Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials
Abstract
:1. Introduction
2. Importance of Natural Antimicrobials
3. Lipid-Based Nanostructures
3.1. Liposomes
3.2. Solid Lipid Nanoparticles
3.3. Nanostructured Lipid Carriers
4. Encapsulation of Natural Antimicrobials into Lipid-Based Nanostructures
4.1. Encapsulation of Antimicrobial Peptides and Proteins
4.2. Encapsulation of Essential Oils
4.3. Encapsulation of Plant Extracts
4.4. Co-Encapsulation of Natural Antimicrobials: Improving the Antimicrobial Efficacy?
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asokan, G.V.; Kasimanickam, R.K. Emerging infectious diseases, antimicrobial resistance and dillennium development goals: Resolving the challenges through One Health. Cent. Asian J. Glob. Health. 2013, 2, 76. [Google Scholar] [PubMed] [Green Version]
- Lanteri, C.; Mende, K.; Kortepeter, M. Emerging infectious diseases and antimicrobial resistance (EIDAR). Mil. Med. 2019, 184 (Suppl. 2), 59–65. [Google Scholar]
- Da Silva, L.C.N.; da Silva, M.V.; Correia, M.T.S. Editorial: New frontiers in the search of antimicrobials agents from natural products. Front. Microbiol. 2017, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcus, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M. New natural products to meet the antibiotic crisis: A personal journey. J. Antibiot. 2019, 72, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol. 2020, 40, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A.; Lopes, N.A.; Boelter, J.F. Food applications of nanostructured antimicrobials. In Food Preservation; Grumezescu, A.M., Ed.; Academic Press: London, UK, 2017; pp. 35–74. [Google Scholar]
- Brandelli, A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem. 2012, 12, 731–741. [Google Scholar] [CrossRef]
- Lopes, N.A.; Brandelli, A. Nanostructures for delivery of natural antimicrobials in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 2202–2212. [Google Scholar] [CrossRef]
- Brandelli, A.; Pinilla, C.M.B.; Lopes, N.A. Nanoliposomes as a plataform for delivery of antimicrobials. In Nanotechnology Applied to Pharmaceutical Technology; Rai, M., Santos, C.A., Eds.; Springer: Cham, Switzerland, 2017; pp. 55–90. [Google Scholar]
- Brandelli, A.; Pola, C.C.; Gomes, C.I. Antimicrobial delivery systems. In Antimicrobials in Food; Davidson, P.M., Taylor, T.M., David, J.R.D., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 65–694. [Google Scholar]
- Zhang, L.; Pornpattananangkul, D.; Hu, C.M.J.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010, 17, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem. Pharm. 2017, 6, 37–56. [Google Scholar] [CrossRef]
- Ozogul, Y.; Ozogul, F.; Kulawik, P. The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. LWT Food Sci. Technol. 2021, 136, 110362. [Google Scholar] [CrossRef]
- Da Costa, R.C.; Daitx, T.S.; Mauler, R.S.; Da Silva, N.M.; Miotto, M.; Crespo, J.S.; Carli, L.N. Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packag. Shelf Life 2020, 26, 100602. [Google Scholar] [CrossRef]
- Benjemaa, M.; Nevez, M.A.; Falleh, H.; Isoda, H.; Ksouri, R.; Nakajima, M. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Ind. Crop. Prod. 2018, 113, 414–421. [Google Scholar] [CrossRef]
- Vafania, B.; Fathi, M.; Soleimanian-Zad, S. Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food Bioprod. Process. 2019, 116, 240–248. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Lopes, N.A.; Menis-Henrique, M.E.C.; Janzantti, N.S.; Nicoletti, V.R. Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. Int. J. Food Microbiol. 2020, 335, 108890. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Wong, J.X.; Ramli, S. Antimicrobial activity of different types of Centella asiatica extracts against foodborne pathogens and food spoilage microorganisms. LWT Food Sci. Technol. 2021, 142, 111026. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocoll. 2017, 70, 1–7. [Google Scholar] [CrossRef]
- Díez, L.; Rojo-Bezares, B.; Zarazaga, M.; Rodríguez, J.M.; Torres, C.; Ruiz-Larrea, F. Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol. 2012, 31, 167–172. [Google Scholar] [CrossRef]
- Niu, X.; Zhu, L.; Xi, L.; Guo, L.; Wang, H. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control. 2020, 108, 106829. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control. 2021, 126, 108066. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Malheiros, P.S.; Brandelli, A. Liposome encapsulation protects bacteriocin-like substance P34 against inhibition by Maillard reaction products. Food Res. Int. 2011, 44, 326–330. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control. 2021, 123, 107678. [Google Scholar] [CrossRef]
- Ephrem, E.; Najjar, A.; Charcosset, C.; Greige-Gerges, H. Use of free and encapsulated nerolidol to inhibit the survival of Lactobacillus fermentum in fresh orange juice. Food Chem. Toxicol. 2019, 133, 110795. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll. 2019, 93, 1–9. [Google Scholar] [CrossRef]
- Pinelli, J.J.; Martins, H.H.A.; Guimarães, A.S.; Isidoro, S.R.; Gonçalves, M.C.; Moraes, T.S.J.; Ramos, E.M.; Piccoli, R.H. Essential oil nanoemulsions for the control of Clostridium sporogenes in cooked meat product: An alternative? LWT Food Sci. Technol. 2021, 143, 111123. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Thys, R.C.S.; Brandelli, A. Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. Int. J. Food Microbiol. 2019, 293, 72–78. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef]
- Santos, V.S.; Ribeiro, A.P.B.; Santana, M.H.A. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int. 2019, 122, 610–626. [Google Scholar] [CrossRef]
- Leitgeb, M.; Knez, Z.; Primozic, M. Sustainable technologies for liposome preparation. J. Supercrit. Fluid. 2020, 165, 104984. [Google Scholar]
- William, B.; Noémie, P.; Brigitte, E.; Géraldine, P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. Technol. 2020, 383, 123106. [Google Scholar] [CrossRef]
- Esposto, B.S.; Jauregi, P.; Tapia-Blácido, D.R.; Martelli-Tosi, M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2021, 108, 40–48. [Google Scholar] [CrossRef]
- Liu, W.; Hou, Y.; Jin, Y.; Wang, Y.; Xu, X.; Han, J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020, 104, 177–189. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Han, F.; Han, J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 2019, 263, 52–67. [Google Scholar] [CrossRef]
- Tan, C.; Wang, J.; Sun, B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol. Adv. 2021, 48, 107727. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, F.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int. J. Biol. Macromol. 2021, 168, 59–66. [Google Scholar] [CrossRef]
- Maoyafikuddina, M.; Pundir, M.; Thaokar, R. Starch aided synthesis of giant unilamellar vesicles. Chem. Phys. Lipids. 2020, 226, 104834. [Google Scholar] [CrossRef]
- Li, J.; Zhai, J.; Dyett, B.; Yang, Y.; Drummond, C.J.; Conn, C.E. Effect of gum arabic or sodium alginate incorporation on the physicochemical and curcumin retention properties of liposomes. LWT Food Sci. Technol. 2021, 139, 110571. [Google Scholar] [CrossRef]
- Lopes, N.A.; Mertins, O.; Pinilla, C.M.B.; Brandelli, A. Nisin induces lamellar to cubic liquid-crystalline transition in pectin and polygalacturonic acid liposomes. Food Hydrocoll. 2021, 112, 106320. [Google Scholar] [CrossRef]
- Katouzian, I.; Esfanjani, A.F.; Jafari, S.M.; Akhavan, S. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci. Technol. 2017, 68, 14–25. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 2019, 273, 102033. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int. 2013, 52, 342–349. [Google Scholar] [CrossRef]
- Couto, R.; Alvarez, V.; Temelli, F. Encapsulation of vitamin B2 in solid lipid nanoparticles using supercritical CO2. J. Super Crit. Fluid. 2017, 120, 432–442. [Google Scholar] [CrossRef]
- Genç, L.; Kutlu, H.M.; Güney, G. Vitamin B12-loaded solid lipid nanoparticles as a drug carrier in cancer therapy. Pharm. Dev. Technol. 2015, 20, 337–344. [Google Scholar] [CrossRef]
- Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014, 62, 1165–1174. [Google Scholar] [CrossRef]
- Santos, V.S.; Ribeiro, A.P.B.; Santana, M.H.A. Nanopartículas Lipídicas Sólidas (NLS) e Carreadores Lipídicos Nanoestruturados (CLN) para aplicação em alimentos, processo para obtenção de NLS e CLN e uso das NLS e dos CLN. BR 10 2017 006471 9; Instituto Nacional de Propriedade Intelectual: Brasília, Brazil, 2017; 43p. [Google Scholar]
- Barroso, L.; Viegas, C.; Vieira, J.; Ferreira-Pêgo, C.; Costa, J.; Fonte, P. Lipid-based carriers for food ingredients delivery. J. Food Eng. 2021, 295, 110451. [Google Scholar] [CrossRef]
- Chanburee, S.; Tiyaboonchai, W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin. Drug Dev. Ind. Pharm. 2016, 43, 432–440. [Google Scholar] [CrossRef]
- Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem. 2013, 141, 117–123. [Google Scholar] [CrossRef]
- Jain, A.; Garg, N.K.; Jain, A.; Kesharwani, P.; Jain, A.K.; Nirbhavane, P.; Tyagi, R.K. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm. 2016, 42, 897–905. [Google Scholar] [CrossRef]
- Manea, A.-M.; Vasile, B.S.; Meghea, A. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C. R. Chim. 2014, 17, 331–341. [Google Scholar] [CrossRef]
- Ni, S.; Sun, R.; Zhao, G.; Xia, Q. Quercetin loaded nanostructured lipid carrier for food fortification: Preparation, characterization and in vitro study. J. Food Process Eng. 2015, 38, 93–106. [Google Scholar] [CrossRef]
- Pezeshki, A.; Ghanbarzadeh, B.; Mohammadi, M.; Fathollahi, I.; Hamishehkar, H. Encapsulation of vitamin A palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties. Adv. Pharm. Bull. 2014, 4, 563. [Google Scholar] [PubMed]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov. Food Sci. Emerg. Technol. 2014, 26, 366–374. [Google Scholar] [CrossRef]
- Brogden, K. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Cushnie, T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr. 2018, 59, 3129–3151. [Google Scholar] [CrossRef]
- Rafiee, Z.; Jafari, S.M. Application of lipid nanocarriers for the food industry. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 623–665. [Google Scholar]
- Ragioto, D.A.; Carrasco, L.D.; Carmona-Ribeiro, A.M. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents. Int. J. Nanomed. 2014, 9, 3183–3192. [Google Scholar]
- Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring lipid carriers using Ridolfia Ssegetum (L.) Moris essential oil. Mater. Sci. Eng. C. 2019, 103, 109804. [Google Scholar] [CrossRef]
- Cortesi, R.; Valacchi, G.; Muresan, X.M.; Drechsler, M.; Contado, C.; Esposito, E.; Grandini, A.; Guerrini, A.; Forlani, G.; Sacchetti, G. Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: Production, characterisation and in vitro studies. J. Microencapsul. 2017, 34, 63–72. [Google Scholar] [CrossRef]
- Martin, C.; Low, W.L.; Gupta, A.; Amin, M.; Radecka, I.; Britland, S.; Raj, P.; Kenward, K. Strategies for antimicrobial drug delivery to biofilm. Curr. Pharm. Des. 2015, 21, 43–66. [Google Scholar] [CrossRef]
- Kundu, R. Cationic amphiphilic peptides: Synthetic antimicrobial agents inspired by nature. ChemMedChem 2020, 15, 1887–1896. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Rai, M.; Pandit, R.; Gaikwad, S.; Kövics, G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J. Food Sci. Technol. 2016, 53, 3381–3394. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Sant’Anna, V.; Micheletto, Y.M.; Silveira, N.P.; Brandelli, A. Nanovesicle encapsulation of antimicrobial peptide P34: Physicochemical characterization and mode of action on Listeria monocytogenes. J. Nanoparticle Res. 2011, 13, 3545–3552. [Google Scholar] [CrossRef]
- Prombutara, P.; Kulwatthanasal, Y.; Supaka, N.; Sramala, I.; Chareonpornwattana, S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 2012, 24, 184–190. [Google Scholar] [CrossRef]
- Sadiq, S.; Imran, M.; Habib, H.; Shabbir, S.; Ihsan, A.; Zafar, Y.; Hafeez, F. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. LWT Food Sci. Technol. 2016, 71, 227–233. [Google Scholar] [CrossRef]
- Meikle, T.G.; Dharmadana, D.; Hoffmann, S.V.; Jones, N.C.; Drummond, C.J.; Conn, C.E. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J. Coll. Interface Sci. 2021, 587, 90–100. [Google Scholar] [CrossRef]
- García-Toledo, J.A.; Torrestiana-Sánchez, B.; Martínez-Sánchez, C.; Tejero-Andrade, J.; García-Bórquez, A.; Mendoza-García, P.G. Nanoencapsulation of a bacteriocin from Pediococcus acidilactici ITV26 by microfluidization. Food Bioprocess Technol. 2018, 12, 88–97. [Google Scholar] [CrossRef]
- Narsaiah, K.; Jha, S.N.; Wilson, R.A.; Mandge, H.M.; Manikantan, M.; Malik, R.; Vij, S. Pediocin-loaded nanoliposomes and hybrid alginate-nanoliposome delivery systems for slow release of pediocin. BioNanoScience 2013, 3, 37–42. [Google Scholar] [CrossRef]
- Mello, M.B.; Malheiros, P.S.; Brandelli, A.; Silveira, N.P.; Jantzen, M.M.; Motta, A.S. Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiot. Antimicrob. Prot. 2013, 5, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Liu, Y.; Zeng, R.; Hou, X.; Nie, G.; Sun, L.; Fang, Z. Preparation of phosphatidylcholine nanovesicles containing bacteriocin CAMT2 and their anti-listerial activity. Food Chem. 2020, 314, 126244. [Google Scholar] [CrossRef]
- Gomaa, A.I.; Martinent, C.; Hammami, R.; Fliss, I.; Subirade, M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization. Front. Chem. 2017, 5, 103. [Google Scholar] [CrossRef] [Green Version]
- Malheiros, P.S.; Cuccovia, I.M.; Franco, B. Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp sakei 2a. Food Control 2016, 63, 158–164. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. A chitosan-coated liposome encapsulating antibacterial peptide, Apep10: Characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food Funct. 2016, 7, 4310–4322. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct. 2017, 8, 4159–4169. [Google Scholar] [CrossRef]
- Niaz, T.; Shabbir, S.; Noor, T.; Imran, M. Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT Food Sci. Technol. 2019, 116, 108583. [Google Scholar] [CrossRef]
- Imran, M.; Revol-Junelles, A.M.; Francius, G.; Desobry, S. Diffusion of fluorescently labeled bacteriocin from edible nanomaterials and embedded nano-bioactive coatings. ACS Appl. Mater. Interfaces 2016, 33, 21618–21631. [Google Scholar] [CrossRef]
- Silva, I.M.; Boelter, J.F.; Silveira, N.P.; Brandelli, A. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. J. Nanoparticle Res. 2014, 16, 2479. [Google Scholar] [CrossRef]
- Wu, Z.; Guan, R.; Lyu, F.; Liu, M.; Gao, J.; Cao, G. Optimization of preparation conditions for lysozyme nanoliposomes using response surface methodology and evaluation of their stability. Molecules 2016, 21, 741. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Yang, E.; Chang, P.; Ryu, S. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme Microb. Technol. 2019, 128, 40–48. [Google Scholar] [CrossRef]
- Portilla, S.; Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Encapsulation of the antistaphylococcal endolysin LysRODI in pH-sensitive liposomes. Antibiotics 2020, 9, 242. [Google Scholar] [CrossRef]
- Kopermsub, P.; Mayen, V.; Warin, C. Nanoencapsulation of nisin and ethylene diamine tetra acetic acid in niosomes and their antibacterial activity. J. Sci. Res. 2012, 4, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Bei, W.; Zhou, Y.; Xing, X.; Zahi, M.R.; Li, Y.; Yuan, Q.; Liang, H. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity. Front. Microbiol. 2015, 6, 1010. [Google Scholar] [CrossRef]
- Zahi, M.R.; El Hattab, M.; Liang, H.; Yuan, Q. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food Chem. 2017, 221, 18–23. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef]
- Guinane, C.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J. Appl. Microbiol. 2005, 98, 1316–1325. [Google Scholar] [CrossRef]
- Balandin, S.V.; Sheremeteva, E.V.; Ovchinnikova, T.V. Pediocin-like antimicrobial peptides of bacteria. Biochemistry 2019, 84, 464–478. [Google Scholar] [CrossRef]
- Masschalck, B.; Michiels, C.W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 2003, 29, 191–214. [Google Scholar] [CrossRef]
- Nelson, D.; Schmelcher, M.; Rodríguez-Rubio, L.; Klumpp, J.; Pritchard, D.; Dong, S.; Donovan, D. Endolysins as antimicrobials. Adv. Virus Res. 2012, 83, 299–365. [Google Scholar]
- Seow, Y.X.; Yeo, C.; Chung, H.; Yuk, H.-G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- Majeed, H.; Bian, Y.-Y.; Ali, B.; Jamil, A.; Majeed, U.; Khan, Q.F.; Iqbal, K.J.; Shoemaker, C.F.; Fang, Z. Essential oil encapsulations: Uses, procedures, and trends. RSC Adv. 2015, 5, 58449–58463. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, Z.D.; Sieniawska, E.; Głowniak, K.; Obradovic, N.; Pajic-Lijakovic, I. Natural macromolecules as carriers for essential oils: From extraction to biomedical application. Front. Bioeng. Biotechnol. 2020, 8, 563. [Google Scholar] [CrossRef]
- Fathi, M.; Vinceković, M.; Jurić, S.; Viskić, M.; Jambrak, A.R.; Donsì, F. Food-grade colloidal systems for the delivery of essential oils. Food Rev. Int. 2019, 37, 1–45. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar] [PubMed]
- Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci. 2017, 12, 409–415. [Google Scholar] [PubMed] [Green Version]
- Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int. J. Pharm. 2019, 561, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhou, H.; Lin, L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control 2016, 61, 92–98. [Google Scholar] [CrossRef]
- Lin, L.; Gu, W.; Sun, Y.; Cui, H. Characterization of chrysanthemum essential oil triple-layer liposomes and its application against Campylobacter jejuni on chicken. LWT Food Sci. Technol. 2019, 107, 16–24. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition of Escherichia coli O157:H7 biofilm on vegetable surface by solid liposomes of clove oil. LWT Food Sci. Technol. 2020, 117, 108656. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters. J. Food Eng. 2020, 266, 109696. [Google Scholar] [CrossRef]
- Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential oils encapsulated in liposomes: A review. J. Liposome Res. 2013, 23, 268–275. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Singh, M.; Devi, S.; Rana, V.; Mishra, B.; Kumar, J.; Ahluwalia, V. Delivery of phytochemicals by liposome cargos: Recent progress, challenges and opportunities. J. Microencapsul. 2019, 36, 215–235. [Google Scholar] [CrossRef]
- Karimi, N.; Ghanbarzadeh, B.; Hamishehkar, H.; Mehramuz, B.; Kafil, H. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Coll. Interface Sci. Commun. 2018, 22, 18–24. [Google Scholar] [CrossRef]
- Tometri, S.S.; Ahmady, M.; Ariaii, P.; Soltani, M.S. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J. Food Meas. Charact. 2020, 14, 3333–3344. [Google Scholar] [CrossRef]
- Olatunde, O.; Benjakul, S.; Vongkamjan, K.; Amnuaikit, T. Liposomal encapsulated ethanolic coconut husk extract: Antioxidant and antibacterial properties. J. Food Sci. 2019, 84, 3664–3673. [Google Scholar] [CrossRef]
- Makwana, S.; Choudhary, R.; Dogra, N.; Kohli, P.; Haddock, J. Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT Food Sci. Technol. 2014, 57, 470–476. [Google Scholar] [CrossRef]
- Faikoh, E.; Hong, Y.; Hu, S. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish Shellfish Immunol. 2014, 38, 15–24. [Google Scholar] [CrossRef]
- Umagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.; Choudhary, R. Antimicrobial efficacy of liposomes containing d-limonene and its effect on the storage life of blueberries. Postharvest Biol. Technol. 2017, 128, 130–137. [Google Scholar] [CrossRef]
- Pinilla, C.M.; Noreña, C.Z.; Brandelli, A. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chem. 2017, 220, 470–476. [Google Scholar] [CrossRef]
- Karimi, N.; Ghanbarzadeh, B.; Hajibonabi, F.; Hojabri, Z.; Ganbarov, K.; Kafil, H.; Hamishehkar, H.; Yousefi, M.; Mokarram, R.; Kamounah, F.S.; et al. Turmeric extract loaded nanoliposome as a potential antioxidant and antimicrobial nanocarrier for food applications. Food Biosci. 2019, 29, 110–117. [Google Scholar] [CrossRef]
- Noudoost, B.; Noori, N.; Abedini, G.; Gandomi, H.; Basti, A.A.; Javan, A.J.; Ghadami, F. Encapsulation of green tea extract in nanoliposomes and evaluation of its antibacterial, antioxidant and prebiotic properties. J. Med. Plants. 2015, 14, 66–78. [Google Scholar]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Borges, A.; Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants 2020, 9, 998. [Google Scholar] [CrossRef]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Liu, X.; Shen, D.; Qiu, Y.; Zhang, X.; Song, J. Influence of pH, concentration and light on stability of allicin in garlic (Allium sativum L.) aqueous extract as measured by UPLC. J. Sci. Food Agric. 2015, 95, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Liu, Y.; Jiang, F.; Ji, F.; Wang, H.; Han, X. Synergistic antibacterial activity of designed Trp-containing antibacterial peptides in combination with antibiotics against multidrug-resistant Staphylococcus epidermidis. Front. Microbiol. 2019, 10, 2719. [Google Scholar] [CrossRef] [Green Version]
- Pinilla, C.M.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Matouskova, P.; Marova, I.; Bokrova, J.; Benesova, P. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technol. Biotechnol. 2016, 54, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Weber, S.; Hammes, W.P. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 1999, 46, 207–217. [Google Scholar] [CrossRef]
- Miron, T.; Rabinkov, A.; Mirelman, D.; Wilchek, M.; Weiner, L. The mode of action of allicin: Its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim. Biophys. Acta 2000, 1463, 20–30. [Google Scholar] [CrossRef] [Green Version]
Natural Antimicrobial | Microorganism Tested | Reference |
---|---|---|
Essential oils | ||
Grapefruit peel | Salmonella parathypi A, Vibrio vulnificus and Seratia liquefaciens | [14] |
Oregano | Escherichia coli and Staphylococcus aureus | [15] |
Thyme | Escherichia coli and Bacillus subtilis; Clostridium perfringens | [16,17] |
Pink pepper | Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Listeria innocua | [18] |
Plant extracts | ||
Punica granatum, Syzygium aromaticum, Zingiber officinales and Thymus vulgaris | Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi | [19] |
Centella asiatica | Bacillus cereus, Escherichia coli O157: H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Aspergillus niger, and Candida albicans | [20] |
Psidium guajava, Salvia officinalis, Ziziphusspina christi, Morusalba L., and Oleaeuropaea L | S. aureus, E. coli, Pasteurella multocida, B. cereus, Salmonella Enteritidis and M. gallisepticum | [21] |
Peptides and proteins | ||
Nisin | Listeria monocytogenes ATCC 7644, L. monocytogenes 4b, Listeria sp. str1, L. innocua 6a, and Listeria sp. str2 | [22] |
Pediocin | Oenococcus oeni | [23] |
Lysozyme | S. aureus and L. monocytogenes | [24] |
Nanoparticle Type | AMP or Enzyme | Composition 1 | Target Bacteria | Result of Encapsulation | Reference |
---|---|---|---|---|---|
Liquid crystal nanoparticle | Gramicidin A′, Melittin, Alamethicin, Cepropin A, Indolicidin and Pexiganan | Monoolein and phytantriol, with the addition of NaCl or DOPS | Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa | Increased antimicrobial activity | [75] |
Solid lipid nanoparticle | Nisin | Imwitor 900, poloxamer 188, sodium deoxycholate | Listeria monocytogenes DMST 2871 and Lactobacillus plantarum TISTR 850 | Extended antimicrobial activity by 20 and 15 days | [73] |
Liposome | Pediocin | Soybean PC | Listeria innocua | Increased antimicrobial activity | [76] |
Liposome | Pediocin | Soy lecithin, Soybean PC | L. innocua | Increased antimicrobial activity | [77] |
Liposome | Pediocin | Partially purified PC | L. monocytogenes, L. innocua and L. ivanovii | Similar antimicrobial activity to the free pediocin | [78] |
Liposome | Bacteriocin CAMT2 | Soybean PC | L. monocytogenes ATCC 19111 | Increased antimicrobial activity in whole milk | [79] |
Liposome | Bacteriocin MccJ25 | DMPC, DMPG, DMTAP, WPI, pectin | Salmonella enterica serotype Enteritidis | Reduced antimicrobial activity | [80] |
Liposome | Sakacin 2a | Soybean PC, DOTAP | L. monocytogenes Scott A | Similar antimicrobial activity to the free Sakacin 2a | [81] |
Liposome | Peptide P34 | SoybeanPC | L. monocytogenes ATCC 7644 | Reduced antimicrobial activity | [72] |
Liposome | AMP Alpep10 | DPPC, DMPG, cholesterol and chitosan | L. monocytogenes | Antibacterial and anti-biofilm activities | [82] |
Liposome | AMP Alpep10 | PPC, stearylamine, cholesterol | L. monocytogenes | Anti-biofilm activity | [83] |
Liposome | Gramicidin | DODAB | E. coli and S. aureus | Increased antimicrobial activity spectrum | [64] |
Liposome | Nisin Z | Soy lecithin, rhamnolipids | L. monocytogenes, S. aureus, E. coli and P. aeruginosa | Increased antimicrobial activity | [84] |
Liposome | Nisin | Soybean PC, pectin and polygalacturonic acid | L. monocytogenes ATCC 7644 | Increased antimicrobial activity | [22] |
Liposome | Nisin | DOPC and DOPG | L. monocytogenes | Similar antimicrobial activity to the free nisin | [85] |
Liposome | Nisin | Soybean PC, chitosan | L. monocytogenes ATCC 7644, Listeria sp. str1, L. innocua 6a, and L. monocytogenes 4b | Similar antimicrobial activity to the free nisin | [86] |
Liposome | Lysozyme | PC and cholesterol | Some stability in SGF and SIF | [87] | |
Liposome | Lysozyme and nisin | PC and pectin | L. monocytogenes and S. enterica serotype Enteritidis | Increased antibacterial activity in milk | [29] |
Liposome | Lysozyme and endolysin BSP16Lys | DPPC, cholesterol and hexadecylamine | S. enterica serotype Typhimurium and E. coli | Increased antimicrobial activity | [88] |
Liposome | Endolysin LysRODI | Pronanosomes–pH | S. aureus | Similar antimicrobial activity to the free LysROD | [89] |
Nanomicelle | Nisin | Monolaurin | S. aureus | Increased antimicrobial activity | [74] |
Nano niosome | Nisin | Spam 80, sodium stearoyl lactate, and polyethylene glycol (PEG) | S. aureus and E. coli | Reduced antimicrobial activity | [90] |
Nanoemulsion | Nisin and D-limonene | Stearic acid, sucrose stearate 170, and peanut oil | S. aureus ATCC6538, Bacillus subtilis ATCC6633 and E. coli ATCC8739 | Increased antimicrobial activity | [91] |
Nanoemulsion | ε-polylysine and D-limonene | Tween 80 and water | E. coli, S. aureus, Bacillus subtilis and Saccharomyces cerevisiae | Increased antimicrobial activity | [92] |
Nanoparticle Type | Plant-Based Antimicrobial | Composition | Target Microorganism | Result of Encapsulation | Reference |
---|---|---|---|---|---|
NLC | Zataria multiflora essential oil | Glyceryl mono stearate, Precirol ATO and Polysorbate 80 | A. ochraceu, A. niger, A. flavus, A. solan, R. solani, and Rh. stolonifer | Increased antifungal activity | [105] |
NLC | Ridolfia Ssegetum (L.) Moris essential oil | Precirol ATO 5 and Polysorbate 80 | Sustained dermal delivery profile | [65] | |
NLC | Citral | Miglyol, Precirol, Poloxamer and Polysorbate 80 | S. aureus, B. cereus, E. coli, and Candida albicans | Reduction of antimicrobial activity | [106] |
Liposome | Estragole, isoeugenol, eucalyptol, terpineol, pulegone, and thymol | Lipoid S100 | Stability after long term storage at 4 °C | [107] | |
Liposome | Salvia oil | Soy lecithin and cholesterol | S. aureus | Prolonged antibiofilm activity | [108] |
Liposome | Chrysanthemum essential oil | Soy lecithin and cholesterol | Campylobacter jejuni | Increased antimicrobial activity | [109] |
Liposome | Clove oil | Soy lecithin and cholesterol | Escherichia coli O157:H7 biofilm | Increased antimicrobial activity | [110] |
Liposome | Nutmeg (Myristica fragrans Houtt) essential oil | Soy lecithin and cholesterol | Improved the application in meat batters | [111] |
Nanoparticle Type | Plant-Based Antimicrobial | Composition 1 | Target Microorganism | Result of Encapsulation | Reference |
---|---|---|---|---|---|
NLC | Tumeric extract | Campritol 888-ATO, Miglyol 812 and poloxamer 407 | E. coli, S. aureus, Bacillus cereus, P. aeruginosa, Streptococcus mutans and Candida fungus | Increased antimicrobial activity | [115] |
NLC | Plumbagin, hydroquinone, eugenol, α-asarone and α-Tocopherol | PEO, PPO, poloxamer 188, Miglyol 812 N, Tristearin and polysorbate 80 | Clavibacter michiganensis ATCC 27822, Pseudomonas syringae ATCC 19310, Agrobacterium tumefaciens DSM 30207, Agrobacterium vitis DSM 6383 | Increased antimicrobial activity | [66] |
NLC | Green tea extract | n-Hexadecyl palmitate, glycerol stearate, grape seed oil, Synperonic F68 and Tween 20 | E. coli K12-MG1655 | Increased antimicrobial activity | [55] |
Liposome | Laurus nobilis leaf extract | Tween 80 and lecithin | E. coli, S. aureus | Increased antimicrobial activity | [116] |
Liposome | Cocconut husk extract | PC and cholesterol | S. aureus, E. coli, Vibrio parahaemolyticus, L. monocytogenes, and P. aeruginosa | Increased antimicrobial activity | [117] |
Liposome | Pistachio green hull extract | Lecithin | S. aureus, Enterobacteriaceae, molds and yeasts | Increased antimicrobial activity | [63] |
Liposome | Cinnamaldehyde | PDA-NHS and DMPC | E. coli W1485 and B. cereus ATCC 14579 | Increased antimicrobial activity | [118] |
Liposome | Cinnamaldehyde | Lecithin and α-tocopherol | A. hydrophila, V. vulnificus, V. parahaemolyticus, V. alginolyticus, S. agalactiae | enhanced survival rate and inhibits bacterial growth in zebrafish | [119] |
Liposome | Limonene | PDA-NHS and DMPC | E. coli, L. monocytogenes, yeasts and molds | Increased antimicrobial activity | [120] |
Liposome | Garlic extract | PC and oleic acid | Environmental molds | Increased antifungal activity | [31] |
Liposome | Garlic extract | PC | Listeria spp. | Similar antimicrobial activity to the free garlic extract | [121] |
Liposome | Turmeric extract | PC | E. coli, S. aureus, B. cereus, P. aeruginosa, Streptococcus mutans and Candida albicans | Increased antimicrobial activity | [122] |
Liposome | Green tea extract | Lecithin, cholesterol, DSPE, PEG 2000 | B. cereus, S. enterica serotype Typhimurium, E. coli O157:H7, L. monocytogenes | Increased antimicrobial activity | [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinilla, C.M.B.; Lopes, N.A.; Brandelli, A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021, 26, 3587. https://doi.org/10.3390/molecules26123587
Pinilla CMB, Lopes NA, Brandelli A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules. 2021; 26(12):3587. https://doi.org/10.3390/molecules26123587
Chicago/Turabian StylePinilla, Cristian Mauricio Barreto, Nathalie Almeida Lopes, and Adriano Brandelli. 2021. "Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials" Molecules 26, no. 12: 3587. https://doi.org/10.3390/molecules26123587
APA StylePinilla, C. M. B., Lopes, N. A., & Brandelli, A. (2021). Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules, 26(12), 3587. https://doi.org/10.3390/molecules26123587