Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Bi/Fe/C Xerogel Ternary Composite
2.3. Characterization Methods
2.4. Preparation of the Glassy Carbon/Chitosan (GC/Chi)–CXBiFex Electrodes
2.5. Electrochemical Measurements
3. Results and Discussions
3.1. Morphological and Structural Analysis
3.2. Electrochemical Performance
3.2.1. Electrochemical Characterization of GC/Chi–CXBiFex Electrodes
3.2.2. Amperometric H2O2 Detection
3.2.3. SWASV for Pb2+ Detection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Fort, C.I.; Pop, L.C. Heavy metal and metalloid electrochemical detection by composite nanostructures. In Advanced Nanostructures for Environmental Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–250. [Google Scholar]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 1, 152–166. [Google Scholar] [CrossRef]
- Dickinson, B.C.; Chang, C.J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 2008, 130, 9638–9639. [Google Scholar] [CrossRef] [Green Version]
- Da-Col, J.A.; Domene, S.M.A.; Pereira-Filho, E.R. Fast Determination of Cd, Fe, Pb, and Zn in Food using AAS. Food Anal. Methods 2009, 2, 110–115. [Google Scholar] [CrossRef]
- Ahirovic, A.; Copra, A.; Omanovicmiklicanin, E.; Kalcher, K. A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta 2007, 72, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Choi, J.-W. Multi-analyte detection of chemical species using a conducting polymer nanowire-based sensor array platform. Sensors Actuators B Chem. 2015, 215, 99–106. [Google Scholar] [CrossRef]
- Rusu, M.M.; Fort, C.I.; Cotet, L.C.; Vulpoi, A.; Todea, M.; Turdean, G.L.; Danciu, V.; Popescu, I.C.; Baia, L. Insights into the morphological and structural particularities of highly sensitive porous bismuth-carbon nanocomposites based electrochemical sensors. Sens. Actuators B Chem. 2018, 268, 398–410. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Danciu, V.; Turdean, G.L.; Popescu, I.C. Iron doped carbon aerogel—New electrode material for electrocatalytic reduction of H2O2. Mater. Chem. Phys. 2013, 138, 893–898. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Vulpoi, A.; Turdean, G.L.; Danciu, V.; Baia, L.; Popescu, I.C. Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II) and Cd(II). Sens. Actuators B Chem. 2015, 220, 712–719. [Google Scholar] [CrossRef]
- Cai, S.; Han, Q.; Qi, C.; Lian, Z.; Jia, X.; Yang, R.; Wang, C. Pt 74 Ag 26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Marinho, J.Z.; Silva, R.A.B.; Barbosa, T.G.G.; Richter, E.M.; Muñoz, R.A.A.; Lima, R.C. Graphite composite electrodes bulk-modified with (BiO)2CO3 and Bi2O3 plates-like nanostructures for trace metal determination by anodic stripping voltammetry. Electroanalysis 2013, 25, 765–770. [Google Scholar] [CrossRef]
- Sun, M.; Liu, H.; Liu, Y.; Qu, J.; Li, J. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 2015, 7, 1250–1269. [Google Scholar] [CrossRef] [PubMed]
- Fort, C.I.; Ortiz, R.; Cotet, L.C.; Danciu, V.; Popescu, I.C.; Gorton, L. Carbon aerogel as electrode material for improved direct electron transfer in biosensors incorporating cellobiose dehydrogenase. Electroanalysis 2016, 28, 2311–2319. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Vasiliu, F.; Marginean, P.; Danciu, V.; Popescu, I.C. Methanol oxidation at carbon paste electrodes modified with (Pt-Ru)/carbon aerogels nanocomposites. Mater. Chem. Phys. 2016, 172, 179–188. [Google Scholar] [CrossRef]
- Deshmukh, B.M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/ SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Song, H.; Ni, Y.; Kokot, S. Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens. Bioelectron. 2014, 56, 137–143. [Google Scholar] [CrossRef]
- Shamkhalichenar, H.; Choi, J.-W. Review—Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors Based on Reduced Graphene Oxide. J. Electrochem. Soc. 2020, 167, 037531. [Google Scholar] [CrossRef]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Gich, M.; Fernández-Sánchez, C.; Cotet, L.C.; Niu, P.; Roig, A. Facile synthesis of porous bismuth-carbon nanocomposites for the sensitive detection of heavy metals. J. Mater. Chem. A 2013, 1, 11410–11418. [Google Scholar] [CrossRef]
- Fort, C.I.; Rusu, M.M.; Pop, L.C.; Cotet, L.C.; Vulpoi, A.; Baia, M.; Baia, L. Preparation and Characterization of Carbon Xerogel Based Composites for Electrochemical Sensing and Photocatalytic Degradation. J. Nanosci. Nanotechnol. 2020. [Google Scholar] [CrossRef]
- Cotet, L.C.; Gich, M.; Roig, A.; Popescu, I.C.; Cosoveanu, V.; Molins, E.; Danciu, V. Synthesis and structural characteristics of carbon aerogels with a high content of Fe, Co, Ni, Cu, and Pd. J. Non. Cryst. Solids 2006, 352, 2772–2777. [Google Scholar] [CrossRef]
- Jorio, A.; Souza Filho, A.G. Raman Studies of Carbon Nanostructures. Annu. Rev. Mater. Res. 2016, 46, 357–382. [Google Scholar] [CrossRef]
- Hoekstra, J.; Beale, A.M.; Soulimani, F.; Versluijs-Helder, M.; Van De Kleut, D.; Koelewijn, J.M.; Geus, J.W.; Jenneskens, L.W. The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation. Carbon N. Y. 2016, 107, 248–260. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Maurin, G.; Llewellyn, P. Adsorption by Powders and Porous Solids. In Adsorption by Powders and Porous Solids; Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.B.T.-A.P., Second, P.S.E., Eds.; Elsevier: Oxford, UK, 2014; pp. 1–24. [Google Scholar]
- Panda, A.; Govindaraj, R.; Mythili, R.; Amarendra, G. Formation of bismuth iron oxide based core–shell structures and their dielectric, ferroelectric and magnetic properties. J. Mater. Chem. C 2019, 7, 1280–1291. [Google Scholar] [CrossRef]
- Xia, Q.; Xu, M.; Xia, H.; Xie, J. Nanostructured Iron Oxide/Hydroxide-Based Electrode Materials for Supercapacitors. ChemNanoMat 2016, 2, 588–600. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Y.; Wang, X.; Zhao, G. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta 2010, 82, 196–201. [Google Scholar] [CrossRef]
- Heydaryan, K.; Almasi Kashi, M.; Sharifi, N.; Ranjbar-Azad, M. Efficiency improvement in non-enzymatic H2O2 detection induced by the simultaneous synthesis of Au and Ag nanoparticles in an RGO/Au/Fe3O4/Ag nanocomposite. New J. Chem. 2020, 44, 9037–9045. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Xie, H.-L.; Tang, J.; Tang, S.; Yi, J.; Zhang, H.-L. Design and preparation of a non-enzymatic hydrogen peroxide sensor based on a novel rigid chain liquid crystalline polymer/reduced graphene oxide composite. RSC Adv. 2015, 5, 63662–63668. [Google Scholar] [CrossRef]
- Hassan, M.; Jiang, Y.; Bo, X.; Zhou, M. Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 2018, 188, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Sherino, B.; Mohamad, S.; Abdul Halim, S.N.; Abdul Manan, N.S. Electrochemical detection of hydrogen peroxide on a new microporous Ni–metal organic framework material-carbon paste electrode. Sens. Actuators B Chem. 2018, 254, 1148–1156. [Google Scholar] [CrossRef]
- Shu, Y.; Xu, J.; Chen, J.; Xu, Q.; Xiao, X.; Jin, D.; Pang, H.; Hu, X. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens. Actuators B Chem. 2017, 252, 72–78. [Google Scholar] [CrossRef]
- European Drinking Water Directive: 1. Council Directive 92008/105/EC of 16 December 2008 on Environmental Quality Standards in the ELD of Water Policy; Vol OJ L 348/84 24.12.2008, 1998 (Chapter Annex 1); European Union: Brussels, Belgium, 2008. [Google Scholar]
- Graham, N. Guidelines for Drinking-Water Quality, 2nd edition, Addendum to Volume 1—Recommendations, World Health Organisation, Geneva, 1998, 36 pages. Urban. Water 1999, 1, 183. [Google Scholar] [CrossRef]
Material | Preparation Method | ID/IG | SBET (m2/g) | Vmpores (cm3/g) | Vμpore (cm3/g) | <D> (nm) | C:O:Fe:Bi (at%) | Ref. |
---|---|---|---|---|---|---|---|---|
C-Bi xerogels | impregnation | - | 80 | 0.041 | - | 56 | 1% (Bi) | [9] |
- | 200 | - | - | 7% (Bi) | [22] | |||
co-synthesis | - | - | - | - | 85/155 | 16.4% (Bi) | ||
- | 400 | - | - | 29/90 | 4.08% (Bi) | |||
- | 71.5 | 0.049 | - | 100 | 6% (Bi) | |||
0.90 | 142 | 0.077 | - | 25/110 | 95.9:3.2:0:0.9 | [7] | ||
C-Bi aerogels | co-synthesis | 0.89 | 570 | 1.012 | 60/120 | 96.8:2.7:0:0.5 | [7] | |
CXFe | co-synthesis | 0.85 | 344 | - | - | 18 | 94.2:5.2:0.2:0.4 | [23] |
CXBiFe0 | co-synthesis | 0.84 | 185 | 0.250 | 0.050 | 8 | 94.2:2.1:0.0:0.2 | Present work |
CXBiFe0.01 | co-synthesis | 0.84 | 65 | 0.093 | 0.025 | 10 | 96.3:3.5:0.02:0.1 | |
CXBiFe0.12 | co-synthesis | 0.82 | 79 | 0.161 | 0.026 | 7 | 96.6:3.0:0.2:0.1 | |
CXBiFe1.2 | co-synthesis | 0.82 | 162 | 0.038 | 0.071 | 10/33 | 96.4:2.9:0.6:0.03 |
Sample | Peak Index | Position (cm−1) | FWHM (cm−1) | Peak Area (%) |
---|---|---|---|---|
CXBiFe0 | D4 | 1244.85 | 232.98 | 24.37 |
D1 | 1348.35 | 142.76 | 29.00 | |
D3 | 1530.94 | 194.04 | 33.63 | |
G | 1595.87 | 63.46 | 13.00 | |
CXBiFe0.01 | D4 | 1241.63 | 231.16 | 22.64 |
D1 | 1347.84 | 145.10 | 31.41 | |
D3 | 1533.29 | 189.65 | 32.91 | |
G | 1597.13 | 62.57 | 13.03 | |
CXBiFe0.12 | D4 | 1249.00 | 244.48 | 25.63 |
D1 | 1346.06 | 139.15 | 28.47 | |
D3 | 1534.51 | 196.54 | 33.26 | |
G | 1594.07 | 59.55 | 12.63 | |
CXBiFe1.2 | D4 | 1249.00 | 253.17 | 25.28 |
D1 | 1344.53 | 137.20 | 29.13 | |
D3 | 1536.29 | 199.32 | 32.70 | |
G | 1595.01 | 58.03 | 12.88 |
Electrode | |||||
---|---|---|---|---|---|
GC | GC/Chi-CXBiFe0 | GC/Chi-CXBiFe0.01 | GC/Chi-CXBiFe0.1 | GC/Chi-CXBiFe1.2 | |
Rel (Ω/cm2) | 22.23 ± 2.30 | 48.19 ± 0.56 | 23.72 ± 5.28 | 23.32 ± 5.07 | 13.92 ± 5.74 |
CPEdl (µS·sn/cm2) | 0.60 ± 3.70 | 65.1 ± 1.58 | 77.4 ± 3.93 | 70.88 ± 1.13 | 381 ± 14.12 |
n | 0.78 ± 0.83 | 0.57 ± 1.35 | 0.65 ± 0.83 | 0.68 ± 2.58 | 0.72 ± 3.98 |
Rct (Ω/cm2) | 3904 ± 3.75 | 1247 ± 1.43 | 1801 ± 3.75 | 2187 ± 6.20 | 3654 ± 5.04 |
W (mS·s1/2/cm2) | 0.66 ± 5.68 | 0.49 ± 1.70 | 0.57 ± 3.22 | 0.54 ± 1.00 | 0.60 ± 3.99 |
C (µF/cm2) | 0.10 | 9.79 | 27.13 | 29.48 | 433.30 |
χ2 | 0.003552 | 0.0003785 | 0.00140 | 0.00286 | 0.00514 |
Electrode Type | Intercept (µA) | Slope (µA/µM) | R2 | N |
---|---|---|---|---|
GC/Chi-CXBiFe1.2 | −4.586 ± 0.185 | −2.354 ± 0.028 | 0.99864 | 10 |
GC/Chi-CXBiFe0.12 | −3.353 ± 0.235 | −1.655 ± 0.053 | 0.99074 | 10 |
GC/Chi-CXBiFe0.01 | 1.365 ± 0.327 | −1.155 ± 0.021 | 0.99679 | 10 |
GC/Chi-CXBiFe0 | −0.116 ± 0.001 | −1.879 × 10−5 ± 0.028 × 10−5 | 0.99796 | 10 |
Electrode Type | Applied Potential V vs. Ag|AgCl, KClsat | Linear Range | Detection Limit (µM) | Ref. |
---|---|---|---|---|
(Fe-CA)-CPE | −0.3 | 1–50 mM | 500 | [8] |
GC/Chi-BiFeCX | −0.3 | 5–50 µM | 4.77 | [23] |
GC/Chi-BiFeCX-TiO2 | −0.3 | 5–80 mM | 3110 | [23] |
GCE/RGO/Au/Fe3O4/Ag | 0.55 | 2 µM–1.2 mM | 1.43 | [31] |
PFECS/rGO/GCE | 0.44 | 10–190µM | 1.25 | [32] |
CoFe/NGR | −0.25 | 1–8654 | 0.28 | [33] |
AP-Ni-MOF/CPE | −0.25 | 4 µM–60 mM | 0.9 | [34] |
MnO2nanosheets/GCE | −0.6 | 25 nM~2 μM and 10~454 μM | 5 nM | [35] |
GC/Chi-CXBiFe0 | −0.3 | 1–10 mM | 842.24 | This work |
GC/Chi-CXBiFe0.01 | −0.3 | 3–30 µM | 0.85 | |
GC/Chi/CXBiFe0.12 | −0.3 | 3–30 µM | 0.43 | |
GC/Chi-CXBiFe1.2 | −0.3 | 3–30 µM | 0.24 |
Electrode Type | Intercept (µA) | Slope (µA/pM) | R2 | N |
---|---|---|---|---|
GC/Chi-CXBiFe0 | 2.69 ± 0.14 | 1.17·106 ± 0.02·106 | 0.99747 | 10 |
GC/Chi-CXBiFe0.01 | 2.98 ± 0.18 | 1.01·106 ± 0.02·106 | 0.99366 | 10 |
GC/Chi/CXBiFe0.12 | 1.20 ± 0.09 | 3.77·105 ± 0.16·105 | 0.99001 | 7 |
GC/Chi-CXBiFe1.2 | 2.76 ± 0.26 | 6.39·105 ± 0.37·105 | 0.97323 | 10 |
Electrode Type | Peak Potential V vs. Ag|AgCl, KCl sat. | Linear Range | Sensitivity (µA/µM) | Detection Limit (pM) | Ref. |
---|---|---|---|---|---|
GC/Chi-(Bi-CX) | −0.55 | 1–10 pM | 1.15·106 | 0.36 | [9] |
GC/Chi-(Bi-CX) | −0.56 | 1–10 pM | 1.37·106 | 0.28 | [7] |
GC/Chi-(Bi-CA) | −0.44 | 1–10 pM | 2.3·105 | 0.48 | [7] |
GC/Chi-CXBiFe0 | −0.53 | 1–10 pM | 1.17·106 | 0.36 | This work |
GC/Chi-CXBiFe0.01 | −0.58 | 1–10 pM | 1.01·106 | 0.54 | |
GC/Chi-CXBiFe0.12 | −0.56 | 1–10 pM | 3.77·105 | 0.77 | |
GC/Chi-CXBiFe1.2 | −0.51 | 1–10 pM | 6.39·105 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fort, C.I.; Rusu, M.M.; Cotet, L.C.; Vulpoi, A.; Florea, I.; Tuseau-Nenez, S.; Baia, M.; Baibarac, M.; Baia, L. Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection. Molecules 2021, 26, 117. https://doi.org/10.3390/molecules26010117
Fort CI, Rusu MM, Cotet LC, Vulpoi A, Florea I, Tuseau-Nenez S, Baia M, Baibarac M, Baia L. Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection. Molecules. 2021; 26(1):117. https://doi.org/10.3390/molecules26010117
Chicago/Turabian StyleFort, Carmen I., Mihai M. Rusu, Liviu C. Cotet, Adriana Vulpoi, Ileana Florea, Sandrine Tuseau-Nenez, Monica Baia, Mihaela Baibarac, and Lucian Baia. 2021. "Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection" Molecules 26, no. 1: 117. https://doi.org/10.3390/molecules26010117
APA StyleFort, C. I., Rusu, M. M., Cotet, L. C., Vulpoi, A., Florea, I., Tuseau-Nenez, S., Baia, M., Baibarac, M., & Baia, L. (2021). Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection. Molecules, 26(1), 117. https://doi.org/10.3390/molecules26010117