hexa-substituted Pyridines. J. Heterocycl. Chem. 1986, 23, 1203–1206. [Google Scholar] [CrossRef]
- Azzam, R.A.; Mohareb, R.M. Multicomponent Reactions of Acetoacetanilide Derivatives with Aromatic Aldehydes and Cyanomethylene Reagents to Produce 4H-Pyran and 1,4-Dihydropyridine Derivatives with Antitumor Activities. Chem. Pharm. Bull. 2015, 63, 1055–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Wang, Y.; Kumar, S.; Liu, X.; Lin, Y.; Dong, D. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem. 2010, 8, 3078–3082. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Q.; Liu, B.-K.; Wu, Q.; Lin, X.-F. Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation–Michael addition–intramolecular cyclization. Tetrahedron 2011, 67, 9736–9740. [Google Scholar] [CrossRef]
- Naghiyev, F.N.; Maharramov, A.M.; Asgarova, A.R.; Rahimova, A.G.; Akhundova, M.A.; Mamedov, I.G. The investigation of reaction of various thiophene based Knoevenagel adducts with acetoacetanilide. Chem. Probl. 2018, 3, 337–342. [Google Scholar] [CrossRef]
- Naghiyev, F.N. The investigation of michael addition of some ylidenecyanoacetamides with acetoacetanilide and methyl acetopyruvate. Azerbaijan Chem. J. 2019, 2, 35–39. [Google Scholar] [CrossRef]
- Magerramov, A.M.; Nagiev, F.N.; Mamedova, G.Z.; Asadov, K.A.; Mamedov, I.G. Synthesis of Spiroindolines on the Basis of Isatylidene Malononitrile. Russ. J. Org. Chem. 2018, 54, 1731–1734. [Google Scholar] [CrossRef]
- Mamedov, I.G.; Khrustalev, V.N.; Dorovatovskii, P.V.; Naghiev, F.N.; Maharramov, A.M. Efficient synthesis of new tricyclic pyrano[3,2-c]pyridine derivatives. Mendeleev Commun. 2019, 29, 232–233. [Google Scholar] [CrossRef]
- Wang, X.-S.; Zeng, Z.-S.; Li, Y.-L.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. Simple Procedure for the Synthesis of Arylmethylenemalononitrile Without Catalyst. Synth. Commun. 2005, 35, 1915–1920. [Google Scholar] [CrossRef]
- Naghiyev, F.N.; Mamedov, I.G.; Asadov, K.A.; Dorovatovskii, P.V.; Khrustalev, V.N.; Magerramov, A.M. Synthesis of Functionalized Bicyclic Compounds Based on 2-(1-Arylethylidene)malononitriles. Russ. J. Org. Chem. 2019, 55, 1967–1970. [Google Scholar] [CrossRef]
- Abramenko, Y.T.; Ivashchenko, A.V.; Nogaeva, K.A.; Andronova, N.A.; Putsykina, E.B. Dimerization of 2-aryl-1,1-propenedicarbonitriles. Zhurnal Org. Khimii 1986, 22, 264–269. [Google Scholar]
- Abramenko, Y.T.; Baskakov, Y.A.; Sharanin, Y.A.; Vasil’ev, A.F.; Nazarova, E.B.; Kiseleva, N.A.; Vlasov, O.N. Dimerization of α-cyano-β-methylcinnamonitrile. Chem. Inf. 1979, 24, 408–409. [Google Scholar]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron-Diffraction. 1. Bond Lengths in Organic-Compounds. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Cremer, D. On the correct usage of the Cremer–Pople puckering parameters as quantitative descriptors of ring shapes—A reply to recent criticism by Petit, Dillen and Geise. Acta Cryst. Sect. B Struct. Chem. 1984, 40, 498–500. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystal. Angew. Chemie Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Bruker, APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2003.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 229–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 3.1; University of Westren Australia: Perth, Australia, 2012. [Google Scholar]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef]
- Demichelis, R.; Noël, Y.; Ugliengo, P.; Zicovich-Wilson, C.M.; Dovesi, R. Physico-Chemical Features of Aluminum Hydroxides As Modeled with the Hybrid B3LYP Functional and Localized Basis Functions. J. Phys. Chem. C 2011, 115, 13107–13134. [Google Scholar] [CrossRef]
Sample Availability: Sample of this compounds are available from the authors. |
Plane\Compound | (2) | (4) | (9) |
---|---|---|---|
AB | 26.2(2) | 98.7(3) | 18.37(6) |
AC | 53.2(2) | 167.1(7) | 25.21(11)/76.98(6)[f] |
AD | 101.4(3) | - | 63.01(7)/54.69(7)[f] |
BC | 75.58(11) | 57.17(10) | 49.67(7)/58.60(7)[f] |
BD | 104.1(11) | - | 108.65(10)/102.43(7)[f] |
CD | 23.2(3) | - | 73.76(6) |
Compound 2 | ||||||
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
O2 | H2 | N2 1 | 0.879(4) | 1.792(10) | 2.653(3) | 166(4) |
N1 | H1 | N3 2 | 0.79(3) | 2.44(3) | 3.223(4) | 167(3) |
C3 | H3A | N3 2 | 0.98 | 2.44 | 3.368(3) | 157.9 |
C14 | H14A | O3 | 0.93 | 2.34 | 2.925(4) | 120.5 |
Symmetry codes: 1 1/2−X, −1/2+Y, −1/2+Z; 2 1/2+X, 1/2−Y, +Z | ||||||
Compound 4 | ||||||
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
O4 | H4A | N4 1 | 0.880(3) | 2.38(16) | 3.059(5) | 134(19) |
O2 | H2 | O4 | 0.881(3) | 1.960(11) | 2.822(4) | 166(4) |
N2 | H2A | O1 2 | 0.89(3) | 2.01(3) | 2.893(3) | 175(2) |
N3 | H3 | O3 3 | 0.84(3) | 2.04(3) | 2.864(3) | 167(3) |
C10 | H10 | O2 3 | 0.93 | 2.79 | 3.389(4) | 123.6 |
C14 | H14 | N4 1 | 0.93 | 2.70 | 3.438(5) | 136.5 |
C17 | H17 | O1 4 | 0.93 | 2.48 | 3.190(7) | 132.8 |
C18′ | H18′ | O1 4 | 0.93 | 2.73 | 3.365(9) | 126.3 |
Symmetry codes: 1 −1+X, +Y, +Z; 2 1−X, 1-Y, 1−Z; 3 1/2−X, 1/2+Y, 3/2−Z; 4 3/2−X, −1/2+Y, 3/2−Z | ||||||
Compound 9 | ||||||
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
O3 | H3 | O2 1 | 0.92(3) | 2.46(3) | 3.0847(18) | 125(2) |
N3 | H3B | O3 | 0.91(2) | 2.06(2) | 2.856(2) | 146.6(17) |
N3 | H3A | O2 1 | 0.88(2) | 2.13(2) | 2.8616(18) | 139.6(17) |
N5 | H5 | N1 2 | 0.828(19) | 2.24(2) | 3.059(2) | 172.6(18) |
C8 | H8A | O1 3 | 0.99 | 2.30 | 3.202(2) | 150.3 |
C8 | H8B | N4 4 | 0.99 | 2.48 | 3.448(2) | 166.3 |
C15 | H15A | O1 | 0.95 | 2.28 | 2.879(2) | 120.0 |
C22 | H22A | N4 2 | 0.95 | 2.60 | 3.551(2) | 174.1 |
Symmetry codes: 1 +X, 3/2−Y, −1/2+Z; 2 1−X, 1−Y, 1−Z; 3 1−X, 1/2+Y, 3/2−Z; 4 +X,3/2−Y, 1/2+Z |
Compound | 2 | 4 | 9 |
---|---|---|---|
Empirical Formula | C23H19N3O3S | C19H21N3O4S | C27H26N6O3 |
Formula Weight | 417.47 | 387.45 | 482.54 |
Temperature/K | 296(2) | 296(2) | 100(2) |
Crystal System | Orthorhombic | Monoclinic | Monoclinic |
Space Group | Pna21 | P21/n | P21/c |
a/Å | 12.7792(3) | 10.4527(5) | 13.5513(6) |
b/Å | 11.3102(2) | 9.4679(5) | 9.8594(5) |
c/Å | 14.8019(3) | 19.4440(9) | 18.2460(11) |
α/° | 90 | 90 | 90 |
β/° | 90 | 98.956(2) | 102.003(2) |
γ/° | 90 | 90 | 90 |
Volume/Å3 | 2139.40(8) | 1900.82(16) | 2384.5(2) |
Z | 4 | 4 | 4 |
ρcalcg/cm3 | 1.296 | 1.354 | 1.344 |
μ/mm−1 | 0.180 | 0.200 | 0.091 |
F(000) | 872.0 | 816.0 | 1016.0 |
Crystal Size/mm3 | 0.546 × 0.279 × 0.196 | 0.274 × 0.198 × 0.122 | 0.210 × 0.175 × 0.110 |
Radiation Å | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ Range for Data Collection/° | 4.532 to 57.978 | 4.178 to 55.988 | 4.564 to 51.994 |
Index Ranges | −17 ≤ h ≤ 17, −15 ≤ k ≤ 15, −20 ≤ l ≤ 20 | −13 ≤ h ≤ 13, −12 ≤ k ≤ 12, −25 ≤ l ≤ 25 | −15 ≤ h ≤ 16, −12 ≤ k ≤ 12, −22 ≤ l ≤ 22 |
Reflections Collected | 29818 | 24793 | 23205 |
Independent Reflections | 5626 [Rint = 0.0348, Rsigma = 0.0274] | 4550 [Rint = 0.0668, Rsigma = 0.0536] | 4520 [Rint = 0.0620, Rsigma = 0.0504] |
Data/Restraints/Parameters | 5626/215/317 | 4550/66/300 | 4520/0/347 |
Goodness-of-Fit on F2 | 1.005 | 1.031 | 1.002 |
Final R Indexes [I ≥ 2σ (I)] | R1 = 0.0432, wR2 = 0.0994 | R1 = 0.0677, wR2 = 0.1599 | R1 = 0.0486, wR2 = 0.0930 |
Final R Indexes [all data] | R1 = 0.0504, wR2 = 0.1027 | R1 = 0.1214, wR2 = 0.1803 | R1 = 0.0747, wR2 = 0.0996 |
Largest Diff. Peak/Hole/e Å−3 | 0.22/−0.18 | 0.24/−0.32 | 0.24/−0.21 |
Flack Parameter | 0.02(2) | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naghiyev, F.N.; Cisterna, J.; Khalilov, A.N.; Maharramov, A.M.; Askerov, R.K.; Asadov, K.A.; Mamedov, I.G.; Salmanli, K.S.; Cárdenas, A.; Brito, I. Crystal Structure and Hirshfeld Surface Analysis of Acetoacetanilide Based Reaction Products. Molecules 2020, 25, 2235. https://doi.org/10.3390/molecules25092235
Naghiyev FN, Cisterna J, Khalilov AN, Maharramov AM, Askerov RK, Asadov KA, Mamedov IG, Salmanli KS, Cárdenas A, Brito I. Crystal Structure and Hirshfeld Surface Analysis of Acetoacetanilide Based Reaction Products. Molecules. 2020; 25(9):2235. https://doi.org/10.3390/molecules25092235
Chicago/Turabian StyleNaghiyev, Farid N., Jonathan Cisterna, Ali N. Khalilov, Abel M. Maharramov, Rizvan K. Askerov, Khammed A. Asadov, Ibrahim G. Mamedov, Khaver S. Salmanli, Alejandro Cárdenas, and Ivan Brito. 2020. "Crystal Structure and Hirshfeld Surface Analysis of Acetoacetanilide Based Reaction Products" Molecules 25, no. 9: 2235. https://doi.org/10.3390/molecules25092235
APA StyleNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A., & Brito, I. (2020). Crystal Structure and Hirshfeld Surface Analysis of Acetoacetanilide Based Reaction Products. Molecules, 25(9), 2235. https://doi.org/10.3390/molecules25092235