Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia
Abstract
:1. Introduction
2. Results
2.1. Juniperus excelsa and J. sabina Essential Oil (EO) Yield in Different Locations in Bulgaria (the First Experiment)
2.2. Juniperus excelsa and J. sabina Essential Oil (EO) Composition in Different Locations in Bulgaria (the First Experiment)
2.2.1. Juniperus excelsa EO Composition
2.2.2. Juniperus sabina Essential Oil (EO) Composition Collections in Bulgaria and Slovakia
2.3. Podophyllotoxin Yield (the First Experiment)
2.4. Second Experiment on Two Different EO Extraction Methods for J. excelsa and J. sabina
2.4.1. Juniperus excelsa—Two Different Extraction Methods (the Second Experiment)
2.4.2. Juniperus sabina—Two Different Extraction Methods (the Second Experiment)
2.5. Biological Activity of the J. excelsa and J. sabina Essential Oils (EOs)
2.5.1. Antimicrobial Activity
2.5.2. Repellent and Insecticidal Action of the Semi-Commercial Extraction EO of J. sabina and J. excelsa on Aphids (Sitobion avenae, Rhopalosiphum padi)
2.5.3. Antioxidant Capacity (ORAC) of the J. sabina and J. excelsa Essential Oils (EOs)
3. Discussion
3.1. J. excelsa and J. sabina Essential Oil (EO) Composition in Different Locations in Bulgaria and Slovakia (the First Experiment)
3.1.1. Juniperus excelsa
3.1.2. Juniperus sabina
3.1.3. Podophyllotoxin
3.2. Two Different Extraction Methods of EO in Juniperus excelsa and Juniperus sabina
3.3. Biological Activity of EO J. excelsa and J. sabina
3.3.1. Antimicrobial Activity
3.3.2. Repellent and Insecticidal Action of the Semi-Commercial Extraction EO of J. sabina and J. excelsa on Aphids (Sitobion avenae, Rhopalosiphum padi)
3.3.3. Antioxidant Activity
4. Materials and Methods
4.1. Collection of the Plant Material for the First Experiment
- (a)
- Juniperus sabina (M, F): Krushovska bara in Stara planina (The Balkan Mountains) near the town of Vratsa, Bulgaria (43°9′55.95″ N, 23°35′16.22″ E, 678 m.a.s.l.); Beli Iskar in the Rila Mountains, Bulgaria (42°15′46″ N, 23°32′25″ E, 1,160 m.a.s.l.) (Figure 2); and Zvolen, Slovakia M from Dr. Jankovič’s garden settlement (48°34′35″ N, 19°11′23″ E; 290 to 396 m.a.s.l.).
- (b)
- Juniperus excelsa: The reserve “Izgoryaloto Gyune” in the Rhodope Mountains, above the town of Krichim, Bulgaria (42°01′40″ N, 24°28′09″ E, 367 m.a.s.l.); the reserve “Tisata” in the Pirin Mountains, near Kresna town, Bulgaria (41°74′14″ N, 23°15′54″ E, 288 m.a.s.l.); and above the village of Bachkovo in the Rhodope Mountains (41°58′16″ N, 24°52′11″ E, 543 m.a.s.l.) (Figure 2).
4.2. Essential Oil (EO) Extraction of the Juniper Biomass Samples
4.2.1. The Hydrodistillation Extraction of the EO for the First Experiment
4.2.2. The Hydrodistillation Extraction of EO of the Second Experiment (ClevA) Distillation
4.2.3. Steam Distillation of the Samples from the Second Experiment Conducted in a Semi-Commercial Extraction Unit (SCom)
4.3. Quantitative Analysis of the Podophyllotoxin
4.4. Gas Chromatography (GC) and Mass Spectrometry (MS) Analyses of the Essential Oils (EO)
4.5. Method for the Testing of the Antimicrobial Activity
4.5.1. Microorganisms
4.5.2. Disc Diffusion Method
4.6. Methodology for the Antioxidant Capacity Evaluation of the Essential Oils (EO)
4.7. The Activity of the Semi-Commercial Extraction (Scom) EO of J. excelsa and J. sabina on the Aphids Rhopalosiphum padi (Bird Cherry—Oat Aphid) and Sitobion avenae (English Grain Aphid)
4.7.1. Colonization of Rhopalosiphum padi and Sitobion avenae
4.7.2. Repellency Tests
4.7.3. Testing the Insecticidal Action of the Essential Oils (EO)
4.8. Statistical Analyses of the Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.P. Junipers of the World: The Genus Juniperus; Trafford Publishing: Vancouver, BC, Canada, 2004; ISBN 13-978-1490723259. [Google Scholar]
- Kangshan, M.; Gang, H.; Jianguan, L.; Adams, R.; Milne, I. Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytologist. 2010, 188, 254–272. [Google Scholar]
- Harrington, J.; Fisher, J. Nursery and landscape performance of ornamental Junipers in the Southern Rocky Mountains. HortTechnology 1999, 9, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, C.L.; Zheljazkov, V.D.; Osbrink, W.D.; Castro, A.; Maddox, V.; Craker, L.E.; Astatkie, T. Podophyllotoxin and essential oil profile of Juniperus and related species. Ind. Crop Prod. 2013, 43, 668–676. [Google Scholar] [CrossRef]
- Yesenofski, J. Juniper oil distillation and marketing project western juniper commercialization program. In The Confederated Tribes of the Warm Springs Reservation of Oregon Business and Economic Development Branch; Final Report; Ver 2; 1996; Available online: http://juniper.orst.edu/wjoils.htm (accessed on 10 February 2021).
- Madej, T.; Pirożnikow, E.; Dumanowski, J.; Łuczaj, L. Juniper beer in Poland: The story of the revival of a traditional beverage. J. Ethnobiol. 2014, 34, 84–103. [Google Scholar] [CrossRef]
- Stähelin, H.F.; von Wartburg, A. The chemical and biological route from podophyllotoxin glucoside to etoposide: Ninth Cain memorial Award lecture. Cancer Res. 1991, 51, 5–15. [Google Scholar]
- Imbert, I.T. Discovery of podophyllotoxins. Biochimie 1998, 80, 207–222. [Google Scholar] [CrossRef]
- Canel, C.; Moraes, R.; Dayan, F.; Ferreira, D. Molecules of interest Podophyllotoxin. Phytochemistry 2000, 54, 115–120. [Google Scholar] [CrossRef]
- Leander, K.; Rosen, B. Medicinal Used for Podophyllotoxin. U.S. Patent 4,788,216, 29 November 1988. [Google Scholar]
- Lerndal, T.; Svensson, B. A clinical study of CPH 82 vs. methotrexate in early rheumatoid arthritis. Rheumatology 2000, 39, 316–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canel, C.; Dayan, F.E.; Ganzera, M.; Khan, I.A.; Rimando, A.; Burandt, C.L.; Moraes, R.M. High yield of podophyllotoxin from leaves of Podophyllum peltatum by in situ conversion of podophyllotoxin 4-O-β-D-glucopyranoside. Planta Med. 2001, 67, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, C.L.; Zheljazkov, V.D.; Carvalho, C.R.; Astatkie, T.; Jeliazkova, E.A.; Rosa, L.H. Dual extraction of essential oil and Podophyllotoxin from Creeping Juniper (Juniperus horizontalis). PLoS ONE 2014, 9, e106057. [Google Scholar]
- Gawde, A.J.; Cantrell, C.L.; Zheljazkov, V.D. Dual extraction of essential oil and podophyllotoxin from Juniperus virginiana. Ind. Crop Prod. 2009, 30, 276–280. [Google Scholar] [CrossRef]
- Gawde, A.J.; Zheljazkov, V.D.; Maddox, V.; Cantrell, C.L. Bioprospection of Eastern red cedar from nine physio-graphic regions in Mississippi. Ind. Crop Prod. 2009, 30, 59–64. [Google Scholar] [CrossRef]
- Meijer, W. Podophyllum peltatum—Mayapple: A potential new cash crop plant of eastern North America. Econ. Bot. 1974, 28, 68–72. [Google Scholar] [CrossRef]
- Moraes, R.M.; Lata, H.; Bedir, E.; Maqbool, M.; Cushman, K. The American Mayapple and Its Potential for Podophyllotoxin Production. In Trends in New Crops and New Uses, Proceedings of the Fifth National Symposium, Atlanta, GA, USA, 10–13 November 2001; ASHS Press: Alexandria, VA, USA, 2002; pp. 527–532. [Google Scholar]
- Zheljazkov, V.D.; Avula, B.; Jones, A.M.; Maddox, V.; Rowe, D.E. Lignan and nutrient concentrations in American Mayapple (Podophyllum peltatum L.) in the eastern United States. HortScience 2009, 44, 349–353. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Donega, M.A.; Astatkie, T. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming. Ind. CropS Prod. 2013, 43, 787–790. [Google Scholar] [CrossRef]
- Öztürk., M.; Tümen, I.; Uǧur, A.; Aydoǧmuş, F.; Topçu, G. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. J. Sci. Food Agric. 2011. [Google Scholar] [CrossRef]
- Nabi, S.; Ahmed, N.; Khan, M.; Bazai, Z.; Yasinzai, M.; Al-Kahraman, Y. In vitro antileishmanial, antitumor activities and phytochemical studies of methanolic extract and its fractions of Juniperus excelsa Berries. World Appl. Sci. J. 2012, 19, 1495–1500. [Google Scholar] [CrossRef]
- Orhan, N.; Orhan, I.; Ergun, F. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem. Toxicol. 2011, 49, 2305–2312. [Google Scholar] [CrossRef]
- Charles, D.J.; Simon, J.E. Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. J. Am. Soc. Hortic. Sci. 1990, 115, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.; Schellenberg, I. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. Anal. Bioanal. Chem. 2007, 387, 2207–2217. [Google Scholar] [CrossRef]
- Adams, R.P. The serrate leaf margined Juniperus (section Sabina) of the western hemisphere: Systematics and evolution based on leaf essential oils and Random Amplified Polymorphic DNAs (RAPDs). Biochem. Syst. Ecol. 2000, 28, 975–989. [Google Scholar] [CrossRef]
- Ghorbanzadeh, A.; Ghasemnezhad, A.; Sarmast, M.K.; Ebrahimi, S.N. An analysis of variations in morphological characteristics, essential oil content, and genetic sequencing among and within major Iranian Juniper (Juniperus spp.) populations. Phytochemistry 2021, 186, 112737. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Demeke, T. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon. 1993, 42, 553–571. [Google Scholar] [CrossRef]
- Unlu, M.; Vardar-Unlu, G.; Vural, N.; Donmez, E.; Cakmak, O. Composition and antimicrobial activity of Juniperus excelsa essential oil. Chem. Nat. Compd. 2008, 44, 129–131. [Google Scholar] [CrossRef]
- Medini, H.; Elaissia, A.; Khouja, M.L.; Chraief, I.; Farhat, F.; Hammami, M.; Chemli, R.; Harzallah-Skhiri, F. Leaf essential oil of Juniperus oxycedrus L. (Cupressaceae) harvested in Northern Tunisia: Composition and intra-specific variability. Chem. Biodivers. 2010, 7, 1254–1266. [Google Scholar] [CrossRef]
- Shanjani, P.S.; Mirza, M.; Calagari, M.; Adams, R.P. Effects drying and harvest season on the essential oil composition from foliage and berries of Juniperus excelsa. Ind. Crop Prod. 2010, 32, 83–87. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Zheljazkov, V.; Dincheva, I.; Astatkie, T.; Kačaniova, M. Chemotypes of Juniperus oxycedrus in Bulgaria and the antimicrobial activity of galbuli essential oils. Ind. Crop Prod. 2020, 158, 113005. [Google Scholar] [CrossRef]
- Sela, F.; Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Kulevanova, S. Chemical composition and antimicrobial activity of essential oils of Juniperus excelsa Bieb.(Cupressaceae) grown in R. Macedonia. Pharmacogn. Res. 2015, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Chavchanidze, V.Y.; Kharebava, L.G. Studies on the essential oils of juniper. Subtrop. Kul’tury. 1989, 4, 131–143. [Google Scholar]
- Moein, M.R.; Ghasemi, Y.; Moein, S.; Nejati, M. Analysis of antimicrobial, antifungal and antioxidant activities of Juniperus excelsa M. B subsp. polycarpos (K. Koch) Takhtajan essential oil. Pharmacogn. Res. 2010, 2, 128. [Google Scholar] [CrossRef] [Green Version]
- Hojjati, F.; Sereshti, H.; Hojjati, M. Leaf essential oils and their application in systematics of Juniperus excelsa complex in Iran. Biochem. Syst. Ecol. 2019, 84, 29–34. [Google Scholar] [CrossRef]
- Weli, A.M.; Al-Hinai, S.R.K.; Hossain, M.M.; Al-Sabahi, J.N. Composition of essential oil of Omani Juniperus excelsa fruit andantimicrobial activity against foodborne pathogenic bacteria. J. Taibah Univ. Sci. 2014, 8, 225–230. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Orčić, D.; Anačkov, G.; Knežević, P.; Mrkonjić, Z.; Mimica–Dukić, N. Bioactivity and chemical profiling of the Juniperus excelsa, which support its usage as a food preservative and nutraceutical. Internat. J. Food Propert. 2017, 20 (Suppl. 2), 1652–1663. [Google Scholar] [CrossRef]
- Adams, R.P. Systematic of multi-seeded eastern hemisphere Juniperus based on leaf essential oils and RAPD DNA fingerprinting. Biochem.Syst. Ecol. 1999, 27, 709–725. [Google Scholar] [CrossRef]
- Khoury, M.; Beyrouthy, M.; Ouaini, N.; Iriti, M.; Eparvier, V.; Stien, D. Chemical composition and antimicrobial activity of the essential oil of Juniperus excelsa M.Bieb. growing wild in Lebanon. Chem. Biodevers. 2014. [Google Scholar] [CrossRef]
- Zheljazkov, V.; Kačaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.; Astatkie, T.; Schlegel, V. Essential oil, composition, antioxidant and antimicrobial activity of the galbuli of six juniper species. Ind. Crops Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Thappa, R.K.; Aggarwal, S.G.; Kapahi, B.K.; Sarin, Y.K. Juniperus excelsa leaf oil, a new source of cedrol. J. Nat. Prod. 1987, 50, 323–324. [Google Scholar] [CrossRef]
- Adams, R.P. The chemical composition of leaf oils of Juniperus excelsa M.Bieb. J. Essent. Oil Res. 1990, 2, 45–48. [Google Scholar] [CrossRef]
- Adams, R.P. Juniperus procera of East Africa: Volatile leaf oil composition and putative relationship to J. excelsa. Biochem. Syst. Ecol. 1990, 18, 207–210. [Google Scholar] [CrossRef]
- Rafique, M.; Hanif, M.; Chaudary, F.M. Evaluation and commercial exploitation of essential oil of Juniper berries of Pakistan. Pak. J. Sci. Ind. Res. 1993, 36, 107–109. [Google Scholar]
- Topçu, G.; Erenler, R.; Çakmak, O.; Johansson, C.B.; Çelik, C.; Chai, H.B.; Pezzuto, J.M. Diterpenes from the berries of Juniperus excelsa. Phytochemistry 1999, 50, 1195–1199. [Google Scholar] [CrossRef]
- Soković, M.; Ristić, M.; Grubišić, D. Chemical composition and antifungal activity of the essential oil from Juniperus excelsa berries. Pharm. Biol. 2004, 42, 328–331. [Google Scholar] [CrossRef]
- Topçu, G.; Gören, A.C.; Bilsel, G.; Bilsel, M.; Çakmak, O.; Schilling, J.; Kingston, D.G. Cytotoxic activity and essential oil composition of leaves and berries of Juniperus excelsa. Pharm. Biol. 2005, 43, 125–128. [Google Scholar] [CrossRef]
- Shanjani, S.P.; Mirza, M. Seasonal variation of the leaf and cone oil of Juniperus excelsa MB. J. Med. Plants 2006, 5, 50–58. [Google Scholar]
- Slehi, P.; Mirza, M. The study of drying effect on volatile leafe and berry (cone) oil of Juniperus excelsa M.B. Plant Ecosyst. 2007, 3, 82–90. Available online: https://www.sid.ir/en/journal/ViewPaper.aspx?id=362765 (accessed on 10 February 2021).
- Weli, A.M.; AL-Hinai, J.R.K.; Al-Mjrafi, J.M.A.; Alnaaimi, J.R.S.; Hossain, M.A.; Saeed, S.; Aktar, M.D.S. Effect of different polarities leaves crude extracts of Omani juniperus excelsa on antioxidant, antimicrobial and cytotoxic activities and their biochemical screening. Asian Pac. J. Reprod. 2014, 3, 218–223. [Google Scholar] [CrossRef]
- Almaarri, K.; Alamir, L.; Junaid, Y.; Xie, D.Y. Volatile compounds from leaf extracts of Juniperus excelsa growing in Syria via gas chromatography mass spectrometry. Anal. Methods 2010, 10, 673–677. [Google Scholar] [CrossRef]
- Duran, A.A.; Ismihan, G.; Ahmet, A.; Akkus, C.S.; Nedim, D.; Nilufer, V.; Osman, C. Chemical composition, antioxidant, antimicrobial and antispasmodic activities of the essential oil of Juniperus excelsa subsp. excelsa. J. Essent Oil Bear. 2012, 15, 476–483. [Google Scholar]
- Khajjak, M.H.; Raza, A.M.; Shawani, M.N.; Ahmed, F.; Shaheen, G.; Saeed, M. Comparative analysis of essential oil contents of Juniperus excelsa (M. Beib.) found in Balochistan, Pakistan. Afr. J. Biotechnol. 2012, 11, 8154–8159. [Google Scholar]
- Nadir, M.; Rasheed, M.; Ahmed, A. Comparative studies on the phytochemistry of essential oil from needles and berries of Juniperus excelsa M. Bieb. J. Chem. Soc. Pak. 2013, 35, 438–443. [Google Scholar]
- Azzimonti, B.; Cochis, A.; Beyrouthy, M.E.; Iriti, M.; Uberti, F.; Sorrentino, R.; Varoni, E.M. Essential oil from berries of Lebanese Juniperus excelsa M. Bieb displays similar antibacterial activity to chlorhexidine but higher cytocompatibility with human oral primary cells. Molecules 2015, 20, 9344. [Google Scholar] [CrossRef] [Green Version]
- Yaglioglu, S.A.; Eser, F.; Yaglioglu, M.S.; Demirtas, I. The antiproliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 2020, 35, 511–523. [Google Scholar] [CrossRef]
- Asili, J.; Emami, S.A.; Rahimizadeh, M.; Fazly-Bazzaz, B.S.; Hassanzadeh, M.K. Chemical and antimicrobial studies of Juniperus sabina L. and Juniperus foetidissima Willd. essential oils. J. Essent. Oil Bear. Plants 2010, 13, 25–36. [Google Scholar] [CrossRef]
- Fournier, G.; Pages, N.; Fournier, C.; Callan, G. Contribution to the study of the essential oil of various cultivars of Juniperus sabina. Planta Med. 1991, 57, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.A.; Shahidi, N.H.; Hassanzadeh-Khayyat, M. Antioxidant activity of the essential oils of different parts of Juniperus sabina L. and Juniperus foetidissima Willd. (Cupressaceae). Int. J. Essent Oil Ther. 2009, 3, 163–170. [Google Scholar]
- Esmaili, M.; Monfared, A.; Akbarzadeh, M. Chemical composition of hydrodistillation essential oil of fruits and aerial parts of Juniperus sabina L. from Hezar-Jarib in Mazandaran province. Ethno-Pharmaceut. Prod. 2014, 1, 61–65. [Google Scholar]
- Khani, A.; Rashid, B.; Mirshekar, A. Chemical composition and insecticidal efficacy of Juniperus polycarpus and Juniperus sabina essential oils against Tribolium confusum (Coleoptera: Tenebrionidae). Int. J. Food Prop. 2017, 20 (Suppl. 2), 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Sampietro, D.A.; Gomez, A.D.L.A.; Jimenez, C.M.; Lizarraga, E.F.; Ibatayev, Z.A.; Suleimen, Y.M.; Catalán, C.A. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan. Nat. Prod. Res. 2017, 31, 1464–1467. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Soliman, G.A.; Alqarni, M.H.; Hamad, A.M.; Foudah, A.I.; Alqasoumi, S.I. Chemical composition and protective effect of Juniperus sabina L. essential oil against CCl4 induced hepatotoxicity. Saudi Pharmaceut. J. 2019, 27, 945–951. [Google Scholar] [CrossRef]
- Kopralev, I.; Yordanova, M.; Mladenov, C.H. Climate. Geography of Bulgaria; Kopralev, I., Ed.; Geographical Institute at BAS, Farcom: Bulgaria, Sofia, 2002. [Google Scholar]
- Stoeva, М. Juniperus sabina L. In Red Book of Bulgaria. Vol. I: Plants and Mushrooms; Peev, D., Ed.; Bulgarian Academy of Sciences & Ministry of Environment and Water: Sofia, Bulgaria, 2015; Available online: http://e-ecodb.bas.bg/rdb/bg/vol1 (accessed on 30 March 2021).
- Tzonev, R.; Dimitrov, D. Forests of Grecian juniper (Juniperus excelsa). In Red Data Book of the Republic of Bulgaria. Volume 3—Natural Habitats; Biserkov, V., Ed.; Bulgarian Academy of Sciences & Ministry of Environment and Water: Sofia, Bulgaria, 2015; Available online: http://e-ecodb.bas.bg/rdb/bg/vol3 (accessed on 10 January 2021).
- Hartwell, J.L.; Johnson, J.M.; Fitz Gerald, D.B.; Belkin, M. Podophyllotoxin from Juniperus species; savinin. J. Amer. Chem. Soc. 1953, 75, 235–236. [Google Scholar] [CrossRef]
- British Pharmacopoeia; HMSO: London, UK, 1988; Volume 2, pp. 137–138.
- Cassel, E.; Vargas, R.M.F. Experiments and modeling of the Cymbopogon winterianus essential oil extraction by steam distillation. J. Mexican Chem. Soc. 2006, 50, 126–129. [Google Scholar]
- Cassel, E.; Vargas, R.M.F.; Martinez, N.; Lorenzo, D.; Dellacassa, E. Steam distillation modeling for essential oil extraction process. Ind. Crop Prod. 2009, 29, 171–176. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1239. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Saleh, O.; Poudyal, S.; Barka, A.; Qian, Y.; Zheljazkov, V.D. Yield, composition and antioxidant capacity of the essential oil of sweet basil and holy basil as influenced by distillation methods. Chem. Biodivers. 2017. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, H.; Zhang, L.; Liu, D.; Ye, X. Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition. Ind. Crop. Prod. 2012, 39, 162–169. [Google Scholar] [CrossRef]
- Drees, B.; Jackman, J. Field Guide to Texas Insects; Gulf Publishing Company: Houston, TX, USA, 1999; p. 343. [Google Scholar]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Isman, М.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Rice, P.J.; Coats, J.R. Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn root worm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1994, 87, 1172–1179. [Google Scholar] [CrossRef]
- Ojimelukwe, P.C.; Adler, C. Potential of Zimtaldehyde, 4-allyl-anisol, linalool, terpineol and other phytochemicals for the control of confused flour beetle (Tribolium confusum J.D.V) (Col; Tenebrionidae). J. Pestic. Sci. 1999, 72, 81–86. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Karamanoli, K.I.; Stamopoulos, D.C.; Menkissoglu-Spiroudi, U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. 2004, 60, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Burits, M.; Asres, K.; Bucar, F. The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytoter. Res. 2001, 15, 103–108. [Google Scholar] [CrossRef]
- Emami, S.A.; Javadi, B.; Hassanzadeh, M.K. Antioxidant activity of the essential oils of different parts of Juniperus communis. subsp. hemisphaerica. and Juniperus oblonga. Pharm. Biol. 2007, 45, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.; Astatkie, T.; Jeliazkova, E.; Schlegel, V. Distillation time alters essential oils yeld, composition, and antioxidant activity of male Juniperus scopolorum trees. J. Oleo Sci. 2012, 61, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Semerdjieva, I.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of juniper galbuli essential oil constituents eluted at different times. Ind. Crop Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Jokanović, M.; Ikonić, P.; Džinić, N.; Kocić-Tanackov, S.; Popović, L.; Tasić, T.; Savanović, J.; Šojić, N.Ž. Antioxidant activity of Juniperus communis L. essential oil in cooked pork sausages. Czech J. Food Sci. 2017, 35, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.A.; Abedindo, B.F.; Hassanzadeh-Khayyat, M. Antioxidant activity of the essential oils of different parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae). Iran. J. Pharm. Res. 2011, 10, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Anthony, P.K.; Deolu-Sobogun, A.S.; Saleh, A.M. Comprehensive assessment of antioxidant activity of essential oils. J. Food Sci. 2012, 77, C839–C843. [Google Scholar] [CrossRef]
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York 625 Botanical Garden’s. 2012. Available online: http://sweetgum.nybg.org/ih/ (accessed on 25 June 2020).
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E. Year-round variations in essential oil content and composition of male and female Juniper. HortScience 2013, 48, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.; Tatman, A.O.; Schlegel, V. Distillation time alters essential oil yield, composition and antioxidant activity of female Juniperus trees. J. Essent. Oil Res. 2013, 25, 62–69. [Google Scholar] [CrossRef]
- Balinova, A.; Diakov, G. An improved apparatus for microdistillation of rose flowers. Plant Sci. 1974, 2, 79–85. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ., Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Demmer, E.K. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylate B-cylodextrin as the solubility enhancer. J. Agric. Food Chem. 2002, 50, 1815–1821. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Prior, R. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Konstantopoulou, I.; Vassilopoulou, L.; Mavragani-Tsipidou, P.; Scouras, Z.G. Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia 1992, 48, 616–619. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Samples | The Main EO Constituents (%) | Extr. Methods | Locality |
---|---|---|---|---|
Juniperus excelsa | ||||
Unlu et al. [28] | leaves wood | α-pinene (55.5%); α-cedrol (7.7%) sabinene (3.5%); verbenone (2.4%) | Hexane, methanol | Turkey |
Shanjani et al. [30] | galbulid leaves | α-pinene (75.6–83.7%); myrcene (0.4–4.2%) | ST | Iran |
Sela et al. [32] | galbuli leaves | α-pinene (33.83–70.0%); sabinene (28.52–62.0%) | ST | N. Macedonia |
Chavchanidze and Kharabava [33] | leaves | α-pinene (40.2%); limonene (8.3%); sesquiterpenes (2–8%) | Tbilisi | |
Moein et al. [34] | leaves | α-pinene (67.71%); α-cedral (11.5%); δ-3-carene (5.19%); limonene (4.41%) | HD | Iran |
Hojjati et al. [35] | leaves | α-pinene (66.4%); limonene (3.0%); myrcene (3.0%) | HD | Iran |
Weli et al. [36] | galbuli | α-terpinene (23.85%); limonene (23.42%); fenchene (6.57%); camphene (6%); δ-3-carene (4.17%) | HD | Oman |
Lesjak et al. [37] | leaves; galbuli | α-pinene (31–77%); cedrol (8–37%); limonene (6–15%) | HD | between Greece, Albania, Macedoni |
Adams, [38] | leaves | α-pinene (26.5%); cedrol (30.8%) | Tbilisi | |
Khoury et al. [39] | leaves twigs | α-pinene; α-cedrol; δ-3-carene | HD | Lebanon |
Zheljazkov et al. [40] | galbuli | α-pinene (52.4%); β-pinene (3.08%); β-myrcene (3.67%); limonene (7.07%); germacrene D (4.2%) | HD | Bulgaria |
Thappa et al. [41] | branches leaves | sabinene limonene | ST | North America East Africa |
Adams, 1990 [42,43] | leaves | cedrol (28.1%); α-pinene (22.5%) limonene (22.7%) | ST | Greece |
Rafique et al. [44] | galbuli | α-pinene (64.4%); myrcene (12.4%) | alcohol | Pakistan |
Topcu et al. [45] | galbuli | α-pinene (34.0%); α-cedrol (12.3%) | hexane | Turkey |
Soković et al. [46] | galbuli | sabinene (72.8%) | HD | Macedonia |
Topcu et al. [47] | galbuli leaves | α-pinene (29.7–34.0%); cedrol (12.3–25.3%) | HD | Turkey |
Shanjani and Mirza, [48] | leaves galbuli | α-pinene (20–70%) | ST | Iran |
Slehi and Mirza, [49] | leaves; galbuli | α-pinene (19.8–44%) | ST | Iran |
Weli et al. [50] | leaves | α-pinene (29.7%) | HD | Oman |
Almaarri et al. [51] | leaves | α-pinene (26%); germacrene B (7.63%); γ-elemene (5.66%); cedrol (3.4%) | hexane | Syria |
Duran et al. [52] | galbuli | α-pinene (46.1%) | Turkey | |
Khajjak et al. [53] | galbuli | α-pinene; cedrol; camphene; copaene; phyllocladene; ferruginol; podocarp-7-en-3-one; pimara-8(14) 15-dien | solvent method | Balochistan |
Nadir et al. [54] | leaves galbuli | β-pinene (43.4%); limonene (36.0–43.4%); sabinene (9.6–12.6%); β-phellandrene (2.7–3.9%) | Pakistan | |
Azzimonti et al. [55] | galbuli | α-pinene (86.8%); myrcene (3.2%) | HD | Lebanon |
Yaglioglu et al. [56] | leaves galbuli | β-terpinyl acetate (38.0%); α-pinene (37.3%) | ST | Turkey |
Juniperus sabina | ||||
Adams, [38] | leaves | sabinene (36.8%); cedrol (15.2%) terpinen-4-ol (4.1%) | ST | Kazakstan |
Zheljazkov et al. [40] | galbuli | α-pinene (18.4%); sabinene (23.30%) β-myrcene (3.36%); α-terpinene (3.09%); limonene (4.36%); γ-terpinene (6.20%); terpinen-4-ol (11.90%); α-terpinyl acetate (3.04%) | HD | Bulgaria |
Asili et al. [57] | galbuli branchlets | sabinene (24.3–48.6%; 21.5%) α-pinene (6.2–8.1%; 14.7%) myrcene (7.6–10.8%; 6.8%) | ethanol extract | Iran |
Fournier et al. [58] | leaves | sabinene (18.3–40.8%); sabinyl acetate (19.1–53.1%); | France | |
Emami et al. [59] | galbulid leaves | sabinene (36.3–50.59%) trans-sabinyl acetate (22.07–48.2%) | ST | Iran |
Esmaili et al. [60] | galbuli aerial parts | sabinene (36.59–50.31%); α-thujene (0.11–0.32%) | HD | Iran |
Khani et al. [61] | aerial parts | sabinene (12.57%); α-pinene (12.02%) limonene (9.25%); myristicin (8.61%) apiol (6.28%); germacrene D (5.59%) | HD | Iran |
Sampietro et al. [62] | leaves | sabinene (64%) | HD | Kazakhstan |
Abdel-Kader et al. [63] | aerial parts | sabinene (55.82%); α-pinene (5.21%) | HD | Saudi Arabia |
Species | EO Yield | Population (Species) | EO Yield |
---|---|---|---|
J. excelsa | 1.16 b,* | BR1 (J. excelsa) | 1.00 def |
J. sabina | 1.98 a | BR2 (J. excelsa) | 0.69 f |
IG1 (J. excelsa) | 1.87 bc | ||
IG2 (J. excelsa) | 1.47 cd | ||
KG1 (J. еxcelsa) | 0.80 ef | ||
SKZ (J. sabina) | 1.38 cde | ||
BI1 (J. sabina) | 2.73 a | ||
BI2 (J. sabina) | 2.28 ab | ||
KB (J. sabina) | 1.54 c |
EO Constituent | Population and Galbuli Combination | ||||
---|---|---|---|---|---|
BR1 | BR2 | IG1 | IG2 | KG1 | |
α-Pinene | 21.3 b* | 20.4 bc | 19.7 c | 22.5 a | 20.3 c |
β-Pinene | 2.99 b | 2.86 c | 3.04 ab | 2.78 c | 3.13 a |
α-Limonene | 24.1 c | 24.7 bc | 25.3 b | 26.15 a | 26.10 a |
Bornyl acetate | 0.12 b | 0.12 c | 0.13 ab | 0.12 c | 0.13 a |
Germacrene D | 2.28 b | 2.18 c | 2.32 ab | 2.12 c | 2.39 a |
γ-Cadinene | 0.82 b | 0.78 c | 0.83 ab | 0.76 c | 0.86 a |
Germacrene B | 1.38 b | 1.33 c | 1.41 ab | 1.29 c | 1.45 a |
Caryophyllene oxide | 4.02 b | 3.84 c | 4.09 ab | 3.74 c | 4.21 a |
α-Cedrol | 31.7 ab | 30.8 bc | 32.3 a | 29.1 d | 29.8 cd |
1-epi-Cubenol | 2.38 b | 2.27 c | 2.42 ab | 2.21 c | 2.49 a |
Location Sex | Beli Iskar F | Beli Iskar M | Krushovska Bara M |
---|---|---|---|
α-Thujene | 1.57 a | 1.47 b | 1.51 b |
α-Pinene | 2.06 a | 1.94 b | 1.98 b |
Sabinene | 16.7 c | 28.2 b | 31.0 a |
β-Myrcene | 2.84 a | 2.66 b | 2.72 b |
p-Cymene | 1.95 a | 1.83 b | 1.87 b |
Limonene | 2.09 a | 1.96 b | 2.01 b |
cis-Sabinene hydrate | 0.96 a | 0.92 b | 0.9 b |
β-Linalool | 1.10 a | 0.23 b | 0.12 c |
Terpinen-4-ol | 10.7 b | 12.4 a | 13.6 a |
β-Citronellol | 0.94 a | 0.88 b | 0.90 b |
(S)-(-)-Citronellic acid, methy | 4.94 a | 4.64 b | 4.74 b |
Myrtenyl acetate | 23.02 a | 1.32 c | 2.78 b |
Methyl eugenol | 0.07 b | 13.49 a | 0.06 b |
Germacrene D | 0.88 a | 0.83 b | 0.85 b |
δ-Cadinene | 1.77 a | 1.67 b | 1.70 b |
α-Cadinene | 0.57 a | 0.54 b | 0.55 b |
Elemol | 13.23 a | 8.45 b | 13.70 a |
α-Cadinol | 3.77 a | 3.54 b | 3.62 b |
Sclarene | 0.41 b | 1.38 a | 1.24 a |
Accession (#) | % (w/w) | Accession (#) | % (w/w) |
---|---|---|---|
55 | 0.15 de * | 66 | 0.18 bc |
56 | 0.18 bc | 67 | 0.11 gh |
58 | 0.15 de | 68 | 0.2 b |
60 | 0.18 bc | 70 | 0.15 de |
61 | 0.17 bcd | 72 | 0.12 fg |
62 | 0.12 gh | 73 | 0.14 ef |
63 | 0.16 cde | 75 | 0.1 h |
64 | 0.17 cd | 76 | 0.11 gh |
65 | 0.32 a | 77 | 0.07 i |
Constituent Number | Volatile Constituents | RI | Concentration Range % (Min–Max) Clevenger Semi-Commercial | |
---|---|---|---|---|
% of Total Oil by Total Peak Area | ||||
1 | α-Thujene | 931 | 0.07–0.08 | 0.07–0.08 |
2 | α-Pinene | 939 | 18.90–22.20 | 21.07–22.30 |
3 | Camphene | 953 | 0.12–0.15 | 0.12–0.15 |
4 | Sabinene | 969 | 0.07–0.10 | 0.07–0.10 |
5 | β-Pinene | 974 | 0.37–0.41 | 0.36–0.41 |
6 | β-Myrcene | 991 | 0.90–1.00 | 0.86–1.00 |
7 | α-Terpinene | 1018 | 0.12–0.14 | 0.11–0.13 |
8 | α-Limonene | 1031 | 23.70–27.50 | 23.23–26.70 |
9 | γ-Terpinene | 1062 | 0.48–0.51 | 0.45–0.50 |
10 | α-Terpinolene | 1088 | 0.45–0.49 | 0.43–0.50 |
11 | β-Linalool | 1096 | 0.16–0.22 | 0.15–0.22 |
12 | Terpinen-4-ol | 1177 | 0.36–0.41 | 0.34–0.62 |
13 | α-Terpineol | 1189 | 0.09–0.11 | 0.09–0.11 |
14 | Bornyl acetate | 1285 | 0.09–0.13 | 0.09–0.13 |
15 | Myrtenyl acetate | 1298 | 0.09–0.11 | 0.08–0.11 |
16 | α-Cubebene | 1351 | 0.51–0.58 | 0.49–0.58 |
17 | Methyl eugenol | 1357 | 0.32–0.45 | 0.41–0.45 |
18 | α-Copaene | 1376 | 0.37–0.41 | 0.35–0.40 |
19 | β-Elemene | 1390 | 0.38–0.42 | 0.37–0.42 |
20 | α-Cedrene | 1414 | 1.90–2.18 | 1.80–2.17 |
21 | β-Caryophyllene | 1419 | 1.18–2.26 | 1.14–2.27 |
22 | β-Cedrene | 1424 | 0.89–1.04 | 0.85–1.04 |
23 | γ-Elemene | 1433 | 1.00–1.22 | 0.95–1.22 |
24 | α-Humulene | 1454 | 0.63–0.81 | 0.62–0.82 |
25 | γ-Muurolene | 1479 | 0.60–0.70 | 0.57–0.69 |
26 | Germacrene D | 1480 | 2.11–2.90 | 2.05–2.91 |
27 | γ-Cadinene | 1513 | 0.72–1.07 | 0.70–1.07 |
28 | δ-Cadinene | 1524 | 2.82–3.23 | 2.74–3.37 |
29 | Germacrene B | 1556 | 0.65–0.93 | 0.63–0.94 |
30 | Caryophyllene oxide | 1579 | 3.07–3.24 | 2.98–3.26 |
31 | α-Cedrol | 1598 | 24.06–25.55 | 25.00–27.00 |
32 | 1-epi-Cubenol | 1627 | 1.92–2.29 | 1.86–2.30 |
33 | γ-Eudesmol | 1629 | 0.71–0.89 | 0.69–0.90 |
34 | tau-Cadinol | 1634 | 0.90–1.04 | 0.87–1.05 |
35 | tau-Muurolol | 1638 | 0.54–1.23 | 0.52–1.24 |
36 | α-Eudesmol | 1644 | 0.69–1.21 | 0.49–1.21 |
Class | % of Total Oil by Total Peak Area | |||
Monoterpene hydrocarbons | 49.13 | 48.85 | ||
Oxygenated monoterpenes | 0.67 | 0.76 | ||
Bicyclic oxygenated monoterpenes | 0.21 | 0.21 | ||
Total monoterpenes | 50.01 | 49.82 | ||
Monocyclic sesquiterpene hydrocarbons | 5.75 | 5.59 | ||
Oxygenated bicyclic sesquiterpenes | 8.87 | 8.57 | ||
Tricyclic sesquiterpene hydrocarbons | 3.01 | 2.93 | ||
Bicyclic sesquiterpene hydrocarbons | 7.01 | 6.87 | ||
Tricyclic oxygenated sesquiterpenes | 24.80 | 25.90 | ||
Total sesquiterpenes | 49.43 | 49.86 | ||
Phenylpropanoid compound | 0.38 | 0.42 |
Constituent Number | Volatile Constituents | RI | Concentration Range % (Min–Max) Clevenger Commercial | |||
---|---|---|---|---|---|---|
% of Total Oil by Total Peak Area | ||||||
1 | α-Thujene | 931 | 1.28–1.41 | 1.26–1.41 | ||
2 | α-Pinene | 939 | 2.78–5.87 | 2.72–5.88 | ||
3 | Camphene | 953 | 0.09–0.11 | 0.08–0.11 | ||
4 | Sabinene | 969 | 20.48–24.57 | 20.07–25.63 | ||
5 | β-Pinene | 974 | 1.96–2.73 | 1.92–2.73 | ||
6 | β-Myrcene | 991 | 0.53–0.89 | 0.52–0.89 | ||
7 | α-Terpinene | 1018 | 0.89–1.83 | 0.87–1.831 | ||
8 | p-Cymene | 1025 | 0.41–1.02 | 0.41–1.03 | ||
9 | Limonene | 1031 | 1.03–1.82 | 1.01–1.82 | ||
10 | β-Ocimene | 1050 | 0.33–0.72 | 0.32–0.73 | ||
11 | γ-Terpinene | 1062 | 2.37–2.92 | 2.32–2.92 | ||
12 | α-Terpinolene | 1088 | 0.77–1.00 | 0.76–1.06 | ||
13 | cis-Sabinol | 1090 | 0.11–6.81 | 0.11–6.82 | ||
14 | α-Thujone | 1098 | 0.22–2.08 | 0.22–2.08 | ||
15 | Chrysanthone | 1125 | 0.21–2.29 | 0.20–2.29 | ||
16 | Terpinen-4-ol | 1177 | 3.90–6.38 | 3.83–6.39 | ||
17 | β-Citronellol | 1225 | 0.56–0.80 | 0.55–0.80 | ||
18 | Linalyl acetate | 1257 | 0.19–0.21 | 0.18–0.21 | ||
19 | (S)-(-)-Citronellic acid. methyl ester | 1262 | 2.28–2.89 | 2.23–2.90 | ||
20 | Bornyl acetate | 1285 | 0.87–1.04 | 0.85–1.04 | ||
21 | Myrtenyl acetate | 1298 | 1.39–14.10 | 1.36–14.20 | ||
22 | δ-Elemene | 1338 | 0.38–0.48 | 0.38–0.48 | ||
23 | Methyl eugenol | 1357 | 1.95–5.88 | 2.31–5.89 | ||
24 | β-Elemene | 1390 | 0.73–0.83 | 0.71–0.83 | ||
25 | β-Caryophyllene | 1419 | 0.37–0.63 | 0.36–0.63 | ||
26 | γ-Elemene | 1433 | 0.27–0.39 | 0.26–0.39 | ||
27 | α-Humulene | 1454 | 0.17–0.25 | 0.16–0.25 | ||
28 | γ-Muurolene | 1479 | 0.21–0.32 | 0.21–0.32 | ||
29 | Germacrene D | 1480 | 1.38–1.69 | 1.36–1.69 | ||
30 | α-Muurolene | 1500 | 0.48–2.39 | 0.47–2.39 | ||
31 | γ-Cadinene | 1513 | 1.17–2.16 | 1.15–2.17 | ||
32 | δ-Cadinene | 1524 | 2.40–9.29 | 2.35–9.31 | ||
33 | α-Cadinene | 1538 | 0.38–0.45 | 0.37–0.45 | ||
34 | Elemol | 1549 | 1.34–4.52 | 1.32–4.53 | ||
35 | Germacrene-D-4-ol | 1575 | 1.28–4.50 | 1.26–5.02 | ||
36 | Spathulenol | 1578 | 0.12–0.22 | 0.12–0.22 | ||
37 | δ-Cadinol | 1619 | 0.38–0.67 | 0.37–0.67 | ||
38 | γ-Eudesmol | 1629 | 0.43–0.69 | 0.42–0.69 | ||
39 | tau-Cadinol | 1634 | 0.38–2.85 | 0.37–2.85 | ||
40 | tau-Muurolol | 1638 | 0.33–2.90 | 0.33–2.91 | ||
41 | α-Cadinol | 1641 | 0.72–8.34 | 0.71–8.35 | ||
42 | β-Eudesmol | 1651 | 0.28–1.06 | 0.27–1.06 | ||
43 | α-Eudesmol | 1644 | 0.36–0.61 | 0.35–0.67 | ||
44 | Farnesol | 1692 | 0.49–1.04 | 0.48–1.04 | ||
45 | Farnesal | 1707 | 0.51–0.89 | 0.50–0.89 | ||
Class | Clevenger | Commercial | ||||
Male | Female | Male | Female | |||
Monoterpene hydrocarbons | 34.60 | 41.80 | 34.30 | 42.40 | ||
Phenolic monoterpenes | 0.41 | 1.02 | 0.41 | 1.01 | ||
Oxygenated monoterpenes | 7.10 | 15.29 | 7.04 | 15.14 | ||
Phenylpropanoid compound | 5.88 | 1.95 | 5.83 | 2.33 | ||
Ester of monoterpenoid carboxylic acid | 2.89 | 2.28 | 2.87 | 2.26 | ||
Acyclic oxygenated monoterpenes | 0.56 | 0.80 | 0.56 | 0.79 | ||
Bicyclic oxygenated monoterpenes | 2.26 | 15.18 | 2.24 | 15.04 | ||
Total monoterpenes | 53.70 | 78.30 | 56.10 | 79.00 | ||
Oxygenated bicyclic sesquiterpenes | 17.11 | 2.15 | 16.98 | 2.84 | ||
Monocyclic sesquiterpene hydrocarbons | 3.06 | 3.09 | 3.00 | 3.06 | ||
Bicyclic sesquiterpene hydrocarbons | 14.97 | 5.69 | 14.83 | 5.65 | ||
Monocyclic oxygenated sesquiterpenes | 5.80 | 5.84 | 5.75 | 6.29 | ||
Tricyclic oxygenated sesquiterpenes | 0.22 | 0.12 | 0.22 | 0.12 | ||
Acyclic sesquiterpene hydrocarbons | 1.93 | 1.00 | 1.91 | 0.99 | ||
Total sesquiterpenes | 42.9 | 17.8 | 42.5 | 18.9 | ||
Monocyclic diterpenes | 1.22 | 0.12 | 1.21 | 0.11 |
Antimicrobial Activity | J. excelsa | J. sabina | ATB (C) | J. excelsa | J. sabina | ||
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | MIC50 | MIC90 | MIC50 | MIC90 | ||
Escherichia coli CCM3988 | 4.00 ± 1.47 | 5.86 ± 3.31 | 23.33 ± 1.53 | 28.36 ± 0.36 | 34.31 ± 0.19 | 17.82 ± 0.15 | 24.55 ± 0.09 |
Haemophilus influenzae CCM4457 | 3.56 ± 1.46 | 5.24 ± 2.57 | 23.67 ± 0.58 | 34.56 ± 0.09 | 42.83 ± 0.45 | 24.57 ± 0.12 | 31.28 ± 0.04 |
Shigella sonnei CCM1373 | 4.03 ± 1.65 | 5.71 ± 3.65 | 24.67 ± 0.58 | 28.31 ± 0.33 | 34.15 ± 0.21 | 16.84 ± 0.04 | 23.29 ± 0.05 |
Yersinia enterocolitica CCM5671 | 3.89 ± 1.63 | 6.19 ± 3.90 | 20.33 ± 0.58 | 26.36 ± 0.41 | 32.31 ± 0.15 | 15.86 ± 0.35 | 23.56 ± 0.05 |
Streptococcus pneumoniae CCM4501 | 3.44 ± 1.36 | 6.14 ± 3.61 | 22.00 ± 1.00 | 35.64 ± 0.15 | 43.21 ± 0.54 | 15.46 ± 0.65 | 23.35 ± 0.67 |
Staphylococcus aureus CCM4223 | 3.67 ± 1.10 | 3.38 ± 1.40 | 24.67 ± 0.58 | 41.26 ± 0.48 | 52.36 ± 0.25 | 49.59 ± 0.28 | 51.33 ± 0.78 |
Concentration (%) | S. avenae Remained | R. padi Remained |
---|---|---|
1.0 | 3.89 a | 4.11 a |
1.5 | 3.11 ab | 3.56 ab |
2.5 | 2.00 bc | 1.89 c |
3.5 | 2.00 bc | 2.78 bc |
4.5 | 1.44 cd | 3.00 abc |
5.0 | 0.33 *d | 0.44 *d |
EO/% Concentration | nb Aphids before Treatment | After Treatment/h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sitobion avenae | Rhopalosiphum padi | Sitobion avenae | Rhopalosiphum padi | |||||||
24 h | 72 h | 24 h | 72 h | |||||||
nb/Alive | E% | nb/Alive | E% | nb/Alive | E% | nb/Alive | E% | |||
J. sabina M | ||||||||||
5% | 28 | 38 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
4.5% | 32 | 27 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
3.5% | 31 | 26 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
2.5% | 28 | 27 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1.5% | 20 | 28 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1% | 33 | 38 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
J. sabina F | ||||||||||
5% | 26 | 24 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
4.5% | 26 | 26 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
3.5% | 36 | 35 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
2.5% | 21 | 26 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1.5% | 34 | 30 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1% | 28 | 28 | 0 | 100 | 0 | 96.5 | 0 | 100 | 0 | 100 |
J. excelsa | ||||||||||
5% | 28 | 37 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
4.5% | 27 | 26 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
3.5% | 29 | 36 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
2.5% | 24 | 33 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1.5% | 28 | 27 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
1% | 20 | 25 | 0 | 100 | 0 | 92 | 0 | 100 | 0 | 100 |
Control | 27 | 34 | 27 | 27 | 34 | 34 |
Extraction Method | Species, Galbuli, Sex | ORAC |
---|---|---|
Clevenger | J. excelsa with galbuli | 99.1 b* |
Clevenger | J. excelsa without galbuli | 165.5 a |
Clevenger | J. sabina F | 166.3 a |
Clevenger | J. sabina M | 41.5 d |
SCom | J. excelsa with galbuli | 101.3 b |
SCom | J. excelsa without galbuli | 64.1 c |
SCom | J. sabina F | 71.9 c |
SCom | J. sabina M | 23.9 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheljazkov, V.D.; Cantrell, C.L.; Semerdjieva, I.; Radoukova, T.; Stoyanova, A.; Maneva, V.; Kačániová, M.; Astatkie, T.; Borisova, D.; Dincheva, I.; et al. Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules 2021, 26, 3659. https://doi.org/10.3390/molecules26123659
Zheljazkov VD, Cantrell CL, Semerdjieva I, Radoukova T, Stoyanova A, Maneva V, Kačániová M, Astatkie T, Borisova D, Dincheva I, et al. Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules. 2021; 26(12):3659. https://doi.org/10.3390/molecules26123659
Chicago/Turabian StyleZheljazkov, Valtcho D., Charles L. Cantrell, Ivanka Semerdjieva, Tzenka Radoukova, Albena Stoyanova, Vasilina Maneva, Miroslava Kačániová, Tess Astatkie, Daniela Borisova, Ivayla Dincheva, and et al. 2021. "Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia" Molecules 26, no. 12: 3659. https://doi.org/10.3390/molecules26123659
APA StyleZheljazkov, V. D., Cantrell, C. L., Semerdjieva, I., Radoukova, T., Stoyanova, A., Maneva, V., Kačániová, M., Astatkie, T., Borisova, D., Dincheva, I., & Salamon, I. (2021). Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules, 26(12), 3659. https://doi.org/10.3390/molecules26123659