Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides
Abstract
:1. Introduction
2. Preparation of TPSs
3. Physicochemical Characterization of TPSs
3.1. Tea Material
3.2. Processing Technologies
3.3. Isolation Methods
4. Applications of TPSs
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
AFM | Atomic force microscopy |
Ara | Arabinose |
BWE | Boiling water extraction |
EE | Enzyme extraction |
FT-IR | Fourier transform infrared spectroscopy |
Fuc | Fucose |
Glc | Glucose |
Gal | Galactose |
GalA | Galacturonic acid |
GluA | Glucuronic acid |
GC | Gas chromatography |
GC-MS | GC-mass spectroscopy |
GFC | Gel-filtration chromatography |
GPC | Gel permeation chromatography |
HG | Homogalacturonan |
HWE | Hot water extraction |
Man | Mannose |
MAE | Microwave-assisted extraction |
MLLS | Multiangle laser light-scattering instrument |
Mw | Molecular weight |
MWD | Molecular weight distribution |
NMR | Nuclear magnetic resonance spectroscopy |
Rha | Rhamnose |
Rib | Ribose |
TFA | Trifluoroacetic acid |
TPC | Tea polysaccharide conjugates |
TPS | Tea polysaccharides |
TWE | Traditional water extraction |
TEM | Transmission electron microscopy |
UAE | Ultrasound-assisted extraction |
Xyl | Xylose |
References
- Zhang, L.; Ho, C.-T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.B.; Jiang, H. A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit. Rev. Food Sci. Nutr. 2015, 55, 930–938. [Google Scholar] [CrossRef]
- Yang, X.; Huang, M.; Qin, C.; Lv, B.; Mao, Q.; Liu, Z. Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea. Int. J. Biol. Macromol. 2017, 101, 768–775. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, Q.; Saeeduddin, M.; Ou, S.; Zeng, X.; Ye, H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr. Polym. 2016, 153, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, Y.; Zhang, Q.; Zhang, K.; Peng, P.; Chen, L.; Xiao, B. Hydrothermal extraction, structural characterization, and inhibition HeLa cells proliferation of functional polysaccharides from Chinese tea Zhongcha 108. J. Funct. Foods 2017, 39, 1–8. [Google Scholar] [CrossRef]
- Nie, S.-P.; Xie, M.-Y. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll. 2011, 25, 144–149. [Google Scholar] [CrossRef]
- Nie, S.; Cui, S.W.; Xie, M. Chapter 7—Tea polysaccharide. In Bioactive Polysaccharides; Nie, S., Cui, S.W., Xie, M., Eds.; Academic Press: London, UK, 2018; pp. 349–394. [Google Scholar]
- Chen, H.; Qu, Z.; Fu, L.; Dong, P.; Zhang, X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J. Food Sci. 2009, 74, C469–C474. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Yu, Q.Y.; Jiang, S.; Xiong, C.Y.; Ling, Z.J.; He, P.M. Structural characterization and antioxidant activities of 2 water-soluble polysaccharide fractions purified from tea (Camellia sinensis) flower. J. Food Sci. 2011, 76, C462–C471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, F.; Wei, X. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohydr. Polym. 2012, 88, 146–153. [Google Scholar] [CrossRef]
- Xiao, J.; Huo, J.; Jiang, H.; Yang, F. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Int. J. Biol. Macromol. 2011, 49, 1143–1151. [Google Scholar] [CrossRef]
- Xu, P.; Wu, J.; Zhang, Y.; Chen, H.; Wang, Y. Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α-glycosidase inhibition. J. Funct. Foods 2014, 6, 545–554. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.-W.; Gao, Z.-Y.; Xiao, W.; Li, T.-Q.; Song, W.; Zheng, J.; Chen, H.; Chen, G.-H.; Zou, H.-Y. MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression. Int. J. Biol. Macromol. 2019, 125, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Gao, Z.-Y.; Li, T.-Q.; Song, W.; Xiao, W.; Zheng, J.; Chen, H.; Chen, G.-H.; Zou, H.-Y. Anti-tumor activity and the mechanism of a green tea (Camellia sinensis) polysaccharide on prostate cancer. Int. J. Biol. Macromol. 2019, 122, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Wang, J.; Wang, X.; Hu, B.; Lv, F. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. Int. J. Biol. Macromol. 2015, 81, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Z.; Zhou, H.; Yu, C.; Han, Z.; Shao, S.; Hu, X.; Wei, X.; Wang, Y. Effects of extraction methods on physicochemical properties and hypoglycemic activities of polysaccharides from coarse green tea. Glycoconj. J. 2020, 37, 241–250. [Google Scholar] [CrossRef]
- Wang, H.; Shi, S.; Bao, B.; Li, X.; Wang, S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr. Polym. 2015, 124, 98–108. [Google Scholar] [CrossRef]
- Chi, A.; Li, H.; Kang, C.; Guo, H.; Wang, Y.; Guo, F.; Tang, L. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea. Int. J. Biol. Macromol. 2015, 80, 566–572. [Google Scholar] [CrossRef]
- Cai, W.; Xie, L.; Chen, Y.; Zhang, H. Purification, characterization and anticoagulant activity of the polysaccharides from green tea. Carbohydr. Polym. 2013, 92, 1086–1090. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Wu, T.; Dai, S.D.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct. 2015, 6, 297–304. [Google Scholar] [CrossRef]
- Yin, L.; Fu, S.; Wu, R.; Wei, S.; Yi, J.; Zhang, L.-M.; Yang, L. A neutral polysaccharide from green tea: Structure, effect on α-amylase activity and hydrolysis property. Arch. Biochem. Biophys. 2020, 687, 108369. [Google Scholar] [CrossRef]
- Yin, L.; Fu, S.; Wu, R.; Wei, S.; Yi, J.; Zhang, L.-M.; Yang, L. Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. Int. J. Biol. Macromol. 2020, 164, 1124–1132. [Google Scholar] [CrossRef]
- Wang, H.; Wei, G.; Liu, F.; Banerjee, G.; Joshi, M.; Bligh, S.W.A.; Shi, S.; Lian, H.; Fan, H.; Gu, X.; et al. Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int. J. Mol. Sci. 2014, 15, 9963–9978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Bai, Y.; Zeng, Z.; Peng, Y.; Zhou, W.; Shen, W.; Zeng, X.; Liu, Z. Structural characterization and immunostimulatory activity of heteropolysaccharides from Fuzhuan Brick tea. J. Agric. Food. Chem. 2021, 69, 1368–1378. [Google Scholar] [CrossRef]
- Chen, M.; Xiong, L.Y. Supercritical extraction technology in tea polysaccharide extracting application. Adv. Mater. Res. 2012, 347, 1683–1688. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Z.; Guo, Y.; Xiao, J.; Wang, Y. Composition and biological activity of tea polysaccharides obtained by water extraction and enzymatic extraction. Lat. Am. J. Pharm. 2010, 29, 117–121. [Google Scholar]
- Wang, J.; Liu, W.; Chen, Z.; Chen, H. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomed. Pharmacother. 2017, 90, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Z.; Chen, L.; Yu, C.; Wang, H.; Wei, X.; Wang, Y. Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea. Int. J. Biol. Macromol. 2019, 130, 388–398. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Jin, Z. Structure analysis of an acidic polysaccharide isolated from green tea. Nat. Prod. Res. 2009, 23, 678–687. [Google Scholar] [CrossRef]
- Gu, Y.; Qiu, Y.; Wei, X.; Li, Z.; Hu, Z.; Gu, Y.; Zhao, Y.; Wang, Y.; Yue, T.; Yuan, Y. Characterization of selenium-containing polysaccharides isolated from selenium-enriched tea and its bioactivities. Food Chem. 2020, 316, 126371. [Google Scholar] [CrossRef]
- Peng, Z.; Xie, M.; Nie, S.; Wang, X. Primary structure and configuration of tea polysaccharide. Sci. China Ser. C Life Sci. 2004, 47, 416–424. [Google Scholar]
- Wang, Y.; Li, Y.; Liu, Y.; Chen, X.; Wei, X. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides. Int. J. Biol. Macromol. 2015, 77, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shao, S.; Xie, J.; Yuan, H.; Li, Q.; Wu, L.; Wu, Z.; Yuan, H.; Jiang, Y. Analysis of protein moiety of polysaccharide conjugates water-extracted from low grade green tea. Chem. Res. Chin. Univ. 2018, 34, 691–696. [Google Scholar] [CrossRef]
- Wu, S.; Lai, M.; Luo, J.; Pan, J.; Zhang, L.-M.; Yang, L. Interactions between α-amylase and an acidic branched polysaccharide from green tea. Int. J. Biol. Macromol. 2017, 94, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Scoparo, C.T.; de Souza, L.M.; Rattmann, Y.D.; Dartora, N.; Paiva, S.M.M.; Sassaki, G.L.; Gorin, P.A.J.; Iacomini, M. Polysaccharides from green and black teas and their protective effect against murine sepsis. Food Res. Int. 2013, 53, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhao, Y.; Sun, Y.; Yang, S.; Yang, X. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem. 2013, 141, 3415–3423. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Gu, Y. Pharmacological evaluation of tea polysaccharides with antioxidant activity in gastric cancer mice. Carbohydr. Polym. 2012, 90, 943–947. [Google Scholar] [CrossRef]
- Yang, L.; Fu, S.; Zhu, X.; Zhang, L.-M.; Yang, Y.; Yang, X.; Liu, H. Hyperbranched acidic polysaccharide from green tea. Biomacromolecules 2010, 11, 3395–3405. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Z.; Ye, Y.; Zhang, R.; Yin, J.; Jiang, Y.; Wan, H. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of water-soluble and alkali-soluble polysaccharide conjugates prepared from green tea. Carbohydr. Polym. 2010, 82, 28–33. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, X.; Li, L.; Hou, Y.; Sun, J.; Wang, J. A rapid quantitative method for polysaccharides in green tea and oolong tea. Eur. Food Res. Technol. 2008, 226, 691–696. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.; Sun, P.; Bucheli, P.; Li, L.; Hou, Y.; Wang, J. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice. J. Agric. Food. Chem. 2007, 55, 5523–5528. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, C.; Li, J.; Zhao, G. Components and activity of polysaccharides from coarse tea. J. Agric. Food. Chem. 2001, 49, 507–510. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Zhang, N.; Chen, S.; Tian, J.; Zhang, Y.; Wang, Z. Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea. Food Res. Int. 2013, 53, 726–731. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Huo, J.; Zhao, T.; Ren, J.; Wei, X. Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides. Int. J. Biol. Macromol. 2013, 62, 714–719. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Wei, X. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int. J. Biol. Macromol. 2010, 47, 534–539. [Google Scholar] [CrossRef]
- Jin, F.; Jia, L.-Y.; Tu, Y.-Y. Structural analysis of an acidic polysaccharide isolated from white tea. Food Sci. Biotechnol. 2015, 24, 1623–1628. [Google Scholar] [CrossRef]
- Xu, R.; Ye, H.; Sun, Y.; Tu, Y.; Zeng, X. Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem. Toxicol. 2012, 50, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, L.; Zhang, J.; Xiao, J.; Wei, X. Study on the purification and characterization of a polysaccharide conjugate from tea flowers. Int. J. Biol. Macromol. 2010, 47, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Mao, F.; Liu, Y.; Wei, X. Purification, characterization and biological activities in vitro of polysaccharides extracted from tea seeds. Int. J. Biol. Macromol. 2013, 62, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, S.; Xu, P.; Chen, H.; Lin-Shiau, S.-Y.; Deng, Y.-T.; Lin, J.-K. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides. Food Res. Int. 2012, 46, 158–166. [Google Scholar] [CrossRef]
- Mao, Y.; Wei, B.; Teng, J.; Xia, N.; Zhao, M.; Huang, L.; Ye, Y. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia. Int. J. Food Sci. Tech. 2018, 53, 599–607. [Google Scholar] [CrossRef]
- Xu, P.; Chen, H.; Wang, Y.; Hochstetter, D.; Zhou, T.; Wang, Y. Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice. J. Food Sci. 2012, 77, H246–H252. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, G.; Chen, D.; Ye, H.; Sun, Y.; Zeng, X.; Liu, Z. Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. Int. J. Biol. Macromol. 2019, 140, 858–870. [Google Scholar] [CrossRef]
- Scoparo, C.T.; Souza, L.M.; Dartora, N.; Sassaki, G.L.; Santana-Filho, A.P.; Werner, M.F.P.; Borato, D.G.; Baggio, C.H.; Iacomini, M. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. Int. J. Biol. Macromol. 2016, 86, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, X.; Jin, Z. Structure analysis of a neutral polysaccharide isolated from green tea. Food Res. Int. 2009, 42, 739–745. [Google Scholar] [CrossRef]
- Wei, X.; Chen, M.; Xiao, J.; Liu, Y.; Yu, L.; Zhang, H.; Wang, Y. Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr. Polym. 2010, 79, 418–422. [Google Scholar] [CrossRef]
- Chen, D.; Chen, G.; Chen, C.; Zeng, X.; Ye, H. Prebiotics effects in vitro of polysaccharides from tea flowers on gut microbiota of healthy persons and patients with inflammatory bowel disease. Int. J. Biol. Macromol. 2020, 158, 968–976. [Google Scholar] [CrossRef]
- Chen, X.; Han, Y.; Meng, H.; Li, W.; Li, Q.; Luo, Y.; Wang, C.; Xie, J.; Wu, L.; Zhang, X.; et al. Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins. Ind. Crops Prod. 2019, 140, 111611. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J.; Du, X.; McClements, D.J.; Chen, X.; Duan, M.; Liu, L.; Li, J.; Shao, Y.; Cheng, Y. Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chem. 2021, 357, 129714. [Google Scholar] [CrossRef]
- Xiang, L.; Si, C.; Zhao, Z.-T.; Meng, Z.; Yi, H.; Ye, X.-M.; Qi, A.; Ouyang, K.-H.; Wang, W.-J. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens. Int. J. Biol. Macromol. 2020, 155, 61–70. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Li, W.; Yuan, G.; Pan, Y.; Chen, H. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein. Carbohydr. Polym. 2016, 146, 52–57. [Google Scholar] [CrossRef]
- Wu, S.; Li, N.; Yang, C.; Yan, L.; Liang, X.; Ren, M.; Yang, L. Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes. Int. J. Biol. Macromol. 2018, 118, 808–815. [Google Scholar] [CrossRef] [PubMed]
Resource | Processing Technologies or Extraction Methods | Name | Monosaccharide Composition (mol.% or Mole Ratio) | Mw/kDa | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glc | Rha | Ara | Man | Rib | Xyl | Gal | Fuc | GalA | GluA | |||||
Green tea leaves (Artificially Se-enriched Enshi) | HWE (90 °C) | ASe-TPS2 | 1.00 | 1.93 | 7.05 | 1.05 | 26.12 | 6.73 | [28] | |||||
Green tea leaves (Naturally Se-enriched Enshi) | NSe-TPS2 | 0.10 | 0.28 | 0.59 | 1.00 | 0.07 | 1.24 | 0.49 | 244.32 | |||||
Green tea leaves (Se-enriched Enshi) | HWE (70 °C) | Se-TPS | 0.49 | 0.22 | 0.71 | 0.12 | 0.14 | 1.00 | 0.03 | 1.39 | 0.13 | 1.3–1020 | [32] | |
Se-TPS1 | 0.47 | 0.21 | 0.58 | 1.00 | 0.07 | 1.75 | 0.17 | 110 | ||||||
Se-TPS2 | 0.10 | 0.28 | 0.59 | 1.00 | 0.07 | 1.24 | 0.49 | 240 | ||||||
Se-TPS3 | 0.30 | 0.38 | 0.72 | 1.00 | 0.07 | 0.88 | 0.19 | 250–920 | ||||||
Green tea (Se-enriched Ziyang) | HWE (80 °C) | Se-TP | 32.35 | 1.69 | 30.64 | 3.57 | 25.81 | 2.26 | - | [18] | ||||
Green tea (Coarse) | WE | WE-CTPS | 29.22 | 4.11 | 9.96 | 4.62 | 3.46 | 28.05 | 4.14 | 16.43 | 3.0–2560 | [16] | ||
WAE | UAE-CTPS | 36.05 | 2.27 | 9.22 | 4.75 | 5.38 | 27.54 | 6.72 | 8.07 | 3.2–3680 | ||||
MAE | MAE-CTPS | 31.09 | 4.03 | 11.84 | 6.17 | 3.64 | 27.06 | 6.84 | 9.33 | 3.1–2500 | ||||
EE | EE-CTPS | 44.24 | 5.40 | 8.86 | 4.38 | 3.15 | 12.32 | 11.78 | 9.87 | 3.0–3150 | ||||
Green tea (Low grade) | HWE | TPC | 14.10 | 8.74 | 29.04 | 7.11 | 0.42 | 35.89 | 4.69 | 6.62, 48.5, 455 | [33] | |||
Green tea | NaCl solution extraction | TPSA | 15.2 | 6.7 | 20.0 | 2.1 | 2.5 | 1.3 | 20.3 | 470 | [34] | |||
Green tea | BWE | GSP | 7 | 2 | 19 | 7 | 65 | - | [35] | |||||
Green tea (Huangshan Maofeng) | HWE (80 °C) | HMTP | 7.4 | 2.3 | 28.9 | 4.9 | 6.1 | 1.1 | 35.0 | 11.3 | 3.0 | - | [36] | |
Green tea | - | TF-1 | 1 | 3.2 | 1.4 | 231.6 | [37] | |||||||
TF-2 | 1 | 1.7 | 46.3 | |||||||||||
TF-3 | 1 | 0.9 | 2.5 | 7.3 | ||||||||||
Green tea | NaCl solution extraction | ALTPS | 23.8 | 1.6 | 6.9 | 1.0 | 1.7 | 0.6 | 6.6 | - | [38] | |||
Green tea | HWE (90 °C) | TPC-W | 14.10 | 8.74 | 29.04 | 7.11 | 0.42 | 35.89 | 4.69 | 6.62–4550 | [39] | |||
AE | TPC-A | 6.28 | 13.81 | 36.07 | 4.89 | 5.24 | 32.27 | 1.43 | 4.13–4940 | |||||
Green tea | HWE (70 °C) | GTPS | 17 | 7.8 | 41.8 | 7.3 | 7.1 | 18.7 | 9.2–251.5 | [8] | ||||
Green tea | HWE (65 °C) with EE | ATPS-2 | 0.68 | 1.00 | 1.58 | 4.43 | [29] | |||||||
Green tea | HWE (75 °C) | Shufeng | 18.70 | 3.15 | 33.90 | 2.45 | 3.36 | 38.44 | 127 | [40] | ||||
Longjin D | 17.17 | 3.38 | 32.42 | 2.83 | 2.80 | 41.41 | 106 | |||||||
Jialaoshan | 16.36 | 3.53 | 32.31 | 3.14 | 2.67 | 42.97 | 121 | |||||||
Green tea | HWE (75 °C) | TPF | 1.01 | 1 | 18.86 | 5.73 | 2.47 | 18.54 | 1.01 | - | [41] | |||
Green tea | EE | TPS | 43.27 | 6.49 | 2.60 | 41.11 | 6.53 | 110 | [42] | |||||
Green tea leaves | BWE | 7WA | 1.0 | 0.96 | 71 | [17] | ||||||||
Green tea leaves (Coarse) | Untreated | TPSU | 1.00 | 0.88 | 1.19 | 0.34 | 1.00 | 1–330 | [43] | |||||
Extrusion treatment | TPSE4 | 1.00 | 0.12 | 0.93 | 0.13 | 0.62 | 15–330 | |||||||
Extrusion treatment | TPSE12 | 1.00 | 0.20 | 1.11 | 0.18 | 0.63 | 4–405 | |||||||
Green tea leaves | Freeze-drying of TPS | TPS-F | 2.82 | 1.0 | 2.77 | 0.45 | 0.58 | 3.12 | 0.14 | 3.88 | 0.26 | 3.3–952 | [44] | |
Vacuum-drying of TPS | TPS-V | 5.96 | 1.0 | 2.62 | 0.51 | 0.47 | 1.94 | 0.16 | 3.0 | 0.20 | 3.4–910 | |||
Spray-drying of TPS | TPS-S | 0.77 | 1.0 | 2.43 | 0.40 | 0.46 | 0.96 | 0.10 | 1.94 | 0.18 | 3.3–969 | |||
Microwave-vacuum drying of TPS | TPS-M | 1.30 | 1.0 | 1.90 | 0.40 | 0.29 | 1.72 | 0.15 | 1.66 | 0.16 | 3.5–915 | |||
Green tea leaves | HWE (60 °C) | TPS-1 | 13.6 | 39.4 | 10.2 | 0.3 | 0.5 | 31.0 | 1.3 | 2.1 | 0.9 | 20.8 | [19] | |
TPS-2 | 1.0 | 4.1 | 36.4 | 0.9 | 2.3 | 43.1 | 0.1 | 6.9 | 5.2 | 24.2 | ||||
TPS-3 | 7.0 | 3.5 | 13.0 | 0.6 | 0.1 | 0.2 | 22.1 | 0.1 | 49.1 | 3.9 | 250.6 | |||
TPS-4 | 4.0 | 3.1 | 7.7 | 0.8 | 15.4 | 0.2 | 12.8 | 0.2 | 51.2 | 2.5 | 4.1, 689.1 | |||
Green tea leaves | HWE | HWE-TLPS | 1.00 | 4.82 | 0.22 | 0.48 | 0.21 | 2.93 | 2.06 | 0.22 | 1.17–413 | [45] | ||
BWE | BWE-TLPS | 1.00 | 0.50 | 1.04 | 0.22 | 0.06 | 1.38 | 1.48 | 0.09 | 1.04–458 | ||||
EE | EE-TLPS | 1.00 | 1.09 | 1.80 | 2.27 | 2.36 | 0.12 | 1.02–487 | ||||||
Green tea leaves | HWE (90 °C) | TLPS | 1.77 | 0.87 | 1.87 | 0.11 | 0.3 | 0.07 | 1.00 | 0.29 | 2.54 | 0.24 | 3.67–758 | [10] |
Green tea leaves (Xihu Longjing) | HWE (90 °C) | XTPS | 5.52 | 9.50 | 8.79 | 3.52 | 1.24 | 13.17 | 11.60 | 1.26–810 | [11] | |||
Green tea leaves (Chawentianxia) | CTPS | 11.06 | 8.73 | 11.95 | 3.81 | 1.17 | 16.53 | 15.06 | 12–805 | |||||
Green tea leaves (Huizhoulvcha) | HTPS | 7.28 | 9.48 | 23.06 | 3.75 | 0.96 | 30.68 | 18.36 | 1.2–771 | |||||
Green tea leaves (Chinese tea Zhongcha 108) | Hydrothermal extraction | F0 | 7.5 | 33.8 | 2.1 | 13.9 | 1.4 | 41.3 | 51.85 | [5] | ||||
F0.1 | 22.8 | 46.8 | 3.9 | 26.5 | 40.00 | |||||||||
F0.2 | 38.3 | 39.7 | 22.0 | 32.72 | ||||||||||
F0.3 | 44.7 | 36.4 | 18.9 | 25.27 | ||||||||||
F0.4 | 45.9 | 35.8 | 18.3 | 18.38 | ||||||||||
White tea leaves | - | WTPS | 2.2 | 1.1 | 4.2 | 4.5 | 1 | 29 | [46] | |||||
Green tea flowers | HWE (90 °C) | TFPS | 11.54 | 10.17 | 49.52 | 2.68 | 1.49 | 22.04 | 2.58 | - | [47] | |||
TFPS-1 | 45.39 | 14.84 | 6.87 | 12.16 | 18.08 | 2.64 | - | |||||||
TFPS-2 | 11.19 | 55.16 | 33.65 | - | ||||||||||
TFPS-3 | 20.95 | 53.34 | 25.71 | - | ||||||||||
Green tea flowers | HWE (80 °C) | TFPS-1 | 1.0 | 0.81 | 1.2 | 0.98 | - | [9] | ||||||
TFPS-2 | 1.0 | 2.3 | 2.3 | 0.76 | 10.1 | |||||||||
Green tea flowers | HWE (90 °C) | TFPS1 | 1.3 | 1.0 | 2.9 | 0.5 | 3.3 | 500 | [48] | |||||
Green tea flowers | HWE | HWE-TFPS | 1.00 | 0.36 | 1.19 | 0.23 | 0.16 | 2.09 | 0.25 | 0.12 | 1.06–483 | [45] | ||
BWE | BWE-TFPS | 1.00 | 0.80 | 2.06 | 0.25 | 0.20 | 2.47 | 2.20 | 0.13 | 1.06–508 | ||||
EE | EE-TFPS | 1.00 | 1.33 | 2.90 | 0.21 | 0.24 | 3.20 | 2.10 | 0.12 | 1.18–465 | ||||
Green tea flowers | HWE (90 °C) | TFPS | 0.36 | 0.42 | 0.97 | 0.17 | 0.11 | 1.00 | 0.71 | 0.08 | 2.56–1460 | [10] | ||
Green tea seeds | Na-citric acid buffer extraction | TSPS | 1.95 | 0.35 | 0.95 | 0.15 | 1.00 | 0.23 | 0.07 | 3.66–961 | [10] | |||
Green tea seeds | Extracted with Na-citric acid buffer, enzyme and hot water in sequence | NTSPS | 12.44 | 1.16 | 1 | 4588 | [49] | |||||||
ATSPS-1 | 0.03 | 0.51 | 0.78 | 0.07 | 0.09 | 1 | 0.1 | 0.06 | 500 | |||||
ATSPS-2 | 23.45 | 0.76 | 0.43 | 1 | 100 | |||||||||
Oolong tea | Ultrafiltration with Mw >80 kDa | OTPS1 | 7.90 | 5.50 | 7.31 | 5.78 | 9.43 | 10.32 | 13.11 | 11.85 | - | [27] | ||
Ultrafiltration with Mw 30–80 kDa | OTPS2 | 17.13 | 5.39 | 6.90 | 10.90 | 6.90 | 8.43 | 27.32 | 8.20 | - | ||||
Ultrafiltration with Mw 10–30 kDa | OTPS3 | 35.94 | 6.56 | 5.22 | 8.39 | 7.01 | 8.98 | 13.35 | 5.29 | - | ||||
Ultrafiltration with Mw <10 kDa | OTPS4 | 27.86 | 6.13 | 4.99 | 4.16 | 11.79 | 7.39 | 3.65 | 7.35 | - | ||||
Oolong tea (Tieguanyin) | HWE (70 °C) | TTPS | 26.39 | 5.75 | 26.84 | 2.91 | 0.81 | 35.34 | 1.96 | 25, 25, 817 | [50] | |||
Oolong tea (Fenghuangdancong) | FTPS | 14.44 | 10.83 | 25.69 | 6.97 | 2.39 | 35.85 | 3.83 | 14, 930 | |||||
Oolong tea (Dahongpao) | DTPS | 22.59 | 10.31 | 22.93 | 5.21 | 0.28 | 33.59 | 5.09 | 42, 110, 2640 | |||||
Oolong tea | HWE (70 °C) | OTPS | 21.9 | 16.2 | 43.7 | 18.0 | 5.3–100.9 | [8] | ||||||
Oolong tea (Anxi Tieguanyin) | HWE (90 °C) | TTPS | 12.74 | 7.41 | 13.78 | 5.7 | 1.37 | 20.16 | 15.49 | 1.2–762 | [11] | |||
Oolong tea | HWE (75 °C) | Fenghuangdanzong | 14.38 | 3.65 | 31.70 | 2.60 | 2.79 | 44.87 | 107 | [40] | ||||
Tieguanyin | 10.18 | 5.77 | 32.56 | 1.22 | 3.81 | 46.47 | 95 | |||||||
Black tea | BWE | BSP | 16 | 3 | 16 | 35 | - | [35] | ||||||
Black tea | HWE (70 °C) | BTPS | 29.4 | 14.4 | 36.4 | 19.7 | 3.8–32.7 | [8] | ||||||
Dark tea (Chinese Liubao) | HWE (70 °C) | CLTPS | 0.32 | 3.36 | 3.84 | 2.08 | 1.92 | 0.16 | 467, 11.4 | [51] | ||||
Puerh tea | Aging time of 1 year | PTPS-1 | 16.52 | 5.34 | 21.86 | 21.59 | 4.04 | 26.93 | 3.64 | 2700 | [12,52] | |||
Aging time of 3 years | PTPS-2 | 10.23 | 6.82 | 26.22 | 13.83 | 0.35 | 39.34 | 3.21 | 631–1930 | |||||
Aging time of 5 years | PTPS-3 | 6.08 | 15.98 | 20.84 | 15.29 | 0.15 | 40.33 | 1.68 | 1160–3900 | |||||
Brick tea (Fuzhuan) | HWE (80 °C) | FBTPS-3 | 15.50 | 13.90 | 8.70 | 19.70 | 42.20 | 741 | [53] |
Resource | Name | Isolation Methods | Structural Characterization | References |
---|---|---|---|---|
Green tea leaves (Artificial Se-enriched Enshi) | ASe-TPS2 | HWE (90 °C)→Ethanol precipitation (60%)→Deproteinization→Dialysis→DEAE Sepharose fast flow gel column | [28] | |
Green tea leaves (Natural Se-enriched Enshi) | NSe-TPS2 | |||
Green tea (Zhongcha 108) | F0.3 | WE (120 °C)→Dialysis→Deproteinization→DEAE-52 column | [5] | |
Green tea | GTPS | HWE (100 °C)→AE (10% NaOH)→Dialysis→Freeze-thawing | Main chain of (1→3)-β-Galp, substituted at O-6 by (1→6)-linked β-Galp with side chains of α-Araf and terminal units of α-Rhap, α-Fucp and α-Araf | [54] |
Black tea | BTPS | |||
Green tea | GTPI | Main chain of (1→4)-β-Xylp, substituted in O-3 by α-Araf, β-Galp and α-Glcp units | ||
Black tea | BTPI | |||
Green tea (Wufeng) | 7WA | BWE (100 °C)→Ethanol precipitation (final concentration was 40% and 70%)→DEAE-cellulose column→Superdex-200 column | [17] | |
Green tea (Wufeng) | TPS1-2a TPS1-2b | BWE (100 °C)→Ethanol precipitation (final concentration was 40%)→DEAE-cellulose column→Sephacryl S-300 column | [23] | |
Green tea Black tea | GSP BSP | BWE (100 °C)→Ethanol precipitation (95%)→Dialysis→Freeze-thawing | Backbone with a long sequence of →4)-6-O-Me-α-D-GalpA-(1→ and the side chains attached to the α-L-Rhap residues | [35] |
Tea flowers | TFP-1 | HWE (80 °C)→Ethanol precipitation (95%)→Deproteinization→Dialysis→Sephadex G-100 gel column | α-D-Galp, α-L-Rhap, α-D-Glcp, α-D-GalNAcp and α-D-Glcp residues | [9] |
TFP-2 | α-D-Glcp, α-D-Xylp, α-D-GalNAcp, α-L-Arap and α-L-Rhap residues | |||
Tea flowers | TFPS-1 | BWE (90 °C)→Ethanol precipitation (95%)→Dialysis→DEAE Sepharose fast flow gel column | Backbone consisted Glu and Gal, branched chain consisted Ara, Gal and Rha | [48] |
Green tea | NTPS-1 | HWE (65 °C)→EE (cellulose compound enzyme)→Ethanol precipitation (75%)→Anion exchange resin D315 column →Dialysis→DEAE Sepharose fast flow gel column | β-(1→4)-linked galactopyranosyl units | [55] |
Green tea | ATPS-2 | EE (plant hydrolase)→HWE (60 °C)→Ethanol precipitation (95%)→Anion exchange resin D315 column→DEAE Sepharose fast flow gel column | Backbone with →4)-α-D-GalpA-(1→2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→, consisting of α-1,4-D-galactopyranosyluronan and 1,2-linked rhamnosyl residues | [29] |
Green tea (Wuyuan) | TGC | - | Main chain consisted of Gal, Glc and Rha by β-(1→3) linkage, while branch chains connected to main chain by β-(1→3)-, β-(1→2)- and β-(2→3)-linkages | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Wu, P.; Zhan, J.; Wang, W.; Shen, J.; Ho, C.-T.; Li, S. Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021, 26, 3457. https://doi.org/10.3390/molecules26113457
Hu T, Wu P, Zhan J, Wang W, Shen J, Ho C-T, Li S. Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules. 2021; 26(11):3457. https://doi.org/10.3390/molecules26113457
Chicago/Turabian StyleHu, Ting, Peng Wu, Jianfeng Zhan, Weixin Wang, Junfeng Shen, Chi-Tang Ho, and Shiming Li. 2021. "Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides" Molecules 26, no. 11: 3457. https://doi.org/10.3390/molecules26113457
APA StyleHu, T., Wu, P., Zhan, J., Wang, W., Shen, J., Ho, C. -T., & Li, S. (2021). Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules, 26(11), 3457. https://doi.org/10.3390/molecules26113457