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Abstract: Polyhaloaromatic compounds (XAr) are ubiquitous and recalcitrant in the environment.
They are potentially carcinogenic to organisms and may induce serious risks to the ecosystem,
raising increasing public concern. Therefore, it is important to detect and quantify these ubiquitous
XAr in the environment, and to monitor their degradation kinetics during the treatment of these
recalcitrant pollutants. We have previously found that unprecedented intrinsic chemiluminescence
(CL) can be produced by a haloquinones/H2O2 system, a newly-found •OH-generating system
different from the classic Fenton system. Recently, we found that the degradation of priority pollutant
pentachlorophenol by the classic Fe(II)-Fenton system could produce intrinsic CL, which was mainly
dependent on the generation of chloroquinone intermediates. Analogous effects were observed
for all nineteen chlorophenols, other halophenols and several classes of XAr, and a novel, rapid
and sensitive CL-based analytical method was developed to detect these XAr and monitor their
degradation kinetics. Interestingly, for those XAr with halohydroxyl quinoid structure, a Co(II)-
mediated Fenton-like system could induce a stronger CL emission and higher degradation, probably
due to site-specific generation of highly-effective •OH. These findings may have broad chemical and
environmental implications for future studies, which would be helpful for developing new analytical
methods and technologies to investigate those ubiquitous XAr.

Keywords: polyhaloaromatic compounds; chemiluminescence; analytical method; Fenton system;
hydroxyl radicals

1. Introduction
1.1. Polyhaloaromatics (XAr) and Their Toxicity

Polyhaloaromatic compounds (XAr) have been found world-wide in pesticides, phar-
maceuticals, flame retardants and personal care products [1–4]. Most of these compounds
are persistent and widely existing in the environment because of their recalcitrant proper-
ties in the soil and water. More importantly, not only the oxidative DNA damage, but also
protein and DNA adducts may be induced by these XAr compounds in vitro and in vivo
systems [5–9], which possibly makes them carcinogenic to mammalian organisms [10,11].
One typical group of XAr are polyhalophenols, some of which, such as 2,4,6-trichlorophenol
and pentachlorophenol (PCP, the widely-used wood preservative) have been classified as
priority pollutants by the U.S. Environmental Protection Agency (US-EPA) [12]. PCP was
also classified as a group I human carcinogen by the International Agency for Research on
Cancer (IARC) [13]. PCP is potentially carcinogenic to mammals. Hepatocellular carcino-
mas and hemangiosarcomas were observed from B6C3F1 mice under exposure to PCP [14].
In individuals with occupational exposure to PCP, malignant lymphoma and leukemia in
humans were also found to relate to PCP [15].
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1.2. The Detection of XAr

The widespread distribution and highly-toxic nature, together with the recalcitrant
and carcinogenic characteristics of these XAr, have raised public concerns about their
potential risks to human health and ecosystems [4,16–21]. Therefore, detecting and quanti-
fying these widespread polyhaloaromatic pollutants or pharmaceutics in the environment
is crucial. The traditional analytical methods used to detect XAr, such as UV−Vis spec-
trophotometry, high-performance liquid chromatography (HPLC) and gas chromatography
(GC) [22,23], usually have many shortcomings: such as low sensitivity, time-consuming,
requiring sample pretreatment, expensive apparatus and complicated operation. Therefore,
a sensitive, simple, low-cost and effective analytical method to detect and quantify the
ubiquitous XAr is urgently needed.

Chemiluminescence (CL) is well regarded as a kind of light emission from complicated
chemical reactions, during which high-energy excited-states can be generated and energy is
released [24–27]. Since the CL intensity depends on the rate of the chemical reactions, it can
be used to detect and quantify the specific compounds that determine the generation of CL
emission. For the CL-based analytical method, which exhibits the excellent properties of
relatively simple, rapid, sensitive, without complicated pretreatment [28], has been widely
used as the analytical method in environmental analysis, clinical diagnosis and food safety
monitoring [29–31]. So if the CL analytical method can be successfully applied to detect
and quantify the highly-toxic XAr, it will be significant for the degradation and pollution
control of these persistent and recalcitrant substances.

1.3. The Degradation and Treatment of XAr

A variety of methods and technologies have been used to degrade and treat recalcitrant
XAr in the environment, including enzymatic biodegradation, physical adsorption and
chemically advanced oxidation. Among them, advanced oxidation processes (AOPs)
have been considered to be the most widely-used means for degrading and treating XAr,
mainly because they are highly-effective and environmentally green [2,32,33]. Several
alternative AOPs, such as Fenton and Fenton-like oxidation [17,34], UV-photolysis [35], and
ozonation [36], have also been developed to effectively degrade and treat the recalcitrant
XAr. In these green AOP systems, the most reactive intermediate for degradation is the
strong oxidative radical species hydroxyl radical (•OH) [32].

1.4. Unprecedented •OH Generation and CL Emission Can Be Produced from H2O2 and
Polyhaloquinones, the Carcinogenic Metabolites of XAr

The most well-known pathway for •OH generation is through the classic Fenton
or Fenton-like reactions mediated by reactive transition metal ions [37,38]. We recently
found an unprecedented metal-independent •OH-generating system: polyhaloquinones
and H2O2, and the molecular mechanism of typical nucleophilic substitution coupling with
homolytic decomposition for •OH generation was proposed [3,39–47]. More interestingly,
an unexpected intrinsic CL emission can also be produced in this novel •OH-generating
system, which was found to be specifically dependent on •OH production [44,48–51]. Tak-
ing the reaction of tetrachloro-1,4-benzoquinone (TCBQ, a carcinogenic quinone metabolite
of PCP) with H2O2 as an example, a typical two-step CL emission can be clearly observed,
which is directly dependent on the two-step generating processes of •OH [44]. Moreover,
not only for TCBQ, but also for other polyhaloquinones, such as other chloroquinones, flu-
oroquinones, bromoquinones and halonaphthoquinones, similar intrinsic •OH-dependent
CL was produced. These results revealed an unprecedented •OH-generating and CL-
producing system: polyhaloquinones (XQs) and H2O2.

1.5. The Goal of This Paper

It has been previously known that a variety of XAr, such as PCP, can be chemically-
degraded into haloquinones during the AOPs with the generation and involvement of
•OH [17–19,52–54]. Then we wonder whether •OH-dependent CL emission can also be
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generated in the degradation of PCP mediated by these AOPs. In addition, as one of
the important final products of TCBQ after the interaction with H2O2, 2,5-dichloro-3,6-
dihydroxyl-1,4-benzoquinone (DDBQ, an inert halohydroxyl quinoid compound) would
not react with H2O2 to generate •OH and produce CL [44], but it is not clear whether
the addition of extra •OH will induce the production of CL emission. Therefore, in order
to answer the above questions, the following issues were addressed in a series of our
recent studies: (1) Can intrinsic CL be generated from the degradation of precursors XAr
(such as PCP and other chlorophenols) mediated by AOPs involving •OH-generation?
(2) If so, what is the potential molecular mechanism for the CL emission, and is there any
potential structure−activity relationship (SAR) between CL emission and the structures of
XAr? (3) Do •OH-generating systems induce the inert halohydroxyl quinoid compounds
to generate CL? (4) If so, what is the role of the typical bidentate coordination sites on
the structures of halohydroxyl quinoid compounds, and is the CL generated from them
different to that from other XAr? (5) Can we develop a sensitive and selective CL-based
analytical method for the detection and quantification of XAr? (6) What are the potential
chemical and environmental implications?

2. Chemiluminescence-Based Analytical Methods Induced by Fe(II)-Fenton System
for the Detection of XAr
2.1. Intrinsic •OH-Dependent CL Emission Can Be Generated from the Degradation of the Priority
Pollutant PCP in Fe(II)-Fenton System

We have previously known that the reaction between TCBQ and H2O2 could unex-
pectedly produce highly-reactive •OH and specific •OH-dependent CL [44]. Moreover,
PCP could be chemically degraded and converted to TCBQ in the classic •OH-generating
Fe(II)-Fenton system [52,54]. Then, we wanted to know whether CL could be generated
in the PCP degradation process mediated by AOPs composed of the classic Fe(II)-Fenton
system. As expected, neither •OH nor CL emission was detected when incubating PCP
with H2O2, whereas a remarkable CL emission (510−580 nm) was generated when extra
•OH was introduced by adding Fe(II)-EDTA (Fe(II)-ethylenediamine tetraacetic acid, a
classic Fenton reagent) (Figure 1A), indicating that the degradation of PCP mediated by
•OH-generating Fe(II)-Fenton system indeed produce intrinsic CL emissions [48].

Interestingly, similar to the CL generated from TCBQ/H2O2, the CL derived from
PCP/Fe(II)-Fenton system was also directly dependent on •OH generation, as shown
by the following line of evidence [48]: (1) The CL emission from the PCP/Fe(II)-Fenton
system was significantly inhibited by dimethyl sulfoxide (DMSO), a typical •OH scavenger
(Figure 1B); (2) both the yields of •OH and the intensity of CL emission increased with
the increasing dosage of Fenton reagents; (3) CL was also produced from the other widely
known •OH-generating Fenton agent Fe(II)-NTA (nitrilotriacetic acid) [55], and a good
correlation was observed between the CL emission and the kinetics of •OH formation.

Previous studies have reported that the degradation of chlorophenol could produce
chloroquinone as intermediates [52,54]. Considering that obvious CL could be gener-
ated from the interaction of TCBQ (or other haloquinones) with H2O2, we hypothesized
that the critical species initiating the CL emission from PCP/Fe(II)-Fenton system might
be such chloroquinone intermediates. As expected, five transient chloroquinone inter-
mediates were identified (Figure 1C,D), they were TCBQ, tetrachloro-1,4-hydroquinone
(TCHQ), tetrachloro-1,2-hydroquinone (tetrachlorocatechol, TCC), trichlorohydroxyl-1,4-
benzoquine (TrCBQ-OH) and 2,5-dichloro-3,6-dihydroxyl-1,4-benzoquinone (DDBQ) [48].
It should be noted that besides DDBQ, the other four chloroquinones could undergo inter-
actions with H2O2 to generate CL, and the addition of an extra •OH-generating Fenton
reagent can markedly enhance CL emission. These results verify that the CL production
from PCP/Fe(II)-Fenton systems is originated from the generation of chloroquinones.

On the basis of our previously discovered mechanism for CL generation from the
TCBQ/H2O2 system [44], and together with the above findings, we proposed the underly-
ing molecular mechanism for •OH-dependent CL emission from the degradation of PCP
mediated by the classic •OH-generating Fe(II)-Fenton system (Scheme 1) [48]:
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Figure 1. Intrinsic •OH-dependent CL was generated from PCP degradation mediated by Fe(II)-
Fenton system, during which chloroquinones were formed as the critical intermediates [48].
(A) Intrinsic CL emission was produced by PCP/Fe(II)-Fenton system; (B) •OH scavenger DMSO
can markedly inhibit CL emission; (C,D) several chloroquinone intermediates were generated from
PCP during the CL emission. The CL measurement (A,B) was conducted through an ultraweak CL
analyzer, with the CL signal recorded at a time interval of 0.1 s. Both the instant CL intensity and
the intensity of total CL emission were recorded. The separation and identification of chloroquinone
intermediates (C,D) generated from PCP degradation was conducted by HPLC analysis. For detailed
experimental procedure, please refer to our previous study [48]. Fe(II)-EDTA, 1mM; H2O2, 100 mM.
For (A,B) PCP, 20 µM; for (C,D) PCP, 1 mM. Copyright © 2015, American Chemical Society.
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Scheme 1. The molecular mechanism for the unexpected •OH-dependent CL emission from the
degradation of PCP mediated by Fe(II)-Fenton system [48]. The classic Fenton system could produce
large amounts of reactive •OH, which further attacks PCP via electrophilic addition and/or electron
transfer pathways, forming pentachlorophenoxyl radical and tetrachlorosemiquinone radicals. The
latter radicals then convert to tetrachloroquinones, which further react with H2O2 to produce high-
energy quinone-1,2-dioxetanes, and finally emit the intrinsic •OH-dependent CL as reported before.
Copyright © 2015, American Chemical Society.
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Since remarkable CL emission can be unambiguously generated from PCP/Fe(II)-
Fenton system and increasing the concentration of Fenton reagents can enhance CL, these
suggest that it is possible to develop an undiscovered novel CL-based analytical method for
the detection and quantification of PCP. Further studies proved it was indeed the case [48]:
the unique CL-generating property of PCP was used to develop a novel analytical method
for detecting and measuring trace amounts of PCP, and it was found that the LOD (limit
of detection) value was 1.8 ppb and the linear range (LR) was 2.6–18,620 ppb for PCP as
detected by this CL method. Both the LOD and LR values are lower than the concentration
of PCP (40 ppb) in the body fluids of people under non-occupational exposure, and much
lower than PCP (19,580 ppb) concentration under occupational exposure [3]. Interestingly,
the kinetics of CL emission was found to correlate well with the kinetics of PCP degradation:
when PCP degradation achieved the maximum, CL emission was no longer observed
(Figure 2). These results indicate that this novel CL-based analytical method could also be
used to monitor the degradation kinetics of PCP.
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Figure 2. The CL emission from PCP/Fenton system correlated well with PCP degradation [48].
The CL emission was measured by an ultraweak CL analyzer, with the CL signal recorded at a time
interval of 0.1s. The kinetics of PCP degradation was monitored by HPLC analysis. For detailed
experimental procedure, please refer to our previous study [48]. PCP, 1 mM; Fe(II)−EDTA, 3 mM;
H2O2, 300 mM. Copyright © 2015, American Chemical Society.

2.2. Analogous •OH-Dependent CL Emission from the Degradation of All 19 Chlorophenols and
the Underlying Structure−Activity Relationship

The above findings that remarkable CL emission can be produced from the PCP/Fe(II)-
Fenton system suggest that CL may also be generated from the interactions of other
chlorophenols (CPs) with the classic Fe(II)-Fenton system. If so, there might be a close
relationship between the CP structures and their abilities to generate CL. As expected, sim-
ilar •OH-dependent intrinsic CL could also be generated from the other 18 CPs (Figure 3).
The intensity of CL emission induced by CPs was strongly dependent on both chlorina-
tion level and chlorine substitution position. An obvious SAR between CPs structures
and CL emission was observed [48–50]: (1) In general, as the chlorination level increases,
the intensity of CL emission increases; (2) for CPs congeners, the CL increased in the
order of para- < ortho- < meta-chlorine substitution with respect to the −OH group of
CPs. For example, 2,5-dichlorophenol (DCP), 2,3,5-trichlorophenol (TCP) and 2,3,5,6-
tetrachlorophenol (TeCP) generated the strongest CL emission among all the DCPs, TCPs
and TeCPs congeners, respectively.

Actually, the properties that CL could be generated from all nineteen CPs in Fe(II)-
Fenton system were also used to detect and quantify these ubiquitous CPs. As shown in
Table 1, for those CPs that could produce an obvious CL emission, the LOD value could
reach as low as 0.007 µM by this highly-sensitive CL analytical method.
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mediated AOPs also generated chloroquinones as the major intermediates, they were 
chloro-1,4-benzoquinones (CBQs), chloro-1,4-hydroquinones (CHQs) and chloro-1,2-hy-
droquinones (also called chlorocatechols, CCs) [49,50]. Moreover, we have previously 
known that, all the above chloroquinones could react with H2O2 to produce CL, and the 
addition of Fenton reagent can markedly enhance CL emission [48]. In the studies on CL 
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Copyright © 2015, American Chemical Society.

Table 1. The limit of detection (LOD) and linear range (LR) for the quantification of CPs by the novel
CL-based analytical method mediated by Fe(II)-Fenton system [49,50]. Copyright © 2017, American
Chemical Society. Copyright © 2016, with permission from Springer Nature.

CPs LOD (µM) LR (µM)

2,3,4-TCP 0.3 0.3~100
2,4,6-TCP 0.3 0.3~100
3,4,5-TCP 0.07 0.1~100
2,4,5-TCP 0.01 0.03~100
2,3,6-TCP 0.07 0.07~100
2,3,5-TCP 0.003 0.007~100

2,3,4,6-TeCP 0.01 0.03~100
2,3,4,5-TeCP 0.01 0.03~100
2,3,5,6-TeCP 0.007 0.01~100

PCP 0.007 0.01~100

Similar to the degradation of PCP, the degradation of other CPs by Fenton system-
mediated AOPs also generated chloroquinones as the major intermediates, they were
chloro-1,4-benzoquinones (CBQs), chloro-1,4-hydroquinones (CHQs) and chloro-1,2-
hydroquinones (also called chlorocatechols, CCs) [49,50]. Moreover, we have previously
known that, all the above chloroquinones could react with H2O2 to produce CL, and the
addition of Fenton reagent can markedly enhance CL emission [48]. In the studies on CL
emission from all the nineteen CPs, CL emission of CPs was found to primarily depend
on the yields and types of the corresponding chloroquinone intermediates generated from
CPs [49,50]: a good relationship was observed between the CL intensity of CPs and the total
yields of corresponding CBQs/CHQs and TCC/3,4,6-TCC (tetrachlorocatechol and 3,4,6-
trichlorocatechol, the two CCs which emit stronger CL) (Figure 4A,B). More interestingly,
not only chloroquinone intermediates, but chlorosemiquinone radicals (CSQs•) were also
produced during the CL emission of CPs in Fenton-like systems, and the types and yields
of which were also in good agreement with the emission of CL and the generation of
chloroquinone intermediates (Figure 4).
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Figure 4. The intensity of CL emission from CPs correlated well with the total yields of the formation
of corresponding chloroquinone intermediates and chlorosemiquinone radicals (taking PCP and
three TeCPs for example) [50]. (A) The intensity of CL emission; (B) the total yields of CHQs/CBQs
and CCs; (C,D) the yields of chlorosemiquinones measured by ESR (C) and UV−Vis method (D).
The CL emission (A) was measured by an ultraweak CL analyzer, and the intensity of total CL
emission was recorded. The maximum yields of chloroquinone intermediates (B) were measured by
HPLC analysis. The maximum yields of CSQs• were measured by both monitoring the ESR signal of
CSQs• through ESR analysis (D) and observing the typical UV−visible spectra of CSQs• through
UV−visible analysis. For detailed experimental procedure, please refer to our previous study [50].
For (A), CPs, 30 µM; H2O2, 100 mM; Fe(II)-EDTA, 1 mM. For (B), CPs, 1 mM; H2O2, 1 mM; Fe(II)-
EDTA, 3 mM. For (C,D), CPs, 0.5 mM; H2O2, 0.5 mM; Fe(II)-EDTA, 1.5 mM. Copyright © 2016, with
permission from Springer Nature. In the tests of acute toxicity to Photobacterium phosphoreum, a good
relationship was observed between the chemical structures of 19 CPs and their acute toxicity [49,50]:
(1) The higher the level of chlorine substitution, the stronger the toxicity of CPs; (2) for CPs congeners,
their toxicity increased in the order of non- < mono- < di-ortho position-chlorophenols. Moreover,
the rules for the relationship between the CPs structures and their degradation rates during •OH-
generating AOPs have been reported [56–58], which were listed as follows: (1) The higher the level of
chlorine substitution, the slower the degradation rate of CPs; (2) for CPs congeners, the degradation
rate decreased in the order of 3-/5- > 2-/4-/6-chlorine substitution CPs.

In summary, based on the above results, together with the previously reported studies
on SAR [56,57,59,60], we found good correlations between the CP structures and their
chemical activities (CL emission, toxicity and degradation rate) as following listed [49,50]:
(1) The higher the level of chlorine substitution for CPs, stronger CL emission, higher
toxicity and slower degradation could be observed; (2) for CPs congeners, CPs with
position-3 or -5 chlorine substitution show stronger CL emission, higher toxicity and faster
degradation; while those CPs congeners with position-6 chlorine substitution show much
weak CL emission, lower toxicity, and slower degradation. These findings may suggest
that, utilizing the distinct CL-generating property of CPs induced by classic Fe(II)-Fenton
system, a novel CL-based method can be developed, to not only detect and quantify
trace amounts of CPs in pure or real samples, but also provide valuable information for
evaluating the toxicity or degradation rate of CPs.
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2.3. Similar to Chlorophenols, Other Classes of XAr Could Also Generate •OH-Dependent
Intrinsic CL Emission in the Degradation Mediated by Fe(II)-Fenton System

It should be noted that during the AOPs mediated by the •OH-generating Fe(II)-
Fenton system, besides PCP and the other eighteen chlorophenols, similar •OH-dependent
intrinsic CL was also generated from other halophenols and several other classes of XAr.
These compounds include (Figure 5) [48]: other halophenols such as pentafluorophenol
(PFP), 2,4,6-tribromophenol (2,4,6-TBP), the flame retardant 3,3′,5,5′-tetrabromobisphenol
A (TBBPA), and the broad-spectrum antibacterial agent triclosan (TCS); halogenated naph-
thoquinone pesticides such as 2,3-dichloro-1,4-naphthoquinone (2,3-DCNQ); chlorophe-
noxyacetic acid herbicides such as the notorious 2,4,5-trichlorophenoxyacetic acid (2,4,5-T),
one important component of Agent Orange; halogenated benzene biocides such as pen-
tachlorobenzene (PCB); iodinated pharmaceuticals such as triiodothyronine (T3); These
results indicate that most or even all XAr can generate •OH-dependent CL in the degra-
dation mediated by the Fe(II)-Fenton system. Moreover, similar CL spectra were also
observed from these XAr, which were found to be attributed to the analogous molecular
mechanism and similarity in structures of light-emitting species.
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Figure 5. Similar •OH-dependent intrinsic CL were also produced from the degradation of several
typical XAr in classic Fe(II)-Fenton system [48]. The CL emission was measured by an ultraweak CL
analyzer, with the CL signal recorded at a time interval of 0.1 s. PFP, 2,4,6-TBP, TBBPA, TCS, 2,4,5-T
and PCB, 30 µM; 2,3-DCNQ, 30 µM; T3, 3 µM; Fe(II)–EDTA, 1 mM; H2O2, 100 mM. Copyright © 2015,
American Chemical Society.

Similarly, based on the CL emission properties of XAr, we developed a novel and
sensitive CL analytical method to detect and quantify these ubiquitous XAr. As anticipated,
we successfully detected and quantified traces of several typical XAr, including PFP, 2,4,6-
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TBP, TBBPA, TCS, 2,3-DCNQ, 2,4,5-T, PCB and T3. For example, using this novel CL
analytical method, we can directly detect concentrations as low as 0.03 µM for TCS, 0.07 µM
for TBBPA, and 0.03 µM for T3 (Table 2) [48].

Table 2. The limit of detection (LOD) and linear range (LR) for the quantification of CPs by the novel
CL-based analytical method mediated by Fe(II)-Fenton system [48]. Copyright © 2015, American
Chemical Society.

XAr LOD (µM) LR (µM)

PCP 0.01~70 0.007
TCS 0.07~30 0.03

TBBPA 0.1~10 0.07
2,3-DCNQ 0.1~100 0.07

PCB 0.1~10 0.07
PCB 0.1~10 0.07
T3 0.03~1 0.03

More importantly, this novel CL analytical method based on Fe(II)-Fenton system has
been utilized to evaluate and detect whether XAr is contained in an actual environmental
sample, the discharge from a paper mill [48]. As anticipated, obvious CL emission could
be generated from the discharge of paper mill in the presence of Fenton agent, and further
analysis suggested that the discharge contained 2,4-dichlorophenol and 4-chlorophenol.
Furthermore, this newly-developed CL-based analytical method can also be used for
monitoring the degradation kinetics of XAr in their treatment mediated by AOPs. In
the PCP/Fe(II)-Fenton system, the kinetics of CL emission correlated well with the ki-
netics of PCP degradation [48]: the profiles of CL emission coincided with the kinetic
curves of PCP degradation, and no further CL emission could be generated when PCP
degradation finished.

3. Chemiluminescence-Based Analytical Methods Induced by Co(II)-Fenton-Like
System for the Detection of XAr
3.1. Distinct Intrinsic CL Emission in the Degradation of Halohydroxyl Quinoid Compounds
by Co(II)-Fenton-Like System: Markedly Different from the CL Produced by Classic
Fe(II)-Fenton System

As mentioned in the Introduction, unexpected •OH-dependent intrinsic CL could be
generated from TCBQ/H2O2, with DDBQ formed as an important final product, whereas
neither •OH nor CL could be generated by DDBQ and H2O2 [44]. However, it was
unexpectedly discovered that a remarkable CL emission could be induced by adding
some redox-active transition metal ions like Fe(II) and cobalt(II) (Co(II)), particularly for
Co(II), which induced a much stronger CL emission than Fe(II) (Figure 6A,B) [51]. These
results suggest that not only the key reactive oxygen species (ROS) intermediates for CL
emission, but also the underlying molecular mechanism of the unexpected strong CL
emission from DDBQ in Co(II)-Fenton-like system might be different from the CL in the
classic Fe(II)-Fenton system.

It should be noted that, in the Co(II)-Fenton-like system, similar CL emissions were
also observed when substituting DDBQ with other halohydroxyl quinones such as 2,5-
dibromo-3,6-dihydroxyl-1,4-benzoquinone, chlorocatechols such as 3-chlorocatechol, 3,4-
dichlorocatechol, 3,4,6-trichlorocatechol, 3,4,5-trichlorocatechol and tetrachlorocatechol (the
latter two are typical effluents from bleached kraft pulp mills [61]), and other halocatechols
such as tetrabromocatechol and tetrafluorocatechol (Figure 7A,B) [51].
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3.2. Site Specifically Produced •OH, but Not Free •OH Is Responsible for the CL Production of
Halohydroxyl Quinoid Compounds Induced by Co(II)-Fenton-Like System

We have previously known that the generation of free •OH was critical for CL gen-
eration by TCBQ (the precursor of DDBQ) and H2O2, and adding •OH scavenger could
markedly inhibit CL emission [44]. However, we found it is not the case for the CL induced
by DDBQ in Co(II)-Fenton-like system: CL emission was slightly inhibited by adding
DMSO (Figure 6C). This strongly indicates that free •OH is not responsible for the CL
emission induced by DDBQ in the Co(II)-Fenton like system.

However, although free •OH may not be involved in CL emission from the DDBQ/
Co(II)-Fenton-like system, •OH generation was also detected and confirmed [51]. A rel-
atively weak ESR signal of DMPO/•OH was observed from the CL reaction of DDBQ
with the Co(II)-Fenton-like system, and adding DMSO could diminish the ESR signal
of DMPO/•OH with the concurrent generation of the secondary radical DMPO/•CH3,
indicating •OH was indeed produced. It should be noted that the signal of secondary
radical DMPO/•CH3 was still relative weak even after the added DMSO completely di-
minished the signal of DMPO/•OH. However, for •OH production in the CL reaction of
DDBQ with the classic free •OH-generating Fe(II)-Fenton system, the DMPO/•OH signal
could be markedly diminished by adding DMSO, with the concurrent generation of the
strong secondary radical DMPO/•CH3. In addition, for the kinetics of •OH formation,
adding DMSO only partly inhibited •OH generation from the CL reaction of DDBQ in
the Co(II)-Fenton-like system, whereas it markedly inhibited •OH generation in the clas-
sic Fe(II)-Fenton system (Figure 6C,D). These results suggest that for the CL reaction of
DDBQ with the Co(II)-Fenton-like system, •OH might be generated as the site specifically
produced •OH, but not the free •OH.
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Figure 7. Analogous •OH-dependent CL emission were also generated from halocatechols with the typical Co(II)-Fenton-
like system, which can be utilized to quantify trace amount of halocatechols and DDBQ [51]. (A) The structure of several
halocatechols; (B) the total CL intensity for these halocatechols; (C,D) CL emission of 3,4,6-TrCC and TCC; (E) the LOD and
LR for the quantification of DDBQ, 3,4,6-TrCC and TCC by the distinct CL analytical method mediated by Co(II)-Fenton-like
system. The CL emission was measured by an ultraweak CL analyzer, and both the instant CL intensity and the intensity of
total CL emission were recorded. For (B), Halocatechols, 10 µM; Co(II), 0.05 mM; H2O2, 100 mM; For (C,D), Co(II), 0.5 mM;
H2O2, 100 mM. Copyright 2020, with permission from Elsevier.

Interestingly, besides the site specifically produced •OH, other ROS, such as O2
•−

and 1O2, were also generated from the CL reaction of DDBQ with the Co(II)-Fenton-like
system [51]. The ROS intermediates from this distinct CL reaction of DDBQ with the Co(II)-
Fenton-like system was significantly distinct from the CL reaction by TCBQ/H2O2 and the
CL reaction induced by the classic Fe(II)-Fenton system mentioned above. Based on these
results, we further varied the molar ratio of DDBQ:Co(II) to investigate the correlations
between ROS production and CL emission, and to confirm which ROS is crucial for the
generation of CL emission. As expected, not only the CL emission, but also the types and
yields of ROS were significantly affected by changing the ratio of DDBQ:Co(II).

For the role of O2
•−, it seems that O2

•− is not responsible for the CL generation from
DDBQ in Co(II)-Fenton-like system [51]. O2

•− generation was hardly affected by changing
the ratio of DDBQ:Co(II), suggesting that O2

•− is not the crucial ROS responsible for CL
emission. Moreover, we also found that 1O2 is not critical for initiating CL emission [51].
Although 1O2 production could be enhanced by adding DDBQ, and large quantity of 1O2
can be produced, most 1O2 was generated only in the later stage. No matter how the ratio
of DDBQ:Co(II) was varied, almost no 1O2 was generated in the early stage, whereas CL
emission had been generated in this stage.

However, for the role of •OH, a close relationship between •OH generation and DDBQ
degradation was clearly observed: the higher the concentration of DDBQ, the lower the
yields of •OH generation. Moreover, the degradation of DDBQ also correlated well with
CL emission: the process of generating CL emission was accompanied by the degradation
of DDBQ, and when DDBQ degradation achieved the maximum, no further CL emission
can be observed. These results indicate that CL emission is closely related to and probably
dependent on the generation of site specifically produced •OH. More interestingly, different
from the results observed in the classic Fe(II)-Fenton system, the inhibitory effect of DMSO
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on the kinetics of both CL emission and •OH generation were relatively weak in Co(II)-
Fenton-like system (Figure 6C,D). These results further confirmed that CL generation from
the DDBQ/Co(II)-Fenton-like system is indeed dependent on site specifically produced
•OH, but not free •OH, O2

•− and 1O2 [51]. In other words, the site specifically produced
•OH might be the initiating ROS for CL emission.

3.3. The Molecular Mechanism for the Site-Specific •OH-Dependent CL Emission of Halohydroxyl
Quinoid Compounds in Co(II)-Fenton-Like System

Then the questions are how to generate site-specific •OH and how to induce the
intrinsic CL emission of halohydroxyl quinoid compounds such as DDBQ? The further
investigation indicated that during the CL reaction of DDBQ with Co(II)-Fenton-like
system, Co(II) could combine with DDBQ to form a Co(II)-DDBQ complex through the
active bidentate coordinate sites -C(O)C(OH) [62,63], and then the attack by H2O2 may
result in the generation of site-specific •OH at the coordinates sites, which then induce the
degradation of DDBQ and the concurrent CL emission [51].

In order to better clarify the molecular mechanism for the distinct CL emission from
DDBQ in the Co(II)-Fenton like system, the conversion of Co(II) was investigated in detail.
As anticipated, we further found that Co(II) was transformed to Co(III) on the basis of
UV−Vis analysis on the production of the Co(III)-complex [64] and the XPS analysis [65,66]
on the binding energy of Co for the samples before or after reaction. On the basis of
all the above findings and our previous results, we proposed the underlying molecular
mechanism for the distinct site-specific •OH-dependent CL emission from the degradation
of DDBQ mediated by Co(II)-Fenton-like system (Scheme 2) [51]:
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Scheme 2. The potential molecular mechanism for the unexpectedly strong CL emission from DDBQ/Co(II)-Fenton-like
system mainly depends on site specifically produced •OH [51]. Copyright 2020, with permission from Elsevier.

3.4. Highly-Sensitive CL-Based Analytical Method for the Detection of Halohydroxyl Quinoid
Compounds on the Basis of Co(II)-Fenton-Like System

As mentioned above, the CL intensity of DDBQ in Co(II)-Fenton-like system is
markedly stronger than that in classic Fe(II)-Fenton system. Therefore, this distinct CL-
generating property of DDBQ induced by Co(II)-Fenton-like system might be utilized to
measure and quantify trace amounts of DDBQ, and to monitor the degradation of DDBQ as
well. Indeed, by using this novel CL-based analytical method, the LR for the quantitative
detection of DDBQ is 3–1000 nM, and the LOD value is as low as 1 nM [51], which is
much lower than the LOD value (0.5 µM) of DDBQ by using the reported traditional HPLC
method. Compared with the traditional analytical methods, such as HPLC [67] on the
detection of DDBQ, this novel CL-based analytical method exhibits a series of advantages,
such as being relatively simple, rapid, sensitive, and without a complicated pretreatment
process. Moreover, the kinetics of CL emission was in good agreement with the kinetics
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of DDBQ degradation: CL can be produced during DDBQ degradation, and when DDBQ
was completely degraded, CL emission was no longer observed (Figure 8B). Interestingly,
we found that the efficiency for DDBQ degradation mediated by the Co(II)-Fenton-like
system was much higher than the classic Fe(II)-Fenton system (Figure 8A) [51], possibly
due to the site-specific •OH, which can be effectively used to degrade adjacent DDBQ,
that was produced in the former system, whereas free •OH was produced in the latter
system. These results indicate that in the treatment or degradation of those pollutants with
structures containing bidentate coordination sites that can typically bind with transition
metal ions, the technology consisting of AOPs mediated by the Co(II)-Fenton-like system
may degrade target pollutants more effectively, because the degradation occurring site
specifically exhibits a higher efficiency.
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Figure 8. (A) The degradation of DDBQ in Co(II)-Fenton-like system was more effective than that in the classic Fe(II)-Fenton
system, and (B) good correlation can be observed between CL emission and DDBQ degradation in Co(II)-Fenton-like
system [51]. The kinetics of DDBQ degradation (A,B) was monitored by HPLC analysis. The CL emission (B) was measured
by an ultraweak CL analyzer, with the CL signal recorded at a time interval of 0.1s. DDBQ, 3 mM; transition metal ions,
3 mM; H2O2, 300 mM. Copyright 2020, with permission from Elsevier.

More importantly, as mentioned in Section 3.1., in the Co(II)-Fenton-like system, typi-
cally strong CL emission can be produced from halocatechols. All the above halocatechols
have a similar bidentate coordinated site(-C(OH)C(OH)), which can well coordinate with
transition metal ions such as Co(II). Similarly, compared with Fe(II)-Fenton system, these
halocatechols in the Co(II)-Fenton-like system produced significantly stronger CL emis-
sions. Interestingly, the distinct CL analytical method based on the Co(II)-Fenton-like
system can also be applied to detect and quantify halocatechols. By utilizing this unique
CL-based method, the LOD values for 3,4,6-trichlorocatechol and tetrachlorocatechol can
reach as low as 3 nM and 10 nM, respectively, [51] (Figure 7C–E). These results, together
with above findings on the measurement of DDBQ, indicate that this novel CL analytical
method based on the Co(II)-Fenton-like system can be applied to detect and quantify
DDBQ (or its analogues), halocatechols and other halohydroxyl quinoid compounds.

4. The Advantages and Challenges of the Typical CL-Based Analytic Methods for the
Detection of XAr in their Environmental Applications

Compared with the traditional methods for the detection and quantification of XAr,
the novel CL-based analytical method mediated by the Fe(II)-Fenton or Co(II)-Fenton-like
system displayed a series of advantages: (1) It is relatively selective. Obvious CL emission
can be produced from samples containing XAr, whereas no CL can be observed from
samples that do not contain XAr. (2) It is extremely sensitive. Both the LOD and LR values
for the quantification of XAr by this CL-based method are lower than the values obtained
from traditional analytical methods. (3) It is simple, fast and low-cost. This CL-based
method is easy to operate, without expensive apparatus and complicated pretreatment.

However, this CL-based analytical method for the detection of XAr also faces potential
challenges during its environmental applications. It can only evaluate whether a sample
contains XAr, but cannot accurately identify the specific kind of XAr. In order to unambigu-
ously identify the XAr contained in the sample, the CL-based method needs to be combined
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with other qualitatively analytical methods. Moreover, the organic pollutants that can be
detected by this novel CL analytical method are limited: it can detect and measure only
those halocompounds with aromatic structures, but not the non-halogenated aromatic
compounds and haloaliphatic compounds. Therefore, it is necessary to develop a more
efficient and sensitive CL-producing system based on this typical CL analytical method of
XAr, to detect and quantify more environment pollutants. These would be addressed in
our future studies.

5. Conclusions

On the basis of the above series of studies, we have made important progress in the
research of CL emission generated from the degradation of ubiquitous XAr mediated by
AOPs, which have broad chemical and environmental implications.

We found that the degradation of highly-toxic PCP in AOPs mediated by the clas-
sic Fe(II)-Fenton system can unprecedentedly produce intrinsic CL emission, specifically
dependent on the generation of free •OH. Interestingly, besides PCP, all nineteen chlorophe-
nols can be induced to generate •OH-dependent intrinsic CL by the classic Fe(II)-Fenton
system, and the underlying SAR for CL of these chlorophenols was revealed: (1) In general,
the CL emission increased with the increase of chlorination level; (2) for CP congeners,
the CL emission decreased in the following order of 3-/5- > 2-/4-/6-chlorine substitution
CPs; (3) the CL intensity for each CP was determined by the types and the total yields
of corresponding chloroquinone intermediates and semiquinone radicals. Additionally,
several kinds of XAr, including the broad-spectrum antibacterial agent triclosan, the flame
retardant TBBPA, the widely used herbicides 2,4,5-T, and iodinated pharmaceuticals T3,
were capable of generating similar •OH-dependent CL. Based on these results, a novel and
sensitive CL analytical method was developed, which can not only detect and quantify
these ubiquitous XAr, but also monitor their degradation kinetics, and provide useful
information for evaluating their toxicity to organisms and degradation rate.

However, for those XAr with structures containing the group of bidentate coordination
sites, such as halohydroxyl quinone and halocatechol, the degradation of which in AOPs
mediated by the distinct Co(II)-Fenton-like system would generate significant CL emission,
much stronger than that generated in the classic Fe(II)-Fenton system, which was found to
be attributed to the site-specific generation of reactive •OH. Consequently, a more sensitive
CL analytical method via the Co(II)-Fenton-like system was developed to detect and
quantify halohydroxyl quinoid compounds or those compounds with similar structures,
and monitor their degradation kinetics. Moreover, the AOPs consisting of the typical Co(II)-
Fenton-like system can be effectively used to selectively degrade and treat halohydroxyl
quinoid compounds, and this is because these compounds can bind with Co(II) to site-
specifically produce the highly-reactive •OH, which can be effectively used to degrade the
target pollutants.
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