Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of the Phenolic Acid Profile in the Herb of Aerva lanata (L.) Juss.
2.2. Analysis of Antioxidant and Anti-Inflammatory Activity
2.3. Anti-Diabetic Activity
3. Material and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Extraction Procedure and Isolation of Phenolic Acid Fractions
3.4. Isolation of Free Phenolic Acid Fraction (FA)
3.5. Isolation of Bound Phenolic Acid Fractions after Acidic (B) and Alkaline Hydrolysis (C)
3.6. SPE Procedure
3.7. LC-ESI-MS/MS Analysis
3.8. Antioxidant Activity Analysis
3.9. Anti-Inflammatory Activity
3.9.1. Inhibition of Xanthine Oxidase Activity (XO)
3.9.2. Inhibition of Lipoxygenase Activity (LOX)
3.10. Anti-Diabetic Activity
3.10.1. α-Glucosidase Inhibition Assay
3.10.2. α-Amylase Inhibition Assay
4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Mussadiq, S.; Riaz, N.; Saleem, M.; Ashraf, M.; Ismail, T.; Jabbar, A. New acylated flavonoid glycosides from flowers of Aervajavanica. J. Asian Nat. Prod. Res. 2013, 15, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Sivasankari, B.; Anandharaj, M.; Gunasekaran, P. An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. J. Ethnopharmacol. 2014, 153, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Musaddiq, S.; Mustafa, K.; Aslam, S.; Basharat, A.; Khakwani, S.; Naheed, R.; Saleem, M.; Jabbar, A. Pharmaceutical, Ethnopharmacological, Phytochemical and Synthetic Importance of Genus Aerva: A Review. Nat. Prod. Commun. 2018, 13, 375–385. [Google Scholar]
- Gunatilake, M.; Lokuhetty, M.D.S.; Bartholameuz, N.A.; Edirisuriye, D.T.; Kularatne, M.U.; Date, A. Aerva lanata (Polpala): Its effects on the structure and function of the urinary tract. Pharmacogn. Res. 2012, 4, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Nagaratna, A.; Hegde, P.L.; Harini, A. A Pharmacological review on Gorakhaganja (Aerva lanata (Linn) Juss. Ex. Schult). J. Pharmacogn. Phytochem. 2014, 3, 253–257. [Google Scholar]
- Athira, P.; Nair, S.N. Pharmacognostic Review of Medicinal Plant Aerva lanata. J. Pharm. Sci. Res. 2017, 9, 1420–1423. [Google Scholar]
- Zapesochnaya, G.G.; Pervykh, L.N.; Kurkin, V.A. A study of herb Aerva lanata. III. Alkaloids. Chem. Nat. Compd. 1991, 27, 336–340. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A.; Okhanov, V.V.; Perzykh, L.N.; Miroshnilov, A.I. Structure of the alkaloids of Aerva lanata. Chem. Nat. Compd. 1991, 27, 725–728. [Google Scholar] [CrossRef]
- Mammen, D.; Daniel, M.; Sane, R.T. Identification of pharmacognostic and phytochemical biomarkers to distinguish between Aerva lanata Juss. ex Schultes and its substitute, Nothosaerva brachiata (L.).W. & A. Int. J. Pharm. Res. 2012, 4, 116–119. [Google Scholar]
- Kumar, G.; Karthik, L.; Rao Bhaskara, K.V. Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. exSchult. Stem (Amaranthaceae). Asian Pac. J. Trop. Med. 2013, 6, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Pervykh, L.N.; Karasartov, B.S.; Zapesochnaya, G. A study of herb Aerva lanata IV. flavonoid glycosides. Chem. Nat. Compd. 1992, 1, 509–510. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A.; Pervykh, L.N. A study of the herb Aerva lanata II. feruloylamines. Chem. Nat. Compd. 1991, 26, 590–591. [Google Scholar] [CrossRef]
- Ragavendran, P.; Sophia, D.; Arul Raj, C.; Starlin, T.; Gopalakrishnan, V.K. Phytochemical screening, antioxidant activity of Aerva lanata (L)—An in vitro study. Asian J. Pharm. Clin. Res. 2012, 5, 77–81. [Google Scholar]
- Ragavendran, P.; Sophia, D.; Raj, C.A.; Starlin, T.; Gopalakrishnan, V.K. Evaluation of enzymatic and non-enzymatic antioxidant properties of Aerva lanata (L)—An in vitro study. Int. J. Pharm. Pharm. Sci. 2012, 4, 522–526. [Google Scholar]
- Nevin, K.G.; Vijayammal, P.L. Effect of Aerva lanata against hepatotoxicity of carbon tetrachloride in rats. Environ. Toxicol. Pharmacol. 2005, 20, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Nevin, K.G.; Vijayammal, P.L. Pharmacological and Immunomodulatory Effects of Aerva lanata. in Daltons Lymphoma Ascites–Bearing Mice. Pharm. Biol. 2005, 43, 640–646. [Google Scholar] [CrossRef]
- Sharma, A.; Tarachand; Tanwar, M.; Nagar, N.; Sharma, A.K. Analgesic and anti-inflammatory activity of flowers extract of Aerva lanata. Adv. Pharmacol. Toxicol. 2011, 12, 13–18. [Google Scholar]
- Balasuriya, G.M.G.K.; Dharmaratne, H.R.W. Cytotoxicity and antioxidant activity studies of green leafy vegetables consumed in Sri Lanka. J. Natl. Sci. Found. Sri. Lanka. 2007, 35, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, Y.L.; Shilali, K.; Ahmed, M.; Sudeep, H.V.; Kavitha, B.T.; Gurumurthy, H.; Rai, S.P. Hepatoprotective properties of Boerhaaviadiffusa and Aerva lanata against carbon tetra chloride induced hepatic damage in rats. Pharmacol. Online 2011, 3, 435–441. [Google Scholar]
- Shirwaikar, A.; Issac, D.; Malini, S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J. Ethnopharmacol. 2004, 90, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Prabhu, S.N.; Ravishankar, B.; Sahana; Yashovarma, Y. Chemical analysis and in vitro evaluation of antiurolithiatic activity of Aerva lanata (Linn.) Juss. Ex Schult. roots. Res. Rev. J. Pharmacogn. Phytochem. 2015, 3, 1–7. [Google Scholar]
- Rajesh, R.; Chitra, K.; Paarakh, P.M. Anti hyperglycemic and antihyperlipidemic activity of aerial parts of Aerva lanata Linn Juss. in streptozotocin induced diabetic rats. Asian Pac. J. Trop. Biomed. 2012, 2, S924–S929. [Google Scholar] [CrossRef]
- Riya, M.P.; Antu, K.A.; Pal, S.; Chandrakanth, K.C.; Anilkumar, K.S.; Tamrakar, A.K.; Srivastava, A.K.; Raghu, K.G. Antidiabetic property of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J. Diabetes. 2015, 7, 548–561. [Google Scholar] [CrossRef]
- Akanji, M.A.; Olukolu, S.O.; Kazeem, M.I. Leaf Extracts of Aerva lanata Inhibit the Activities of Type 2 Diabetes-Related Enzymes and Possess Antioxidant Properties. Oxid. Med. Cell. Longev. 2018, 2018, 3439048. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Rocha, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Sarian, M.N.; Ahmed, Q.U.; Mat, S.S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Mohamad, S.N.A.S.; Khatib, A.; Latip, J. Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. Biomed Res. Int. 2017, 2017, 8386065. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.T.; Khoo, C.S.; Tee, C.S.; Wong, F.C. Alpha-glucosidase inhibitory and antioxidant potential of antidiabetic herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions. Pharmacogn. Mag. 2016, 12, 253–258. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; King, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phyther. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Ahangarpour, A.; Sayahi, M.; Sayahi, M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 854–857. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal plants from the 14th edition of the Russian Pharmacopoeia, recent updates. J. Ethnopharmacol. 2021, 268, 113685. [Google Scholar] [CrossRef]
- Ankul Singh, S.; Gowri, K.; Chitra, V.A. Review on Phytochemical Constituents and Pharmacological Activities of the plant: Aerva lanata. Res. J. Pharm. Technol. 2020, 13, 1580–1586. [Google Scholar] [CrossRef]
- Agrawal, R.; Sethiya, N.K.; Mishra, S.H. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm. Biol. 2013, 51, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Schulz, J.M.; Herrmann, K. Analysis of hydroxybenzoic and hydroxycinnamic acids in plant material. I. Sample preparation and thin-layer chromatography. J. Chromatogr. 1980, 195, 85–94. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem. 2009, 116, 947–954. [Google Scholar] [CrossRef]
- Mammen, D.; Daniel, M.; Sane, R. Studies on the phytochemical variation in the aqueous extracts of Aerva lanata Juss. ex Schultes, Hedyotis corymbosa (L.) Lam. and Leptadenia reticulata (Retz.) W&A. Int. J. Pharm. Sci. Rev. Res. 2012, 12, 51–56. [Google Scholar]
- Chewchinda, S.; Kongkiatpaiboon, S.; Sithisarn, P. Evaluation of antioxidant activities, total phenolic and total flavonoid contents of aqueous extracts of leaf, stem, and root of Aerva lanata. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 345–357. [Google Scholar] [CrossRef]
- Thanganadar Appapalam, S.; Panchamoorthy, R. Aerva lanata mediated phytofabrication of silver nanoparticles and evaluation of their antibacterial activity against wound associated bacteria. J. Taiwan Inst. Chem. Eng. 2017, 78, 539–551. [Google Scholar] [CrossRef]
- Mandal, B.; Madan, S.; Ahmad, S.; Sharma, A.K.; Ansari, M.H.R. Antiurolithic efficacy of a phenolic rich ethyl acetate fraction of the aerial parts of Aerva lanata (Linn) Juss. ex Schult. in ethylene glycol induced urolithic rats. J. Pharm. Pharmacol. 2021, 73, 560–572. [Google Scholar] [CrossRef]
- Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Kostić, D.A.; Dimitrijević, D.S.; Stojanović, G.S.; Palić, I.R.; Đorđević, A.; Ickovski, J.D. Xanthine Oxidase: Isolation, Assays of Activity, and Inhibition. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sutharson, L.; Deepak, T.; Arifa, M.; Habeeba, K.; Shinju, V.; Jasna, P. Xanthine oxidase inhibitory activity of some leafy vegetables collected from Palakkad regions of Kerala. Int. J. Pharma. Sci. Res. 2016, 7, 1–5. [Google Scholar]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; George, P. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015, 52, 5790–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Rosołowska-Huszcz, D. Antyoksydanty w profilaktyce i terapii cukrzycy typu II. Żywność. Nauk. Technol. Jakość. 2007, 6, 62–70. [Google Scholar]
- Oboh, G.; Ogunsuyi, O.; Ogunbadejo, M.; Adefegha, A. Influence of gallic acid on a-amylase and a-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 2016, 24, 627–634. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.-I.; Shetty, K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8, 46–54. [Google Scholar] [CrossRef]
- Mbhele, N.; Balogun, F.O.; Kazeem, M.I.; Ashafa, T. In vitro studies on the antimicrobial, anti-oxidant and antidiabetic potential of Cephalaria gigantea. Bangladesh. J. Pharmacol. 2015, 10, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Oboh, G.; Ogunsuyi, O.; Adegbola, D.O.; Ademiluyi, A.O.; Oladun, F.L. Influence of gallic and tannic acid on therapeutic properties of acarbose in vitro and in vivo in Drosophila melanogaster. Biomed. J. 2019, 42, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Girish, T.K.; Pratape, V.M.; Rao, U.J.S.P. Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (Vigna mungo, L.) and its milled by-products. Food Res. Int. 2012, 46, 370–377. [Google Scholar] [CrossRef]
- Malunga, L.N.; Thandapilly, S.J.; Ames, N. Cereal—derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. J. Food Biochem. 2018, 1–6. [Google Scholar] [CrossRef]
- Schmidtlein, H.; Herrmann, K. Quantitative analysis for phenolic acids by thin-layer chromatography. J. Chromatogr. 1975, 115, 123–128. [Google Scholar] [CrossRef]
- Nowak, R.; Kawka, S. Phenolic acids in leaves of Secamone afzelii (Rhoem.) Schult. (Asclepiadaceae). Acta Soc. Bot. Pol. 1998, 67, 243–245. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R. Comparative study of phenolic acids in pseudo fruits of some species of roses. Acta. Pol. Pharm. Drug Res. 2006, 63, 281–288. [Google Scholar]
- Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT Food Sci. Technol. 2014, 59, 689–694. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Los, R.; Rzymowska, J.; Malm, A.; Chrusciel, K. Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Cent. Eur. J. Biol. 2012, 7, 172–182. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sweeney, A.P.; Wyllie, S.G.; Shalliker, R.A.; Markham, J.L. Xanthine oxidase inhibitory activity of selected Australian native plants. J. Ethnopharmacol. 2001, 75, 273–277. [Google Scholar] [CrossRef]
- Axelrod, B.; Cheesbrough, T.M.; Laakso, S. [53] Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: Oxygen oxidoreductase. Methods Enzym. 1981, 71, 425–429. [Google Scholar]
- Telagari, M.; Hullatti, K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. And Celosia argentea Linn. extracts and fractions. Indian. J. Pharmacol. 2015, 47, 425–429. [Google Scholar]
- Abirami, A.; Nagarani, G.; Siddhuraju, P. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci. Hum. Wellness 2014, 3, 16–25. [Google Scholar] [CrossRef] [Green Version]
Fraction A | Fraction B | Fraction C | |
---|---|---|---|
Gallic acid | 0.003 ± 0.000 | 0.238 ± 0.006 | 0.203 ± 0.004 |
Protocatechuic acid | 0.459 ± 0.009 | 1.130 ± 0.001 | 0.887 ± 0.007 |
Caffeic acid | 0.241 ± 0.010 | 1.996 ± 0.057 | 5.190 ± 0.009 |
Syringic acid | 0.275 ± 0.001 | 5.580 ± 0.009 | 2.480 ± 0.008 |
4-hydroxybenzoic acid | 1.370 ±0.010 | 1.520 ± 0.060 | 1.612 ± 0.010 |
Vanillic acid | 2.137 ± 0.009 | 4.160 ± 0.008 | 2.120 ± 0.007 |
Gentisic acid | 0.028 ± 0.001 | 2.760 ± 0.001 | 0.351 ± 0.001 |
Sinapic acid | 0.060 ± 0.000 | 2.660 ± 0.002 | 2.010 ± 0.001 |
p-Coumaric acid | 2.320 ± 0.003 | 3.570 ± 0.002 | 9.410 ± 0.024 |
Ferulic acid | 1.886 ± 0.012 | 4.810 ± 0.004 | 11.160 ± 0.250 |
Rosmarinic acid | 0.015 ± 0.000 | 0.086 ± 0.000 | 0.049 ± 0.000 |
Isoferulic acid | 1.486 ± 0.015 | 5.120 ± 0.235 | 17.140 ± 0.678 |
Salicylic acid | 0.569 ± 0.020 | 1.868 ± 0.009 | 1.271 ± 0.001 |
Total phenolic acids | 10.849 | 35.498 | 53.883 |
Antioxidant Activity | Activity against | |||
---|---|---|---|---|
DPPH• | ABTS•+ | Xanthine Oxidase | Lipoxygenase | |
TE (mM Trolox·g−1 Dry Fraction/Extract) | EC50 (mg·mL−1 Dry Fraction/Extract) | |||
Fraction A | 0.49 a ± 0.02 | 0.57 a* ± 0.03 | 2.63 a ± 0.76 | 4.16 a ± 0.10 |
Fraction B | 2.85 b ± 0.03 | 2.86 b ± 0.22 | 1.88 b ± 0.34 | 1.77 b ± 0.03 |
Fraction C | 1.66 c ± 0.02 | 1.74 c ± 0.02 | 4.15 c ± 0.23 | 3.42 c± 0.03 |
Crude methanol extract | 0.29 d ± 0.01 | 0.22 d* ± 0.01 | 2.38 d ± 0.45 | 3.76 d ± 0.07 |
Phenolic Acid | DPPH• | ABTS•+ | ||
---|---|---|---|---|
r(X,Y) | R2 | r(X,Y) | R2 | |
Gallic acid | 0.9249 | 0.8554 | 0.9279 | 0.8611 |
Protocatechuic acid | 0.9868 | 0.9737 | 0.9880 | 0.9762 |
Caffeic acid | 0.3451 | 0.1191 | 0.3527 | 0.1244 |
Syringic acid | 0.9958 | 0.9915 | 0.9949 | 0.9899 |
4-OH-benozoic acid | 0.6101 | 0.3722 | 0.6165 | 0.3801 |
Vanillic acid | 0.8648 | 0.7480 | 0.8607 | 0.7408 |
Gentistic acid | 0.9170 | 0.8410 | 0.9137 | 0.8348 |
Sinapic acid | 0.9594 | 0.9204 | 0.9616 | 0.9247 |
p-Coumaric acid | 0.1603 | 0.0257 | 0.1683 | 0.0283 |
Ferulic acid | 0.3037 | 0.0922 | 0.3114 | 0.0969 |
Rosmarinic acid | 0.9998 | 0.9996 | 0.9996 | 0.9992 |
Isoferulic acid | 0.2170 | 0.0471 | 0.2249 | 0.0505 |
Salicylic acid | 0.9987 | 0.9973 | 0.9990 | 0.9981 |
Total phenolic acids | 0.5667 | 0.3212 | 0.5779 | 0.3340 |
Sample | α-Glucosidase Inhibitory Effect | α-Amylase Inhibitory Effects |
---|---|---|
EC50 (mg mL−1 Dry Extract) | ||
Fraction A | 0.90 a* ± 0.07 | 3.51 a ± 0.02 |
Fraction B | 0.30 b ± 0.04 | 7.46 b ± 0.11 |
Fraction C | 0.71 a ± 0.08 | 5.46 c ± 0.03 |
Crude methanol extract | 5.52 c ± 0.01 | NA |
Acarbose | 1.39 d* ± 0.01 | 0.01 d ± 0.03 |
Phenolic Acid | α-Glucosidase Inhibition | α-Amylase Inhibition | ||
---|---|---|---|---|
r (X,Y) | R2 | r (X,Y) | R2 | |
Gallic acid | −0.8343 | 0.6960 | 0.9238 | 0.8534 |
Protocatechuic acid | −0.9370 | 0.8781 | 0.9863 | 0.9728 |
Caffeic acid | −0.1578 | 0.0249 | 0.3425 | 0.1173 |
Syringic acid | −0.9948 | 0.9896 | 0.9960 | 0.9920 |
4-OH-benozoic acid | −0.4460 | 0.1989 | 0.6079 | 0.3695 |
Vanillic acid | −0.9453 | 0.8937 | 0.8663 | 0.7504 |
Gentistic acid | −0.9766 | 0.9538 | 0.9181 | 0.8430 |
Sinapic acid | −0.8870 | 0.7869 | 0.9586 | 0.9189 |
p-Coumaric acid | 0.0328 | 0.0010 | 0.1575 | 0.0248 |
Ferulic acid | −0.1144 | 0.0130 | 0.3010 | 0.0906 |
Rosmarinic acid | −0.9848 | 0.9698 | 0.9999 | 0.9997 |
Isoferulic acid | −0.0248 | 0.0006 | 0.2142 | 0.0459 |
Salicylic acid | −0.9700 | 0.9409 | 0.9985 | 0.9970 |
Total phenolic acids | −0.4024 | 0.1619 | 0.5644 | 0.3185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieczykolan, A.; Pietrzak, W.; Gawlik-Dziki, U.; Nowak, R. Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss. Molecules 2021, 26, 3486. https://doi.org/10.3390/molecules26123486
Pieczykolan A, Pietrzak W, Gawlik-Dziki U, Nowak R. Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss. Molecules. 2021; 26(12):3486. https://doi.org/10.3390/molecules26123486
Chicago/Turabian StylePieczykolan, Aleksandra, Wioleta Pietrzak, Urszula Gawlik-Dziki, and Renata Nowak. 2021. "Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss." Molecules 26, no. 12: 3486. https://doi.org/10.3390/molecules26123486
APA StylePieczykolan, A., Pietrzak, W., Gawlik-Dziki, U., & Nowak, R. (2021). Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss. Molecules, 26(12), 3486. https://doi.org/10.3390/molecules26123486