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Abstract: A high-quality Nd0.01:Gd0.89La0.1NbO4 (Nd:GLNO) crystal is grown by the Czochralski
method, demonstrating wide absorption and fluorescence spectra and advantage for producing
ultrafast laser pulses. In this paper, the tunable and passively mode-locking Nd:GLNO lasers are
characterized for the first time. The tuning coverage is 34.87 nm ranging from 1058.05 to 1092.92 nm
with a maximum output power of 4.6 W at 1065.29 nm. A stable continuous-wave (CW) passively
mode-locking Nd:GLNO laser is achieved at 1065.26 nm, delivering a pulse width of 9.1 ps and a
maximum CW mode-locking output power of 0.27 W.

Keywords: Nd:GLNO crystal; tunable laser; mode-locking

1. Introduction

Ultrafast lasers have been applied in various fields, such as high-precision micro
machining, aerospace, and medical diagnostics [1,2]. Benefiting from their low quantum
defects, wide gain bandwidth, and simple three-level electronic structure, Yb3+-doped
laser mediums attract widespread attention in the 1 µm band [3–5]. However, the overlap
of absorption and emission bands can bring re-absorption loss, resulting in high laser
threshold. Compared with Yb3+-doped gain mediums, Nd3+-doped crystals have no re-
absorption loss and are used in low-threshold and high-efficiency ultrafast laser. As is
known, the typical gain bandwidth of the Nd3+-doped laser materials is narrow, e.g., the
gain bandwidth of the Nd:YVO4 and Nd:YAG crystals were measured to be only 0.96 and
0.80 nm, respectively [6,7]. For this reason, considerable efforts have been made to explore
novel Nd3+-doped laser materials with a broad gain bandwidth. The pulse duration of
19.2 ps at 1064 nm was achieved in a passively mode-locked Nd:YVO4 laser in 2008 [8].
Mohammad et al. [9]. reported pulse duration of 16 ps generation in a Nd:GdVO4 crystal
in 2017. He et al. [10]. obtained 3.8 ps pulse duration at a repetition rate of 112 MHz in a
Nd:GdYVO4 crystal. Previously, theoretical and experimental results have demonstrated
that Nd3+-doped disordered crystals possess broad emission spectra and are suitable for
generating ultrashort lasers [11–13].

In the last decade, researchers have invested tremendous enthusiasm into extending
Nd3+-doped disordered crystals family and exploring their excellent properties. In 2017,
a novel disordered crystal Nd0.01:Gd0.89La0.1NbO4 (Nd:GLNO) was successfully grown
by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences [14].
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Owing to La3+ having a relatively large ionic radius in the lanthanide system, the La3+-
doped disordered crystals exhibit a wider fluorescence bandwidth [15]. Moreover, the
difference in ionic radii between La3+ and Gd3+ ions is small, denoting the Nd:GLNO
crystal possesses excellent lattice matching and thermal property [16,17]. The fluorescence
lifetime and the radiative lifetime of Nd:GLNO crystal was obtained to be 176.1 µs and
184.5 µs, respectively. The luminescent quantum efficiency of the 4F3/2 level was estimated
to be 95.4% [18]. Ma et al. presented the CW and passively Q-switched Nd:GLNO lasers
with Cr4+:YAG crystal and PdSe2 as saturable absorbers (SAs), respectively, in 2018 and
2020 [15,19]. Unfortunately, the tunable and CW mode-locking Nd:GLNO crystal lasers
have not been studied to date.

In this paper, the absorption and florescence spectra of the Nd:GLNO crystal were
systematically investigated demonstrating a wide absorption and emission band. A tunable
operation Nd:GLNO crystal laser was realized with a tuning range of 34.87 nm from 1058.05
to 1092.92 nm. By employing a semiconductor saturable absorber mirror (SESAM) as SA,
a stable CW mode-locking Nd:GLNO crystal laser was achieved, generating the shortest
pulse duration of 9.1 ps and the maximum mode-locking output power of 0.27 W.

2. Experimental Setup

Figure 1 demonstrates schematic setups of the Nd:GLNO lasers. The 808 nm laser
diode was chosen as a pump source with a core diameter of 400 µm and a numerical
aperture (NA) of 0.22. The size of the c-cut Nd:GLNO crystal was 2 × 2 × 5 mm3. To
effectively reduce the influence of thermal effects, the laser crystal was covered with
indium and embedded into a copper block. The cooling temperature of the copper block
was controlled at 15.5 ◦C. The total laser cavity length of the mode-locking and tunable
lasers was 1.94 m and 0.33 m, respectively. Mirrors M1, M2, M4, M5 and M6 were all
processed with anti-reflection (AR) coating around 808 nm and high-reflection coating (HR,
R > 99.9%) at 1030–1100 nm. The curvature radii were R = ∞, R = 200, R = ∞, R = 300 and
R = 150 mm, respectively. The output mirror M3 was partial transmittances (T) coated at
1030–1100 nm (T = 1, 10, 15%, 25% are available). A quartz birefringent filter (BF) was
employed in tunable laser cavity to achieve laser tuning operation. The parameters of the
SESAM are as follows: saturable fluence is 90 µJ/cm2, absorptance is 1.5%, a modulation
depth is 0.8%, damage threshold is 30 mJ/cm2, and a relaxation time is 1 ps. A laser
power meter (Fieldmax-II, PM10) was used for measuring laser power. The laser output
spectra and pulse width of mode-locked Nd:GLNO laser were measured by a spectrometer
(Avantes, AcaSpec-3468-NIR256-2.2) and a commercial autocorrelator (APE Pulse Check,
150), respectively. The typical pulse profile and pulse train were recorded by a digital
oscilloscope (R&S, RTO 2012) together with a fast InGaAs photon detector (New Focus,
1611).
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Figure 1. Schematic setups of the Nd:GLNO laser, (a) tunable operation; (b) CW mode-locking operation.

3. Results and Discussion

Figure 2 presents the absorption and fluorescence spectra of the c-cut Nd:GLNO
crystal at room temperature. As shown in Figure 2a, the absorption peak is at 808 nm and
FWHM is 13 nm. Based on the equation σ = α(λ)/Nc, where α is the absorption coefficient
(8.97 cm−1) and Nc is the concentration of Nd3+, the maximum absorption cross-section of
the Nd:GLNO crystal was calculated to be 10.49 × 10−20 cm2. Moreover, the stimulated
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emission cross-section (σem) can be estimated from the fluorescence spectra using the

Füchtbauer–Ladenburg equation: σem(λ) =
λ5 I(λ)

8πn2cτm
∫

λI(λ)dλ
[19,20], where τm, c, n, I(λ)

are the fluorescence lifetime, velocity of light, reflective index and fluorescence intensity,
the calculated stimulated emission cross-section of 18 × 10−20cm2 was relatively large,
which was suitable for generating ultrafast laser pulse.
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Figure 2. Absorption and fluorescence spectra of the Nd:GLNO crystal. (a) Absorption spectra; (b)
Fluorescence spectra.

A V-type laser cavity was designed to investigate the CW laser output properties
of the Nd:GLNO crystals. Figure 3 displays the relationship between output power and
absorbed pump power at different transmittances of output couplers. The maximum CW
output power of 4.60 W was achieved with the output mirror of T = 15%, corresponding
to an optical-to-optical efficiency of 37.90% and a slope efficiency of 49.67%. Furthermore,
the laser output wavelength could be flexibly tuned by carefully varying the angle of the
BF. Table 1 records the tuning wavelength and the corresponding output power with the
output couplers of T= 1%, 10% and 15%, respectively. As the transmittance increased, the
longitudinal mode oscillation in the cavity was suppressed. Therefore, the tuning range
was further reduced. The total tuning coverage of the Nd:GLNO crystal laser was 34.87 nm
ranging from 1058.05 to 1092.92 nm. Figure 4 demonstrates the typical single wavelength
and multi-wavelength spectra of the Nd:GLNO crystal tunable laser.
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Table 1. Output parameters of the tunable Nd:GLNO crystal laser.

T (%) Wavelength (nm) Output Power (W)

1

1058.05 0.83
1065.29 1.11
1065.61 0.86
1091.98 0.58
1092.29 1.00
1092.61 0.98
1092.92 0.79

10
1065.29 4.13
1092.29 3.03
1092.61 2.83

15
1065.29 4.60
1092.29 0.43
1092.61 0.31

To realize the CWML Nd:GLNO laser operation, a Z-type laser cavity was employed
as shown in Figure 1b. Ultrafast laser pulse output was achieved using a SESAM. To
reduce the intracavity loss and make the SESAM easily saturated, the CWML laser output
characteristics were obtained experimentally at the output mirror of Toc = 1%. As shown
in Figure 5, the minimum absorbed pump power to suppress Q-switched mode-locking
laser was 3.05 W. The maximum CWML laser output power 0.27 W was achieved. The
CWML pulse train was measured using a detector and 1 GHz bandwidth oscilloscope.
Figure 6 presents the stable mode-locking pulses recorded at nanosecond and microsecond
time scales, respectively. The pulse repetition rate (PRR) is 51.6 MHz corresponding to the
cavity length of 1.94 m. Figure 7 demonstrates the signal-to-noise ratio of the first beat.
The radio frequency spectrum was clean and stable, indicating excellent stability of the
mode-locking ultrafast laser. The signal-to-noise ratio was up to 72.3 dB at the fundamental
frequency of 51.6 MHz. The FWHM bandwidth of the autocorrelation trace was about
14.0 ps, corresponding to a pulse duration of 9.1 ps by a sech2-shape pulse fitting. The
mode-locking pulse spectrum was shown in the inset of Figure 8. The central wavelength
of the measured pulse was located at 1065.26 nm with a FWHM of 0.9 nm.
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