Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants Material
2.2. Chemicals and Reagents
2.3. For the Enzymatic Inhibition Assay
2.4. Extraction
2.5. Phytochemical Screening
2.6. Decaffeination of Coffee Extract
2.7. Determination of Caffeine and Chlorogenic Acid Levels
2.8. Neuraminidase Activity
3. Results and Discussion
3.1. Extraction
3.2. Phytochemical Screening
3.3. Decaffeination and Determination of Caffeine Using HPLC
3.4. Determination of Chlorogenic Acid Using HPLC
3.5. Neuraminidase Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahmanulloh, A. Indonesi: Coffee Annual Report. USDA: Foreign Agriculture Service. Available online: https://www.fas.usda.gov/data/indonesia-coffee-annual-4 (accessed on 3 June 2020).
- Hartono, H. The Third Largest Indonesian Coffee Production in the World. Available online: http://www.kemenperin.go.id/artikel/6611/Produksi-Kopi-Nusantara-Ketiga-Terbesar-Di-Dunia (accessed on 3 April 2020).
- Kwok, M.K.; Leung, G.M.; Schooling, C.M. Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer’s disease: A Mendelian randomization study. Sci. Rep. 2016, 6, 36500. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [Green Version]
- Salomone, F.; Galvano, F.; Li Volti, G. Molecular Bases Underlying the Hepatoprotective Effects of Coffee. Nutrients 2017, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.A.; Farah, A.; Silva, D.A.; Nunan, E.A.; Gloria, M.B. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food Chem. 2006, 54, 8738–8743. [Google Scholar] [CrossRef]
- van Dam, R.M.; Hu, F.B. Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA 2005, 294, 97–104. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, M.N.; Willson, K.C. Coffee: Botany, Biochemistry, and Production of Beans and Beverage; Croom Helms: London, UK, 1985. [Google Scholar]
- Mazzafera, P. Mineral nutrition and caffeine content in coffee leaves. Bragantia 1999, 58, 387–391. [Google Scholar] [CrossRef]
- You, D.C.; Kim, Y.S.; Ha, A.W.; Lee, Y.N.; Kim, S.M.; Kim, C.H.; Lee, S.H.; Choi, D.; Lee, J.M. Possible health effects of caffeinated coffee consumption on Alzheimer’s disease and cardiovascular disease. Toxicol. Res. 2011, 27, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Perrois, C.; Strickler, S.R.; Mathieu, G.; Lepelley, M.; Bedon, L.; Michaux, S.; Husson, J.; Mueller, L.; Privat, I. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 2015, 241, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Liveina, L.; Artini, I. Pattern of Consumption and Side Effects of Caffeine Drinks on Students of Medical Education Program Faculty of Medicine Udayana University (in Bahasa). E J. Med. Udayana 2015, 3, 414–426. [Google Scholar]
- Dworzanski, W.; Opielak, G.; Burdan, F. Side effects of caffeine. Pol. Merkur. Lek. Organ Polskiego Tow. Lek. 2009, 27, 357–361. [Google Scholar]
- Lara, D.R. Caffeine, mental health, and psychiatric disorders. J. Alzheimer’s Dis. JAD 2010, 20 (Suppl. S1), S239–S248. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, X.Y.; Liu, G. Clinical effectiveness of different doses of caffeine for primary apnea in preterm infants. Zhonghua Er Ke Za Zhi Chin. J. Pediatr. 2016, 54, 33–36. [Google Scholar] [CrossRef]
- Al-Amin, M.; Kawasaki, I.; Gong, J.; Shim, Y.H. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans. Mol. Cells 2016, 39, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, M.R.; Landin, S.E.; Wilson, T. Effects of decaffeination process on the phenolic content and antioxidant capacity of brewed coffees. FASEB J. 2010, 24, 921.14. [Google Scholar]
- Jeszka-Skowron, M.; Sentkowska, A.; Pyrzyńska, K.; De Peña, M.P. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. Eur. Food Res. Technol. 2016, 242, 1403–1409. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; de Paulis, T.; Moreira, D.P.; Trugo, L.C.; Martin, P.R. Chlorogenic Acids and Lactones in Regular and Water-Decaffeinated Arabica Coffees. J. Agric. Food Chem. 2006, 54, 374–381. [Google Scholar] [CrossRef]
- Gamaleldin Elsadig Karar, M.; Matei, M.F.; Jaiswal, R.; Illenberger, S.; Kuhnert, N. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives—Potential antivirals from dietary sources. Food Funct. 2016, 7, 2052–2059. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017, 7, 45723. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Reddy, V.K.; Prashant, G.; Ojha, V.; Kumar, N.P. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study. J. Oral Maxillofac. Pathol. 2014, 18, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, N.R. Biological and Phytochemical Screening of Plants. J. Pharm. Sci. 1966, 55, 243–269. [Google Scholar] [CrossRef]
- Atomssa, T.; Gholap, A.V. Characterization of caffeine and determination of caffeine in tea leaves using uv-visible spectrometer. Afr. J. Pure Appl. Chem. 2011, 5, 1–8. [Google Scholar]
- Febrina Amelia, S.; Muchtaridi, M. Analytical method development and validation for the determination of caffeine in green coffee beans (Coffea arabica L.) from three districts of West Java, Indonesia by high performance liquid chromatography. Int. J. Appl. Pharm. 2018, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Ikram, N.K.K.; Durrant, J.D.; Muchtaridi, M.; Zalaludin, A.S.; Purwitasari, N.; Mohamed, N.; Rahim, A.S.A.; Lam, C.K.; Normi, Y.M.; Rahman, N.A.; et al. A Virtual Screening Approach for Identifying Plants with Anti H5N1 Neuraminidase Activity. J. Chem. Inf. Modeling 2015, 55, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Hariono, M.; Abdullah, N.; Damodaran, K.V.; Kamarulzaman, E.E.; Mohamed, N.; Hassan, S.S.; Shamsuddin, S.; Wahab, H.A. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay. Sci. Rep. 2016, 6, 38692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurt, A. Fluorometric Neuraminidase Inhibition Assay; WHO Collaborating Centre for Reference and Research on Influenza: Melbourne, Australia, 2007; pp. 1–10. [Google Scholar]
- Hameed, A.; Hussain, S.A.; Suleria, H.A.R. “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. In Co-Evolution of Secondary Metabolites; Merillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 1–67. [Google Scholar]
- Li, S.; Tian, M.; Row, K.H. Effect of mobile phase additives on the resolution of four bioactive compounds by RP-HPLC. Int. J. Mol. Sci. 2010, 11, 2229–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraji, M.; Yamini, Y.; Gholami, M. Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis. Chromatographia 2019, 82, 1207–1249. [Google Scholar] [CrossRef]
- Barrett, S.; Mohr, P.G.; Schmidt, P.M.; McKimm-Breschkin, J.L. Real Time Enzyme Inhibition Assays Provide Insights into Differences in Binding of Neuraminidase Inhibitors to Wild Type and Mutant Influenza Viruses. PLoS ONE 2011, 6, e23627. [Google Scholar] [CrossRef]
- Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Priftis, A.; Stagos, D.; Konstantinopoulos, K.; Tsitsimpikou, C.; Spandidos, D.A.; Tsatsakis, A.M.; Tzatzarakis, M.N.; Kouretas, D. Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol. Med. Rep. 2015, 12, 7293–7302. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.-X.; Liu, A.-L.; Wang, H.-D.; Wang, Y.-L.; Du, G.-H. Antioxidant, Anti-Inflammatory and Anti-Influenza Properties of Components from Chaenomeles speciosa. Molecules 2010, 15, 8507–8517. [Google Scholar] [CrossRef] [Green Version]
- Silvarolla, M.B.; Mazzafera, P.; de Lima, M.M.A. Caffeine content of Ethiopian Coffea arabica beans. Genet. Mol. Biol. 2000, 23, 213–215. [Google Scholar] [CrossRef]
- Mohammed, M.J.; Al-Bayati, F.A. Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: A combination antibacterial study. Int. J. Green Pharm. (IJGP) 2009, 3, 1. [Google Scholar]
- Narita, Y.; Inouye, K. Chapter 21—Chlorogenic Acids from Coffee. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 189–199. [Google Scholar] [CrossRef]
- Moon, J.K.; Yoo, H.S.; Shibamoto, T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef] [PubMed]
- Uchide, N.; Toyoda, H. Antioxidant Therapy as a Potential Approach to Severe Influenza-Associated Complications. Molecules 2011, 16, 2032–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchtaridi, M.; Bing, C.S.; Abdurrahim, A.S.; Wahab, H.A. Evidence of Combining Pharmacophore Modeling-Docking Simulation for Screening on Neuraminidase Inhibitors Activity of Natural Product Compounds. Asian J. Chem. 2014, 26, 26. [Google Scholar] [CrossRef]
- Luo, H.-J.; Wang, J.-Z.; Chen, J.-F.; Zou, K. Docking study on chlorogenic acid as a potential H5N1 influenza A virus neuraminidase inhibitor. Med. Chem. Res. 2011, 20, 554–557. [Google Scholar] [CrossRef]
Secondary Metabolites | Garut | Pangalengan | Tasikmalaya |
---|---|---|---|
Alkaloid | + | + | + |
Flavonoid | + | + | + |
Tannin | - | - | - |
Polyphenol | + | + | + |
Saponin | - | - | - |
Monoterpene and Sesquiterpene | + | + | + |
Triterpenoid | + | + | + |
Sample | Average AUC | Concentration (ppm) | % Level |
---|---|---|---|
Coffee Bean Samples from Garut | |||
Non decaffeinated | 77,794 ± 117 | 1163.56 ± 541.11 | 1.45 ± 0.05 |
decaffeinated one times | 14,293 ± 26 | 175.38 ± 374.46 | 0.22 ± 0.008 |
decaffeinated two times | 3829 ± 45 | 12.54 ± 042.32 | 0.016 ± 0.004 |
decaffeinated three times | 3025 ± 22 | 0.016 ± 0.005.52 | 0.00002 ± 0.00 |
Coffee Bean Samples from Pangalengan | |||
Not decaffeinated | 83,924 ± 136.67 | 1258.95 ± 45.21 | 1.57 ± 0.88 |
decaffeinated one times | 19,598 ± 177.48 | 257.92 ± 67.02 | 0.32 ± 0.05 |
decaffeinated two times | 8686 ± 660.96 | 88.12 ± 14.33 | 0.11 ± 0.02 |
decaffeinated three times | 55,716 ± 150.03 | 39.64 ± 11.54 | 0.049 ± 0.01 |
Coffee Bean Samples from Tasikmalaya | |||
Not decaffeinated | 120,244 ± 115.45 | 1824.16 ± 32.22 | 2.28 ± 0.05 |
decaffeinated one times | 26,606 ± 98.20 | 366.98 ± 43.14 | 0.46 ± 0.01 |
decaffeinated two times | 8292 ± 56.78 | 81.98 ± 13.08 | 0.10 ± 0.01 |
decaffeinated three times | 3523 ± 45.67 | 7.77 ± 09.01 | 0.097 ± 0.00 |
Chlorogenic Acid Level (ppm) | % Chlorogenic Acid | |||
---|---|---|---|---|
Sample * | Undecaffeinated | Decaffeinated 3× | Undecaffeinated | Decaffeinated 3× |
Garut | 565.95 ± 7.35 | 282.20 ± 2.01 | 0.81 ± 0.035 | 0.029 ± 0.01 |
Pangalengan | 659.46 ± 29.41 | 388.35 ± 13.04 | 0.97 ± 0.064 | 0.005 ± 0.00 |
Tasikmalaya | 741.23 ± 58.83 | 118.22 ± 3.77 | 0.54 ± 0.021 | 0.001 ± 0.00 |
Treatments | % Enzyme Inhibition | IC50 (μg/mL) | Level of Caffeine (%) | Level of Chlorogenic Acid |
---|---|---|---|---|
Blank | 0 | 0 | - | |
DANA a | 90.01 ± 24.55 | 5.93 ± 0.54 | - | |
Garut extract | 72.26 ± 22.02 | 83.80 ± 12.38 | 1.45 ± 0.05 | 0.81 ± 0.035 |
Tasikmalaya extract | 83.28 ± 18.90 | 71.70 ± 16.03 | 2.28 ± 0.05 | 0.54 ± 0.021 |
Pangalengan extract | 79.90 ± 18.43 | 88.79 ± 22.11 | 1.57 ± 0.88 | 0.97 ± 0.06 |
Garut decaf | 80.84 ± 25.01 | 55.74 ± 08.89 b | 0.00002 ± 0.00 | 0.029 ± 0.01 |
Tasikmalaya decaf | 88.89 ± 17.34 | 69.70 ± 18.23 | 0.097 ± 0.00 | 0.001 ± 0.00 |
Pangalengan decaf | 80.00 ± 18.23 | 75.23 ± 19.02 | 0.049 ± 0.01 | 0.005 ± 0.00 |
CGA c | 98.51 ± 15.34 | ± 10.55 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muchtaridi, M.; Lestari, D.; Khairul Ikram, N.K.; Gazzali, A.M.; Hariono, M.; Wahab, H.A. Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound. Molecules 2021, 26, 3402. https://doi.org/10.3390/molecules26113402
Muchtaridi M, Lestari D, Khairul Ikram NK, Gazzali AM, Hariono M, Wahab HA. Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound. Molecules. 2021; 26(11):3402. https://doi.org/10.3390/molecules26113402
Chicago/Turabian StyleMuchtaridi, Muchtaridi, Dwintha Lestari, Nur Kusaira Khairul Ikram, Amirah Mohd Gazzali, Maywan Hariono, and Habibah A. Wahab. 2021. "Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound" Molecules 26, no. 11: 3402. https://doi.org/10.3390/molecules26113402
APA StyleMuchtaridi, M., Lestari, D., Khairul Ikram, N. K., Gazzali, A. M., Hariono, M., & Wahab, H. A. (2021). Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound. Molecules, 26(11), 3402. https://doi.org/10.3390/molecules26113402