Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Steady-Shear Flow Behavior
2.2. Dynamic Oscillation Behavior
2.3. Solution Stability
3. Materials and Method
3.1. Materials
3.2. Homogeneous Synthesis of CEC
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Benito-González, I.; Jaén-Cano, C.M.; López-Rubio, A.; Martínez-Abad, A.; Martínez-Sanz, M. Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity. Int. J. Biol. Macromol. 2020, 165, 1540–1551. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, G.; Bras, J.; Dufresne, A. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2010, 2, 728–765. [Google Scholar] [CrossRef] [Green Version]
- Żelaziński, T. Properties of biocomposites from rapeseed meal, fruit pomace and microcrystalline cellulose made by press pressing: Mechanical and physicochemical characteristics. Materials 2021, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Żelaziński, T.; Słoma, J.; Skudlarski, J.; Ekielski, A. The rape pomace and microcrystalline cellulose composites made by press processing. Sustainability 2020, 12, 1311. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Arca, H.C.; Mosquera-Giraldo, L.I.; Bi, V.; Xu, D.; Taylor, L.S.; Edgar, K.J. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules 2018, 19, 2351–2376. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Zeng, K.; Heinze, T.; Groth, T.; Zhang, K. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 2020. [Google Scholar] [CrossRef] [Green Version]
- Heinze, T.; El Seoud, O.A.; Koschella, A. Cellulose Derivatives: Synthesis, Structure, and Properties; Springer: Cham, Switzerland, 2018; pp. 57–59. [Google Scholar]
- Ass, B.A.P.; Ciacco, G.T.; Frollini, E. Cellulose acetates from linters and sisal: Correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresour. Technol. 2006, 97, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Heinze, T. New solvents for cellulose: Dimethyl sulfoxide/ammonium fluorides. Macromol. Biosci. 2007, 7, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, M.; Shibata, I.; Isogai, A. SEC-MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 2004, 11, 169–176. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Cao, Y.; Sang, S.; Zhang, J.; He, J. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 2009, 16, 299–308. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 2005, 5, 539–548. [Google Scholar] [CrossRef]
- Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem. 2009, 11, 177–184. [Google Scholar] [CrossRef]
- Hu, H.; You, J.; Gan, W.; Zhou, J.; Zhang, L. Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiolene click reactions. Polym. Chem. 2015, 6, 3543–3548. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Liu, S.; Zhang, L. Homogeneous synthesis of hydroxyethl-cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 2006, 6, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, L.; Li, M.; Wu, X.; Cheng, G. Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polym. Bull. 2005, 53, 243–248. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008, 9, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.-Y.; Wirquin, E. Evaluation of various cellulose ethers performance in ceramic tile adhesive mortars. Int. J. Adhes. Adhes. 2013, 40, 202–209. [Google Scholar] [CrossRef]
- Badulescu, R.; Vivod, V.; Jausovec, D.; Voncina, B. Grafting of ethylcellulose microcapsules onto cotton fibers. Carbohydr. Polym. 2008, 71, 85–91. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Arai, K.; Shikata, T. Hydration/dehydration behavior of hydroxyethyl cellulose ether in aqueous solution. Molecules 2020, 25, 4726. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.C.V.; Koschella, A.; Voiges, K.; Mischnick, P.; Heinze, T. Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur. Polym. J. 2010, 46, 1726–1735. [Google Scholar] [CrossRef]
- Vshivkov, S.A.; Rusinova, E.V.; Galyas, A.G. Phase diagrams and rheological properties of cellulose ether solutions in magnetic field. Eur. Polym. J. 2014, 59, 326–332. [Google Scholar] [CrossRef]
- Ma, B.; Peng, Y.; Tan, H.; Jian, S.; Zhi, Z.; Guo, Y.; Qi, H.; Zhang, T.; He, X. Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Con. Build. Mat. 2018, 160, 341–350. [Google Scholar] [CrossRef]
- Martínez-Cervera, S.; Salvador, A.; Sanz, T. Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT Food Sci. Technol. 2015, 63, 1083–1090. [Google Scholar] [CrossRef]
- Benchabane, A.; Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym. Sci. 2008, 286, 1173–1180. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L. Effects of molecular weight on thermoreversible gelation and gel elasticity of methylcellulose in aqueous solution. Carbohydr. Polym. 2005, 62, 232–238. [Google Scholar] [CrossRef]
- Jia, C.; Shao, Z.; Fan, H. Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv. 2015, 5, 15283–15291. [Google Scholar] [CrossRef]
- Nakayama, E.; Azuma, J. Substituent distribution of cyanoethyl cellulose. Cellulose 1998, 5, 175–185. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.; Song, Y.; Zhang, L.; Lin, X. A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions. Polym. Chem. 2010, 1, 1662–1668. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.; Zhang, L. Rheological behavior of cyanoethyl celluloses in aqueous solutions. Cellulose 2012, 19, 1547–1555. [Google Scholar] [CrossRef]
- Ghannam, M.T.; Esmail, M.N. Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci. 1997, 64, 289–301. [Google Scholar] [CrossRef]
- Carreau, P. Rheological equation from molecular network theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Lue, A.; Zhang, L. Rheological behaviors in the regimes from dilute to concentrated in cellulose solutions dissolved at low temperature. Macromol. Biosci. 2009, 9, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, W.; Zhang, L. Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloid. 2006, 20, 723–729. [Google Scholar] [CrossRef]
- Graessley, W.W. Viscosity of entangling polydisperse polymers. J. Chem. Phys. 1967, 47, 1942–1953. [Google Scholar] [CrossRef]
- Clasen, C.; Kulicke, W.M. Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog. Polym. Sci. 2001, 26, 1839–1919. [Google Scholar] [CrossRef]
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady-flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Brown, W.; Wiskstön, R. A viscosity–molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation. Eur. Polym. J. 1965, 1, 1–10. [Google Scholar] [CrossRef]
Sample | c (wt%) | η0 (Pa s) | λ (s) | n1 | n2 | R2 |
---|---|---|---|---|---|---|
CEC-11 | 5.0 | 8.346 | 1.936 × 10−5 | 0.28 | 0.68 | 0.992 |
4.0 | 5.824 | 8.644 × 10−4 | 0.35 | 0.57 | 0.991 | |
3.0 | 1.689 | 6.791 × 10−3 | 0.33 | 0.54 | 0.993 | |
CEC-7 | 5.0 | 1.753 | 0.016 | 0.41 | 0.71 | 0.997 |
4.0 | 0.722 | 9.581 × 10−3 | 0.32 | 0.64 | 0.991 | |
3.0 | 0.265 | 5.70 × 10−3 | 0.27 | 0.83 | 0.997 | |
CEC-3 | 5.0 | 0.274 | 0.146 | 0.18 | 0.57 | 0.994 |
4.0 | 0.186 | 3.48 × 10−3 | 0.28 | 0.63 | 0.995 | |
3.0 | 0.123 | 0.0128 | 0.15 | 0.91 | 0.992 |
Samples | N% | Total DS a | Molecular Weight b |
---|---|---|---|
CEC-11 | 2.98 | 0.39 | 12.63 × 104 |
CEC-7 | 3.12 | 0.41 | 7.94 × 104 |
CEC-3 | 3.36 | 0.44 | 3.54 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, Y.; Jin, Z.; Li, Y.; Chen, Y.; Zhou, J. Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules 2021, 26, 3201. https://doi.org/10.3390/molecules26113201
Li Q, Li Y, Jin Z, Li Y, Chen Y, Zhou J. Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules. 2021; 26(11):3201. https://doi.org/10.3390/molecules26113201
Chicago/Turabian StyleLi, Qian, Yuehu Li, Zehua Jin, Yujie Li, Yifan Chen, and Jinping Zhou. 2021. "Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution" Molecules 26, no. 11: 3201. https://doi.org/10.3390/molecules26113201
APA StyleLi, Q., Li, Y., Jin, Z., Li, Y., Chen, Y., & Zhou, J. (2021). Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules, 26(11), 3201. https://doi.org/10.3390/molecules26113201