Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System
Abstract
:1. Introduction
2. Viscosity Data of Ionic Liquids
3. Model Development
3.1. Calculation of Pure Viscosity Based on Eyring’s Theory-ET
3.2. Generalized Reduced Gradient
3.3. Decision Tree-DT
3.4. Multilayer Perceptron Neural Network—MLPNN
3.5. Least Square Support Vector Machine—LSSVM
3.6. Committee Machine Intelligent System (CMIS)
- (1)
- Static structure
- (2)
- Dynamic structure
3.7. Optimization Technique
Bat Algorithm (BAT)
- All the species of the bat utilize echolocation to sense distance, and bats ‘know’ the discrepancy among food/prey and background obstacles in some magical techniques.
- In order to search prey, the bats can fly fortuitously with the velocity at position with a frequency , loudness , and a variable wavelength . Bats can spontaneously adjust the wavelength and/or frequency of their generated pulses and regulate the level of pulse emission in the range of [0,1], reliant on the nearness of their goal.
- Although there are various methods to regulate the loudness, it is usually assumed that the loudness is between a positive and a minimum constant amount, which is represented by .
4. Model Assessment
4.1. Statistical Criteria
4.1.1. Determination Coefficient ()
4.1.2. Average Relative Deviation (ARD%)
4.1.3. Standard Deviation (SD)
4.1.4. Average Absolute Relative Deviation (AARD%)
4.1.5. Root Mean Square Error (RMSE)
4.2. Graphical Evaluation of the Models
5. Result and Discussion
5.1. Development of Models
5.2. Statistical Evaluation
5.3. Graphical Error Analysis
5.4. Identifying Outliers in Experimental Data and Applicability Domain of CMIS Model
5.5. Relative Importance of Input Variables
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Salgado, J.; Regueira, T.; Lugo, L.; Vijande, J.; Fernández, J.; Garcia, J. Density and viscosity of three (2, 2, 2-trifluoroethanol+ 1-butyl-3-methylimidazolium) ionic liquid binary systems. J. Chem. Thermodyn. 2014, 70, 101–110. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Majdan-Cegincara, R. Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K. J. Chem. Eng. Data 2007, 52, 2359–2364. [Google Scholar] [CrossRef]
- Atashrouz, S.; Zarghampour, M.; Abdolrahimi, S.; Pazuki, G.; Nasernejad, B. Estimation of the Viscosity of Ionic Liquids Containing Binary Mixtures Based on the Eyring’s Theory and a Modified Gibbs Energy Model. J. Chem. Eng. Data 2014, 59, 3691–3704. [Google Scholar] [CrossRef]
- Schmidt, H.R.; Stephan, M.; Safarov, J.; Kul, I.; Nocke, J.; Abdulagatov, I.; Hassel, E. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate. J. Chem. Thermodyn. 2012, 47, 68–75. [Google Scholar] [CrossRef]
- Van Rantwijk, F.; Sheldon, R.A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2757–2785. [Google Scholar] [CrossRef]
- Freemantle, M. An Introduction to Ionic Liquids; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Wasserscheid, P.; van Hal, R.; Bösmann, A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid. Green Chem. 2002, 4, 400–404. [Google Scholar] [CrossRef]
- Ghatee, M.H.; Zare, M.; Zolghadr, A.R.R.; Moosavi, F. Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilibria 2010, 291, 188–194. [Google Scholar] [CrossRef]
- Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275–297. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Chen, B.-K.; Hao, L.; Kuo, C.-W.; Sun, I.-W. Thermophysical properties of binary mixtures $1−methyl−3−pentylimidazoliumtetrafluoroborate+polyethyleneglycolmethylether$. J. Taiwan Inst. Chem. Eng. 2012, 43, 313–321. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Zhao, F.; Qi, G.; Hu, Y. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol. J. Chem. Thermodyn. 2012, 47, 203–208. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Chen, B.-K.; Hao, L.; Lin, K.-F.; Sun, I.-W. Thermophysical properties of a room temperature ionic liquid (1-methyl-3-pentyl-imidazolium hexafluorophosphate) with poly(ethylene glycol). J. Taiwan Inst. Chem. Eng. 2011, 42, 914–921. [Google Scholar] [CrossRef]
- Lopes, J.N.C.; Gomes, M.F.C.; Husson, P.; Pádua, A.A.H.; Rebelo, L.P.N.; Sarraute, S.; Tariq, M. Polarity, Viscosity, and Ionic Conductivity of Liquid Mixtures Containing [C4C1im][Ntf2] and a Molecular Component. J. Phys. Chem. B 2011, 115, 6088–6099. [Google Scholar] [CrossRef] [PubMed]
- Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+distilled or saline water/heavy crude oil)) as a new surfactant. J. Mol. Liq. 2013, 187, 83–89. [Google Scholar] [CrossRef]
- Volkl, J.; Muller, K.J.; Mokrushina, L.; Arlt, W. A Priori Property Estimation of Physical and Reactive CO2 Absorbents. Chem. Eng. Technol. 2012, 35, 579–583. [Google Scholar] [CrossRef]
- Królikowska, M.; Hofman, T. Densities, isobaric expansivities and isothermal compressibilities of the thiocyanate-based ionic liquids at temperatures (298.15–338.15K) and pressures up to 10MPa. Thermochim. Acta 2012, 530, 1–6. [Google Scholar] [CrossRef]
- Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) on the water/oil interfacial tension as a novel surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 63–71. [Google Scholar] [CrossRef]
- Ciocirlan, O.; Croitoru, O.; Iulian, O. Densities and Viscosities for Binary Mixtures of 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid with Molecular Solvents. J. Chem. Eng. Data 2011, 56, 1526–1534. [Google Scholar] [CrossRef]
- Torrecilla, J.S.; Tortuero, C.; Cancilla, J.C.; Díaz-Rodríguez, P. Neural networks to estimate the water content of imidazolium-based ionic liquids using their refractive indices. Talanta 2013, 116, 122–126. [Google Scholar] [CrossRef]
- Torrecilla, J.S.; Tortuero, C.; Cancilla, J.C.; Díaz-Rodríguez, P. Estimation with neural networks of the water content in imidazolium-based ionic liquids using their experimental density and viscosity values. Talanta 2013, 113, 93–98. [Google Scholar] [CrossRef]
- Fernández, A.; Garcia, J.; Torrecilla, J.S.; Oliet, M.; Rodriguez, F. Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature. J. Chem. Eng. Data 2008, 53, 1518–1522. [Google Scholar] [CrossRef]
- Nieuwenhuyzen, M.; Seddon, K.R.; Teixidor, F.; Puga, A.V.; Viñas, C. Ionic Liquids Containing Boron Cluster Anions. Inorg. Chem. 2009, 48, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, L.-S.; Chen, H.-P. Densities and Viscosities of 1-Butyl-3-methylimidazolium Tetrafluoroborate + H2O Binary Mixtures from (303.15 to 353.15) K. J. Chem. Eng. Data 2006, 51, 905–908. [Google Scholar] [CrossRef]
- Zhu, A.; Wang, J.; Liu, R. A volumetric and viscosity study for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate with some molecular solvents. J. Chem. Thermodyn. 2011, 43, 796–799. [Google Scholar] [CrossRef]
- Gong, Y.-H.; Shen, C.; Lu, Y.-Z.; Meng, H.; Li, C.-X. Viscosity and Density Measurements for Six Binary Mixtures of Water (Methanol or Ethanol) with an Ionic Liquid ([BMIM][DMP] or [EMIM][DMP]) at Atmospheric Pressure in the Temperature Range of (293.15 to 333.15) K. J. Chem. Eng. Data 2011, 57, 33–39. [Google Scholar] [CrossRef]
- Lashkarblooki, M.; Hezave, A.Z.; Al-Ajmi, A.M.; Ayatollahi, S. Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network. Fluid Phase Equilibria 2012, 326, 15–20. [Google Scholar] [CrossRef]
- Rooney, D.W.; Jacquemin, J.; Gardas, R.L. Thermophysical Properties of Ionic Liquids; Springer: Berlin/Heidelberg, Germany, 2009; Volume 290, pp. 185–212. [Google Scholar]
- Wu, W.; Li, W.; Han, B.; Zhang, Z.; Jiang, T.; Liu, Z. A green and effective method to synthesize ionic liquids: Supercritical CO2 route. Green Chem. 2005, 7, 701–704. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, G.L.; Lee, L.P. High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate. Nano Lett. 2005, 5, 5–9. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, D.; Wen, L.; Yang, S.; Chen, X. Viscosity of ionic liquids: Database, observation, and quantitative structure-property relationship analysis. AIChE J. 2011, 58, 2885–2899. [Google Scholar] [CrossRef]
- Widegren, J.A.; Magee, J.W. Density, Viscosity, Speed of Sound, and Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Its Mixtures with Water†. J. Chem. Eng. Data 2007, 52, 2331–2338. [Google Scholar] [CrossRef]
- Burrell, G.L.; Burgar, I.M.; Separovic, F.; Dunlop, N.F. Preparation of protic ionic liquids with minimal water content and 15N NMR study of proton transfer. Phys. Chem. Chem. Phys. 2010, 12, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Atashrouz, S.; Mirshekar, H.; Hemmati-Sarapardeh, A.; Moraveji, M.K.; Nasernejad, B. Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures. Korean J. Chem. Eng. 2016, 34, 425–439. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Hemmati-Sarapardeh, A. Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids. J. Mol. Liq. 2014, 200, 340–348. [Google Scholar] [CrossRef]
- Barycki, M.; Sosnowska, A.; Gajewicz, A.; Bobrowski, M.; Wileńska, D.; Skurski, P.; Giełdoń, A.; Czaplewski, C.; Uhl, S.; Laux, E.; et al. Temperature-dependent structure-property modeling of viscosity for ionic liquids. Fluid Phase Equilibria 2016, 427, 9–17. [Google Scholar] [CrossRef]
- Gardas, R.L.; Coutinho, J.A. A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria 2008, 266, 195–201. [Google Scholar] [CrossRef]
- Gharagheizi, F.; Ilani-Kashkouli, P.; Mohammadi, A.H.; Ramjugernath, D.; Richon, D. Development of a group contribution method for determination of viscosity of ionic liquids at atmospheric pressure. Chem. Eng. Sci. 2012, 80, 326–333. [Google Scholar] [CrossRef]
- Lazzús, J.A.; Pulgar-Villarroel, G. A group contribution method to estimate the viscosity of ionic liquids at different temperatures. J. Mol. Liq. 2015, 209, 161–168. [Google Scholar] [CrossRef]
- Paduszyński, K.; Domańska, U. Viscosity of Ionic Liquids: An Extensive Database and a New Group Contribution Model Based on a Feed-Forward Artificial Neural Network. J. Chem. Inf. Model. 2014, 54, 1311–1324. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Zhang, X.; Zhang, S. A quantitative prediction of the viscosity of ionic liquids using S σ-profile molecular descriptors. Phys. Chem. Chem. Phys. 2015, 17, 3761–3767. [Google Scholar] [CrossRef]
- Gaciño, F.M.; Paredes, X.; Comuñas, M.J.P.; Fernández, J. Effect of the pressure on the viscosities of ionic liquids: Experimental values for 1-ethyl-3-methylimidazolium ethylsulfate and two bis (trifluoromethyl-sulfonyl) imide salts. J. Chem. Thermodyn. 2012, 54, 302–309. [Google Scholar] [CrossRef]
- Gaciño, F.M.; Paredes, X.; Comuñas, M.J.P.; Fernández, J. Pressure dependence on the viscosities of 1-butyl-2, 3-dimethylimidazolium bis (trifluoromethylsulfonyl) imide and two tris (pentafluoroethyl) trifluorophosphate based ionic liquids: New measurements and modelling. J. Chem. Thermodyn. 2013, 62, 162–169. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, B.; Qian, W.; Li, H. Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T=(293.15 to 313.15)K. J. Chem. Thermodyn. 2013, 58, 449–459. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, H.; Wang, H.; Chen, L. Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol atT=(298.15 to 313.15) K. J. Chem. Eng. Data 2011, 56, 2877–2883. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, J.; Wang, C.; Li, H. Density, Viscosity, and Refractive Index Properties for the Binary Mixtures of n-Butylammonium Acetate Ionic Liquid + Alkanols at Several Temperatures. J. Chem. Eng. Data 2012, 57, 298–308. [Google Scholar] [CrossRef]
- Koller, T.; Rausch, M.H.; Schulz, P.S.; Berger, M.; Wasserscheid, P.; Economou, I.G.; Leipertz, A.; Fröba, A.P. Viscosity, Interfacial Tension, Self-Diffusion Coefficient, Density, and Refractive Index of the Ionic Liquid 1-Ethyl-3-methylimidazolium Tetracyanoborate as a Function of Temperature at Atmospheric Pressure. J. Chem. Eng. Data 2012, 57, 828–835. [Google Scholar] [CrossRef]
- Domańska, U.; Zawadzki, M.; Lewandrowska, A. Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinolinium bis $(trifluoromethyl)sulfonyl$ imide with alcohols. J. Chem. Thermodyn. 2012, 48, 101–111. [Google Scholar] [CrossRef]
- Kanakubo, M.; Nanjo, H.; Nishida, T.; Takano, J. Density, viscosity, and electrical conductivity of N-methoxymethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide. Fluid Phase Equilibria 2011, 302, 10–13. [Google Scholar] [CrossRef]
- Fendt, S.; Padmanabhan, S.; Blanch, H.W.; Prausnitz, J.M. Viscosities of Acetate or Chloride-Based Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents. J. Chem. Eng. Data 2011, 56, 31–34. [Google Scholar] [CrossRef]
- Mokhtarani, B.; Mojtahedi, M.M.; Mortaheb, H.R.; Mafi, M.; Yazdani, F.; Sadeghian, F. Densities, Refractive Indices, and Viscosities of the Ionic Liquids 1-Methyl-3-octylimidazolium Tetrafluoroborate and 1-Methyl-3-butylimidazolium Perchlorate and Their Binary Mixtures with Ethanol at Several Temperatures. J. Chem. Eng. Data 2008, 53, 677–682. [Google Scholar] [CrossRef]
- Domańska, U.; Skiba, K.; Zawadzki, M.; Paduszyński, K.; Królikowski, M. Synthesis, physical, and thermodynamic properties of 1-alkyl-cyanopyridinium bis $(trifluoromethyl)sulfonyl$ imide ionic liquids. J. Chem. Thermodyn. 2013, 56, 153–161. [Google Scholar] [CrossRef]
- Da Rocha, M.M.A.; Ribeiro, F.M.S.; Ferreira, A.I.; Coutinho, J.A.; Santos, L.M.N.B.F. Thermophysical properties of [CN−1C1im][PF6] ionic liquids. J. Mol. Liq. 2013, 188, 196–202. [Google Scholar] [CrossRef]
- Diogo, J.C.F.; Caetano, F.J.P.; Fareleira, J.M.N.A.; Wakeham, W.A. Viscosity measurements of three ionic liquids using the vibrating wire technique. Fluid Phase Equilibria 2013, 353, 76–86. [Google Scholar] [CrossRef]
- Pires, J.; Timperman, L.; Jacquemin, J.; Balducci, A.; Anouti, M. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic Liquid+propylene carbonate) binary mixture. J. Chem. Thermodyn. 2013, 59, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.-S.; Li, P.-P.; Welz-Biermann, U.; Chen, J.; Liu, X.-X. Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J. Chem. Thermodyn. 2013, 66, 88–94. [Google Scholar] [CrossRef]
- Liu, X.; Afzal, W.; Prausnitz, J.M. Unusual trend of viscosities and densities for four ionic liquids containing a tetraalkyl phosphonium cation and the anion bis(2,4,4-trimethylpentyl) phosphinate. J. Chem. Thermodyn. 2014, 70, 122–126. [Google Scholar] [CrossRef]
- Qian, W.; Xu, Y.; Zhu, H.; Yu, C. Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols. J. Chem. Thermodyn. 2012, 49, 87–94. [Google Scholar] [CrossRef]
- Ochkedzan-Siodłak, W.; Dziubek, K.; Siodłak, D. Densities and viscosities of imidazolium and pyridinium chloroaluminate ionic liquids. J. Mol. Liq. 2013, 177, 85–93. [Google Scholar] [CrossRef]
- González, E.J.; González, B.; Calvar, N.; Dominguez, Á. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T=(298.15, 313.15, and 328.15) K and atmospheric pressure. J. Chem. Eng. Data. 2007, 52, 1641–1648. [Google Scholar] [CrossRef]
- Yan, F.; He, W.; Jia, Q.; Wang, Q.; Xia, S.; Ma, P. Prediction of ionic liquids viscosity at variable temperatures and pressures. Chem. Eng. Sci. 2018, 184, 134–140. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons: New York, NY, USA, 1960; p. 413. [Google Scholar]
- Kincaid, J.F.; Eyring, H.; Stearn, A.E. The Theory of Absolute Reaction Rates and its Application to Viscosity and Diffusion in the Liquid State. Chem. Rev. 1941, 28, 301–365. [Google Scholar] [CrossRef]
- Glasstone, S.; Laidler, K.J.; Eyring, H. The Theory of Rate Processes; MacGraw-Hill Book Co: New York, NY, USA, 1941; p. 477. [Google Scholar]
- Eyring, H. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. J. Chem. Phys. 1936, 4, 283–291. [Google Scholar] [CrossRef]
- Gill, P.E.; Murray, W.; Wright, M.H. Practical Optimization; Academic Press: London, UK, 1981. [Google Scholar]
- Ameli, F.; Hemmati-Sarapardeh, A.; Dabir, B.; Mohammadi, A.H. Determination of asphaltene precipitation conditions during natural depletion of oil reservoirs: A robust compositional approach. Fluid Phase Equilibria 2016, 412, 235–248. [Google Scholar] [CrossRef]
- Wilde, D.J.; Beightler, C.S. Foundations of Optimization; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1967. [Google Scholar]
- Sharma, R.; Glemmestad, B. On Generalized Reduced Gradient method with multi-start and self-optimizing control structure for gas lift allocation optimization. J. Process. Control. 2013, 23, 1129–1140. [Google Scholar] [CrossRef]
- Morgan, J.N.; Sonquist, J.A. Some results from a non-symmetrical branching process that looks for interaction effects. Young 1963, 8, 5. [Google Scholar]
- Loh, W.-Y. Fifty Years of Classification and Regression Trees. Int. Stat. Rev. 2014, 82, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; The Wadsworth & Brooks/Cole Mathematics Series; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar]
- Patel, N.; Upadhyay, S. Study of Various Decision Tree Pruning Methods with their Empirical Comparison in WEKA. Int. J. Comput. Appl. 2012, 60, 20–25. [Google Scholar] [CrossRef]
- Tatar, A.; Shokrollahi, A.; Mesbah, M.; Rashid, S.; Arabloo, M.; Bahadori, A. Implementing Radial Basis Function Networks for modeling CO2-reservoir oil minimum miscibility pressure. J. Nat. Gas. Sci. Eng. 2013, 15, 82–92. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Hezarkhani, A. A fast and independent architecture of artificial neural network for permeability prediction. J. Pet. Sci. Eng. 2012, 86, 118–126. [Google Scholar] [CrossRef]
- Atashrouz, S.; Pazuki, G.; Alimoradi, Y. Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilibria 2014, 372, 43–48. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Hezave, A.Z.; Ayatollahi, S. Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria 2012, 324, 102–107. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Ghazanfari, M.-H.; Ayatollahi, S.; Masihi, M. Accurate determination of the CO2-crude oil minimum miscibility pressure of pure and impure CO2streams: A robust modelling approach. Can. J. Chem. Eng. 2016, 94, 253–261. [Google Scholar] [CrossRef]
- Hagan, M.; Menhaj, M. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Foresee, F.D.; Hagan, M. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Conference on Neural Networks, Houston, TX, USA, 9–12 June 1997; pp. 1930–1935. [Google Scholar]
- Mackay, D.J.C. Bayesian Interpolation. Neutral Comput. 1992, 447, 415–447. [Google Scholar] [CrossRef]
- Amar, M.N.; Noureddine, Z. An efficient methodology for multi-objective optimization of water alternating CO2 EOR process. J. Taiwan Inst. Chem. Eng. 2019, 99, 154–165. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Amar, M.N.; Zeraibi, N. Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process. Petroleum 2018. [Google Scholar] [CrossRef]
- Qin, L.-T.; Liu, S.-S.; Liu, H.-L.; Zhang, Y.-H. Support vector regression and least squares support vector regression for hormetic dose–response curves fitting. Chemosphere 2010, 78, 327–334. [Google Scholar] [CrossRef]
- Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A.H.; Richon, D. Phase Equilibrium Modeling of Structure H Clathrate Hydrates of Methane + Water “Insoluble” Hydrocarbon Promoter Using QSPR Molecular Approach. J. Chem. Eng. Data 2011, 56, 3775–3793. [Google Scholar] [CrossRef]
- Gharagheizi, F.; Eslamimanesh, A.; Farjood, F.; Mohammadi, A.H.; Richon, D. Solubility Parameters of Nonelectrolyte Organic Compounds: Determination Using Quantitative Structure–Property Relationship Strategy. Ind. Eng. Chem. Res. 2011, 50, 11382–11395. [Google Scholar] [CrossRef]
- Eslamimanesh, A.; Gharagheizi, F.; Illbeigi, M.; Mohammadi, A.H.; Fazlali, A.; Richon, D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilibria 2012, 316, 34–45. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, Z.-S. A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 2006, 32, 485–496. [Google Scholar] [CrossRef]
- Naftaly, U.; Intrator, N.; Horn, D. Optimal ensemble averaging of neural networks. Netw. Comput. Neural Syst. 1997, 8, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S.; Network, N. A comprehensive foundation. Neural Netw. 2004, 2, 41. [Google Scholar]
- Hashem, S.; Schmeiser, B. Approximating a Function and Its Derivatives Using MSE-Optimal Linear Combinations of Trained Feedforward Neural Networks; Purdue University, Department of Statistics: West Lafayette, IN, USA, 1993. [Google Scholar]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. In Recent Advances in Computational Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Yang, X.-S.; Deb, S. Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization. In Recent Advances in Computational Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–111. [Google Scholar]
- Yang, X.S.; He, X.-S. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Shokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A.H. Intelligent model for prediction of CO2—Reservoir oil minimum miscibility pressure. Fuel 2013, 112, 375–384. [Google Scholar] [CrossRef]
- Vogel, H. The law of relationbetween the viscosity of liquids and the temperature. Phys. Z 1921, 22, 645–646. [Google Scholar]
- Garcia-Garabal, S.; Vila, J.; Rilo, E.; Dominguez-Pérez, M.; Segade, L.; Tojo, E.; Verdia, P.; Varela, L.M.; Cabeza, O. Transport properties for 1-ethyl-3-methylimidazolium n-alkyl sulfates: Possible evidence of grotthuss mechanism. Electrochim. Acta 2017, 231, 94–102. [Google Scholar] [CrossRef]
- Tammann, G.; Hesse, W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für Anorganische und Allgemeine Chemie 1926, 156, 245–257. [Google Scholar] [CrossRef]
- Fulcher, G.S. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Shateri, M.; Ghorbani, S.; Hemmati-Sarapardeh, A.; Mohammadi, A.H. Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. J. Taiwan Inst. Chem. Eng. 2015, 50, 131–141. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Aminshahidy, B.; Pajouhandeh, A.; Yousefi, S.H.; Hosseini-Kaldozakh, S.A. A soft computing approach for the determination of crude oil viscosity: Light and intermediate crude oil systems. J. Taiwan Inst. Chem. Eng. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Atashrouz, S.; Mirshekar, H.; Mohaddespour, A. A robust modeling approach to predict the surface tension of ionic liquids. J. Mol. Liq. 2017, 236, 344–357. [Google Scholar] [CrossRef]
- Mokarizadeh, H.; Atashrouz, S.; Mirshekar, H.; Hemmati-Sarapardeh, A.; Mohaddespour, A. Comparison of LSSVM model results with artificial neural network model for determination of the solubility of SO2 in ionic liquids. J. Mol. Liq. 2020, 304, 112771. [Google Scholar] [CrossRef]
- Atashrouz, S.; Mirshekar, H.; Hemmati-Sarapardeh, A. A soft-computing technique for prediction of water activity in PEG solutions. Colloid Polym. Sci. 2017, 295, 421–432. [Google Scholar] [CrossRef]
- Atashrouz, S.; Hemmati-Sarapardeh, A.; Mirshekar, H.; Nasernejad, B.; Moraveji, M.K. On the evaluation of thermal conductivity of ionic liquids: Modeling and data assessment. J. Mol. Liq. 2016, 224, 648–656. [Google Scholar] [CrossRef]
Component of ionic liquid | Abbreviation | n | T (K) | P (MPa) |
---|---|---|---|---|
1-butyl-3-methylimidazolium hexafluorophosphate | [C4mim] [PF6] | 238 | 273.15–413.15 | 0.1–249.3 |
1-octyl-3-methylimidazolium hexafluorophosphate | [C8mim] [PF6] | 132 | 273.15–363.15 | 0.1–175.9 |
1-hexyl-3-methylimidazolium hexafluorophosphate | [HMIM] [PF6] | 179 | 273.15–238.5 | 0.1–238.5 |
1-octyl-3-methylimidazolium tetrafluoroborate | [C8mim] [BF4] | 141 | 273.15–363.15 | 0.1–224.2 |
1-hexyl-3-methylimidazolium tetrafluoroborate | [C6mim] [BF4] | 183 | 283.15–368.15 | 0.1–121.8 |
1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [C4mim] [Tf2N] | 344 | 273.15–573 | 0.1–298.9 |
1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [C2mim] [Tf2N] | 225 | 263.15–388.19 | 0.1–125.5 |
1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [C8mim] [Tf2N] | 25 | 278–363.15 | 0.1 |
1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [C6mim] [Tf2N] | 236 | 258.15–433.15 | 0.1–124 |
1-butyl-3-methylimidazolium trifluoromethanesulfonate | [C4mim] [CF3SO3] | 25 | 283.15–363.15 | 0.1 |
1-ethyl-3-methylimidazolium ethylsulfate | [C2mim] [EtSO4] | 137 | 253.15–388.19 | 0.1–75 |
1-hexylpyridinium bis[(trifluoromethyl)sulfonyl] imide | [HPy] [Tf2N] | 8 | 283–343 | 0–1 |
1-butylpyridinium bis[(trifluoromethyl)sulfonyl] imide | [BPy] [Tf2N] | 9 | 283.15–353.15 | 0.1 |
1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl) sulfonyl]imide | [C4MPyr] [Tf2N] | 148 | 273.15–573 | 0.1–102.9 |
1-ethylpyridinium ethylsulfate | [EPy] [ESO4] | 8 | 283–343 | 0.1 |
trimethylhexylammonium bis[(trifluoromethyl)sulfonyl]imide | [N1116] [Tf2N] | 1 | 293.15 | 0.1 |
Trimethylbuthlammonium bis[(trifluoromethyl)sulfonyl]imide | [N1114] [Tf2N] | 17 | 293.15–388.51 | 0.1 |
1-butyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate | [C4mim] [FAP] | 1 | 293.15 | 0.1 |
1,2-dimethylimidasolium bis[(trifluoromethyl)sulfonyl] imide | [DMIM] [Tf2N] | 1 | 298.15 | 0.1 |
trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl) trifluorophosphate | [P6,6,6,14] [FAP] | 181 | 268.15–373.15 | 0.1 |
1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate | [C4mpyrr] [FAP] | 67 | 283.15–373.15 | 0.1–150 |
1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate | [BMPyr] [TfO] | 67 | 293.15–373.15 | 0.1–150 |
1-ethyl-3-methylimidazolium hydrogensulfate | [C2mim] [HSO4] | 22 | 268.15–373.15 | 0.1 |
trimethylpropylammonium bis[(trifluoromethyl)sulfonyl] imide | [N1113] [Tf2N] | 6 | 293–318 | 0.1 |
1-heptyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [C7mim] [Tf2N] | 1 | 293 | 0.1 |
1-undecyl-3-methylimidazolium tetrafluoroborate | [C11MIM] [BF4] | 8 | 293–363 | 0.1 |
1-butyl-3-methylimidazolium iodid | [C4mim] [I] | 35 | 289.15–388.15 | 0.1 |
1-butyl-3-methylimidazolium nitrate | [C4mim] [NO3] | 27 | 283.15–363.15 | 0.1 |
1-dodecyl-3-methylimidazolium hexafluorophosphate | [C12MIM] [PF6] | 4 | 333.15–363.15 | 0.1 |
1-octyl-3-methylimidazolium nitrate | [C8mim] [NO3] | 16 | 283.15–363.15 | 0.1 |
1-hexyl-3-methylimidazolium nitrate | [C6mim] [NO3] | 14 | 283.15–363.15 | 0.1 |
1-butylpyridinum tetrafluoroborate | [BPy] [BF4] | 70 | 278.15–338.15 | 0.1–65.9 |
1-hexylpyridinium bis[(trifluoromethyl)sulfonyl] imide | [C6Py] [Tf2N] | 9 | 298.15–398.15 | 0.1 |
1-heptyl-3-methylimidazolium hexafluorophosphate | [C7mim] [PF6] | 13 | 293.15–263.15 | 0.1 |
1-ethyl-3-methylimidazolium diethylphosphate | [C2mim] [DEP] | 17 | 292.15–373.15 | 0.1 |
1-pentyl-3-methylimidazolium hexafluorophosphate | [C5mim] [PF6] | 13 | 293.15–263.15 | 0.1 |
1-nonyl-3-methylimidazolium hexafluorophosphate | [C9mim] [PF6] | 12 | 303.15–363.15 | 0.1 |
1,2-dimethyl-3-propylimidazolium tetrafluoroborate | [M1,2P3im] [BF4] | 8 | 289.15–343.15 | 0.1 |
1-butyl-4-methylpyridinium tetrafluoroborate | [mbpy] [BF4] | 48 | 283.15–333.15 | 0.1–65 |
1,3-dimethylimidazolium dimethylphosphate | [C1mim] [DPO4] | 7 | 293.15–323.15 | 0.1 |
1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl] imide | [M1,2P3im] [Tf2N] | 16 | 290–365 | 0.1 |
1-ethyl-3-methylimidazolium methylsulfate | [C2mim] [MSO4] | 27 | 283.15–373.15 | 0.1 |
1-ethyl-3-methylimidazolium methanesulfonate | [C2mim] [mesy] | 45 | 278.15–363.15 | 0.1 |
1-butyl-3-methylimidazolium perchlorate | [C4mim] [CLO4] | 15 | 283.15–383.15 | 0.1 |
1-butyl-2,3-dimethylimidazolium tetrafluoroborate | [BDmim] [BF4] | 7 | 298.15–353.15 | 0.1 |
Parameter | Symbol | Unit | Min | Max | Mean |
---|---|---|---|---|---|
Temperature | T | K | 253.15 | 573 | 325.63 |
Pressure | P | MPa | 0.06 | 298.90 | 24.45 |
Molecular Weight | Mw | g/mole | 201.22 | 515.13 | 346.65 |
Critical Temperature | Tc | K | 520.06 | 1534.63 | 1005.87 |
Critical Pressure | Pc | bar | 2.63 | 57.60 | 22.29 |
Critical Volume | Vc | cm3/mol | 550.65 | 2573.60 | 992.83 |
Acentric factor | Ω | - | 0.21 | 1.10 | 0.59 |
Boiling Temperature | Tb | K | 410.77 | 1130.30 | 723.93 |
Experimental viscosity | η exp | MPa.s | 1.13 | 9667.62 | 191.91 |
DT | LSSVM–BAT | MLP–LMA | MLP–BR | CMIS | |
---|---|---|---|---|---|
Training set | |||||
ARD% | −3.273 | −0.402 | −0.326 | −0.170 | 0.011 |
AARD% | 13.366 | 7.899 | 4.647 | 3.553 | 3.256 |
RMSE | 152.767 | 11.534 | 8.465 | 8.517 | 9.533 |
SD | 0.219 | 0.162 | 0.102 | 0.064 | 0.084 |
R2 | 0.880 | 0.999 | 0.999 | 0.999 | 0.999 |
Number of Data point | 2250 | 2250 | 2250 | 2250 | 2250 |
Test set | |||||
ARD% | −4.139 | −0.190 | −0.171 | −1.140 | 0.258 |
AARD% | 17.454 | 8.151 | 4.929 | 5.004 | 3.117 |
RMSE | 223.793 | 25.356 | 22.368 | 20.044 | 9.035 |
SD | 0.244 | 0.140 | 0.089 | 0.232 | 0.050 |
R2 | 0.751 | 0.994 | 0.997 | 0.997 | 0.999 |
Number of Data point | 563 | 563 | 563 | 563 | 563 |
Total | |||||
ARD% | −3.447 | −0.345 | −0.260 | −0.348 | −0.207 |
AARD% | 14.184 | 7.941 | 4.707 | 3.841 | 3.293 |
RMSE | 169.383 | 15.331 | 12.548 | 11.770 | 11.812 |
SD | 0.225 | 0.158 | 0.099 | 0.118 | 0.083 |
R2 | 0.853 | 0.998 | 0.999 | 0.999 | 0.999 |
Number of Data point | 2813 | 2813 | 2813 | 2813 | 2813 |
DT | LSSVM−BAT | MLP−LMA | MLP−BR | CMIS | |
---|---|---|---|---|---|
Training set | |||||
ARD% | −1.108 | 0.357 | 0.020 | −0.219 | −0.161 |
AARD% | 13.589 | 5.552 | 4.522 | 3.768 | 3.422 |
RMSE | 15.444 | 9.027 | 9.441 | 7.923 | 8.894 |
SD | 0.292 | 0.129 | 0.114 | 0.076 | 0.073 |
R2 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 |
Number of Data point | 2250 | 2250 | 2250 | 2250 | 2250 |
Test set | |||||
ARD% | 5.384 | −0.991 | −0.464 | −0.977 | −0.412 |
AARD% | 24.345 | 6.604 | 4.624 | 4.949 | 3.454 |
RMSE | 24.309 | 28.984 | 22.673 | 10.056 | 6.844 |
SD | 1.960 | 0.161 | 0.092 | 0.150 | 0.064 |
R2 | 0.995 | 0.991 | 0.998 | 0.999 | 0.999 |
Number of Data point | 563 | 563 | 563 | 563 | 563 |
Total | |||||
ARD% | 0.190 | 0.087 | −0.076 | −0.371 | −0.172 |
AARD% | 15.742 | 5.763 | 4.453 | 4.004 | 3.426 |
RMSE | 17.580 | 15.275 | 13.197 | 8.393 | 9.505 |
SD | 0.916 | 0.136 | 0.110 | 0.095 | 0.073 |
R2 | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 |
Number of Data point | 2813 | 2813 | 2813 | 2813 | 2813 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, S.P.; Atashrouz, S.; Nait Amar, M.; Hemmati-Sarapardeh, A.; Mohaddespour, A.; Mosavi, A. Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System. Molecules 2021, 26, 156. https://doi.org/10.3390/molecules26010156
Mousavi SP, Atashrouz S, Nait Amar M, Hemmati-Sarapardeh A, Mohaddespour A, Mosavi A. Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System. Molecules. 2021; 26(1):156. https://doi.org/10.3390/molecules26010156
Chicago/Turabian StyleMousavi, Seyed Pezhman, Saeid Atashrouz, Menad Nait Amar, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour, and Amir Mosavi. 2021. "Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System" Molecules 26, no. 1: 156. https://doi.org/10.3390/molecules26010156
APA StyleMousavi, S. P., Atashrouz, S., Nait Amar, M., Hemmati-Sarapardeh, A., Mohaddespour, A., & Mosavi, A. (2021). Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System. Molecules, 26(1), 156. https://doi.org/10.3390/molecules26010156